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1 Objective

01◦ In 1976, Irving Segal proposed a new model for time and space. He called
it Universal Space. The model derives in part from the fact that Maxwell’s
Equations are not only Relativistically but also Conformally Invariant. It
leads to novel and provocative reinterpretations of the RedShift and the Cos-
mic Background Radiation, which figure in modern cosmology. See [xx] and
[yy].

02◦ In this essay, we will describe the basic structures underlying Segal’s
proposal and we will present a formal proof of his quadratic redshift-distance
relation:

z = tan2(
d

2
)

2 Universal Space

Basic Definitions

03◦ In what follows, let us identify vectors, linear mappings, and (Hermitean)
bilinear forms with the corresponding coordinate arrays, defined relative to
the appropriate standard bases.

04◦ We begin with the following short exact sequence of separable, locally
compact groups:

0 −−→ πZ
α
−−→ R× SU(2)

β
−−→ U(2) −−→ 1

The homomorphisms α and β are defined as follows:

α(πk) = (πk, e−iπkI), β(u, V ) = eiuV
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where k is any integer, where u is any real number, and where V is any matrix
in SU(2). Obviously, R × SU(2) is the simply connected covering group for
U(2). We refer to it as Universal Space. We refer to U(2) as the Conformal
Compactification of R4.

05◦ We may identify R4 with H(2), as follows. For each quadruple:

ε =


t
x
y
z


in R4, we introduce the matrix:

H =

(
t+ z x− iy
x+ iy t− z

)
in H(2). The mapping so defined is a linear isomorphism carrying R4 to H(2).
The Standard Basis for R4 corresponds to the Pauli Basis for H(2):(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)
Moreover:

t =
1

2
tr(H) and t2 − x2 − y2 − z2 = det(H)

In turn, we may embed H(2) in U(2) by the Cayley Transformation C. For
each matrix H in H(2), we define the matrix:

C(H) = [I + (1/2)iH][I − (1/2)iH]−1 = [I − (1/2)iH]−1[I + (1/2)iH]

in U(2). One can easily check that the mapping C so defined is injective and
that its range consists of the matrices U in U(2) for which I+U is invertible.
Moreover, for each such matrix U in U(2), one may compute the matrix H
in H(2) for which C(H) = U as follows:

H = 2i(I − U)(I + U)−1 = 2i(I + U)−1(I − U)

Finally, we may identify S3 with SU(2), as follows. For each quadruple:

q =


a
b
c
d
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in S3, we introduce the matrix:

V =

(
a+ ib −c+ id
c+ id a− ib

)
in SU(2). The mapping so defined is a homeomorphism carrying S3 to SU(2).
Consequently, we may identify Universal Space with R× S3.

06◦ Let us organize the foregoing mappings in the following diagram:

S3∥∥∥
0 −−→ πZ

α
−−→ R× SU(2)

β
−−→ U(2) −−→ 1xC

H(2)∥∥∥
R4

Conformal Structures

07◦ Let ε be any quadruple in R4. We may identify the tangent space Tε(R
4)

of R4 at ε with R4 itself. The future cone in Tε(R
4) consists of the quadruples:

ε̄ =


t̄
x̄
ȳ
z̄


such that 0 ≤ t̄ and 0 ≤ t̄2− x̄2− ȳ2− z̄2. Such cones comprise the Conformal
Structure for R4.

08◦ Let H be any matrix in H(2). We may identify the tangent space
TH(H(2)) of H(2) at H with H(2) itself. Invoking the identification of R4

with H(2), we may introduce an appropriate future cone in TH(H(2)). It
consists of the matrices F in H(2) such that 0 ≤ F . That is, 0 ≤ tr(F ) and
0 ≤ det(F ). Such cones comprise the Conformal Structure for H(2).

09◦ Finally, let U be any matrix in U(2). We may identify the tangent space
TU (U(2)) of U(2) at U with iH(2)U and we may introduce an appropriate
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future cone in TU (U(2)), consisting of the matrices iGU in iH(2)U such that
0 ≤ G. Such cones comprise the Conformal Structure for U(2).

10◦ Granted the foregoing definitions of conformal structures on H(2) and
U(2), let us prove that C is conformal. To that end, let H be any matrix in
H(2) and let U = C(H) be the corresponding matrix in U(2). For each s in
R and for each matrix F in H(2), let us introduce the notation:

λ(s) = I + (1/2)i(H + sF )

µ(s) = I − (1/2)i(H + sF )

We have:

DC(H)(F ) =
d

ds
C(H + sF )

∣∣
s=0

= lim
s→0

1

s
(µ(s)−1λ(s)− λ(0)µ(0)−1)

= lim
s→0

1

s
(µ(s)−1[λ(s)µ(0)− µ(s)λ(0)]µ(0)−1)

= lim
s→0

1

s
(µ(s)−1[isF ]µ(0)−1)

= iµ(0)−1Fµ(0)−1

= iµ(0)−1Fλ(0)−1U

= iGU

where G = (I−(1/2)iH)−1F (I+(1/2)iH)−1. Obviously, if 0 ≤ F then 0 ≤ G.
Hence, C is conformal.

11◦ Let us emphasize that if H = 0 then U = I and:

DC(0)(F ) = iF

12◦ Of course, we may invoke the covering homomorphism β to induce a
Conformal Structure on R× SU(2). Naturally, β is conformal.

Conformal Inversion

13◦ For later reference, let us introduce the mapping Q carrying U(2) to
itself, defined as follows:

Q(U) = − 1

det(U)
U
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where U is any matrix in U(2). Obviously, Q is involutory. Let us prove
that Q is anti-conformal. To that end, let U be any matrix in U(2) and let
V = Q(U) be the corresponding matrix in U(2). For each matrix F in H(2),
we have:

DQ(U)(iFU) = lim
s→0

1

s
[Q(eisFU)−Q(U)]

= − lim
s→0

1

s
[Q(eisF )Q(U) +Q(U)]

= − lim
s→0

1

s
(Q(eisF )−Q(I))Q(U)

=
d

ds
[det(e−isF )eisF ]

∣∣
s=0

Q(U)

= iGV

where G = F − tr(F )I. Obviously, if 0 ≤ F then G ≤ 0. Hence, Q is
anti-conformal. One refers to Q as conformal inversion on U(2).

14◦ Let us apply C to interpret Q as a mapping carrying (part of) H(2)
to itself. For preparation, we introduce the open dense subset U− of U(2)
consisting of all matrices U such that I + U is invertible and the open dense
subset U+ of U(2) consisting of all matrices V such that I − V is invertible.
Of course, U− is the range of C. In turn, we introduce the intersection
U± = U− ∩ U+, an open dense subset of U(2). For any matrices U and
V in U(2), we claim that U ∈ U− iff I + det(U)−1U is invertible and that
V ∈ U+ iff I − det(V )−1V is invertible. To prove the claim, we simply note
that −1 is an eigenvalue for U iff −det(U) is an eigenvalue for U , and that
1 is an eigenvalue for V iff det(V ) is an eigenvalue for V . Consequently,
Q(U−) = U+ and Q(U+) = U−. Hence:

Q(U±) = U±

By article 5◦, we find that the open dense subset:

H± = C−1(U±)

of H(2) consists of the matrices H for which H is invertible. Let P be the
mapping carrying H± to itself, defined as follows:

P (H) = 4
1

det(H)
H

where H is any matrix in H±. We contend that:

C(P (H)) = Q(C(H))
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One can easily check that the foregoing relation is invariant under conjugation
by matrices W in U(2). Hence, to prove the relation, we need only consider
invertible matrices H in H(2) which are diagonal. For such matrices, one can
prove the relation by routine computation.

3 The Conformal Group

Basic Definitions

15◦ Let Γ be the connected component of the identity in the group consisting
of all conformal transformations carrying U(2) to itself. One can show that

Γ is a Lie group. Let Γ̂ be the simply connected covering group for Γ. Of
course, Γ̂ is a Lie group and it acts on the simply connected covering space
R × SU(2) for U(2). We intend to describe Γ in terms of matrices M in
M(4,C).

16◦ We begin by noting that M(4,C) acts (partially) on M(2, C). Thus, let
M be any matrix in M(4,C):

M =

(
A B
C D

)
In the foregoing expression and in the many others like it which follow, we
intend that the matrix entries be themselves 2 by 2 (in general, complex)
matrices. Let dom(M) be the set of all matrices N in M(2,C) for which
CN +D is invertible. For any such matrix N , we define:

M.N = (AN +B)(CN +D)−1

Obviously, for the identity matrix J in M(4,C):

J =

(
I 0
0 I

)
we have dom(J) = M(2,C) and, for any matrix N in dom(J):

J.N = N

Moreover, for any matrices M1 and M2 in M(4,C):

M1 =

(
A1 B1

C1 D1

)
, M2 =

(
A2 B2

C2 D2

)
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and for any matrix N in M(2,C), if N ∈ dom(M2) and M2.N ∈ dom(M1),
we have:

(M1M2).N = M1.(M2.N)

To verify the foregoing relation, we compute:

[A1(A2N +B2)(C2N +D2)−1 +B1]

{C1(A2N +B2)(C2N +D2)−1 +D1}−1

= [A1(A2N +B2) +B1(C2N +D2)][C2N +D2]−1

{[C1(A2N +B2) +D1(C2N +D2)][C2N +D2]−1}−1

= [(A1A2 +B1C2)N + (A1B2 +B1D2)]

[(C1A2 +D1C2)N + (C1B2 +D1D2)]−1

Two Groups

17◦ Now let us describe two distinct but mutually conjugate subgroups of
the group GL(4,C):

SU(2, 2)•, SU(2, 2)◦

In terms of the (partial) action of M(4,C) on M(2,C) just defined, we will
show that the group SU(2, 2)• implements, in particular, the action of Lorentz
Transformations on H(2) while the group SU(2, 2)◦ implements the action
of Conformal Transformations on U(2). Moreover, we will show that there
is a matrix K in M(4,C) which defines the relation of conjugacy between
SU(2, 2)• and SU(2, 2)◦ and which implements the Cayley Transformation
C.

18◦ We begin the description by introducing two Hermitean bilinear forms
on C4:

β• =

(
0 −I
I 0

)
, β◦ =

(
I 0
0 −I

)
For any matrix M in M(4,C):

M =

(
A B
C D

)
we may form the adjoint M• of M relative to β•:

M tβ• = β•M•

It turns out that:

M• =

(
D∗ −B∗
−C∗ A∗

)
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Similarly, we may form the adjoint M◦ of M relative to β◦:

M tβ◦ = β◦M◦

It turns out that:

M◦ =

(
A∗ −C∗
−B∗ D∗

)

19◦ Now let SU(2, 2)• be the subgroup of GL(4,C) consisting of all matrices
M for which det(M) = 1 and for which the pullback of β• by M is β•:

β• = M tβ•M̄

The latter condition means that M−1 = M•. That is:

(•) D∗A−B∗C = I, D∗B −B∗D = 0
A∗C − C∗A = 0, A∗D − C∗B = I

Similarly, let SU(2, 2)◦ be the subgroup of GL(4,C) consisting of all matrices
M for which det(M) = 1 and for which the pullback of β◦ by M is β◦:

β◦ = M tβ◦M̄

The latter condition means that M−1 = M◦. That is:

(◦) A∗A− C∗C = I, A∗B − C∗D = 0
D∗C −B∗A = 0, D∗D −B∗B = I

Conjugacy

20◦ Let K be the following matrix in GL(4,C):

K =

(
(1/2)iI I
−(1/2)iI I

)
Obviously:

K−1 =

(
−iI iI

(1/2)I (1/2)I

)
One can easily check that the pullback of β◦ by K is −iβ•:

−iβ• = Ktβ◦K̄

Consequently, SU(2, 2)• and SU(2, 2)◦ are conjugate in GL(4,C) under K:

KSU(2, 2)•K−1 = SU(2, 2)◦
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21◦ Obviously, H(2) ⊆ dom(K) and U− ⊆ dom(K−1) . Moreover, for each
matrix H in H(2):

K.H = [I + (1/2)iH][I − (1/2)iH]−1 = C(H)

and, for each matrix U in U−:

K−1.U = 2i(I − U)(I + U)−1

so that C(K−1.U) = U . See article 5◦.

Two Actions

22◦ We contend first that SU(2, 2)◦ acts on U(2). To prove the contention,
let M be any matrix in SU(2, 2)◦:

M =

(
A B
C D

)
and let U be any matrix in U(2). From relations (◦), one can easily derive
the basic relation:

(AU +B)∗(AU +B) = (CU +D)∗(CU +D)

Hence, for any vector z in C2, if (CU + D)z = 0 then (AU + B)z = 0, so
that (D∗CU +D∗D)z = 0 and (B∗AU +B∗B)z = 0. In turn:

z = (D∗D −B∗B)z = −(D∗C −B∗A)Uz = 0

We infer that both CU + D and AU + B are invertible. Moreover, by the
foregoing basic relation:

[(AU +B)(CU +D)−1]∗ = [(AU +B)(CU +D)−1]−1

These observations prove the contention.

23◦ Let us prove that the action of SU(2, 2)◦ on U(2) is transitive. To that
end, let U and V be any matrices in U(2). Let W = V −1U and let c be a
complex number for which c4det(W ) = 1. Let M be the matrix in SU(2, 2)◦

defined as follows:

M = c

(
I 0
0 W

)
Obviously, M.U = V .
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24◦ Now let us prove that the action of SU(2, 2)◦ on U(2) is conformal. To
that end, let M be any matrix in SU(2, 2)◦:

M =

(
A B
C D

)
Let U be any matrix in U(2) and let:

V = M.U = (AU +B)(CU +D)−1

be the corresponding matrix in U(2). We note that, by relations (◦):

I = U∗A∗(AU +B)− U∗C∗(CU +D)

= U∗A∗(AU +B)− U∗C∗V ∗(AU +B)

= U∗(A− V C)∗(AU +B)

so that:
(A− V C)∗ = U(AU +B)−1

Let F be any matrix in H(2). We find that:

d

ds
M.(eisFU)

∣∣
s=0

=
d

ds
[A(eisFU) +B][C(eisFU) +D]−1

∣∣
s=0

= (AiFU)(CU +D)−1 − (AU +B)(CU +D)−1(CiFU)(CU +D)−1

= i(A− V C)FU(CU +D)−1

= iGV

where G = (A−V C)FU(AU+B)−1. Consequently, if 0 ≤ F then 0 ≤ G. We
conclude that the transformation on U(2) implemented by M is conformal.

25◦ Are there conformal transformations on U(2) other than those imple-
mented by SU(2, 2)◦?

26◦ We contend second that SL(2,C) can be identified as a subgroup of
SU(2, 2)• and that, so identified, it implements the action of Lorentz Trans-
formations on H(2). To prove the contention, let A be any matrix in SL(2,C).
Let MA be the matrix in GL(4,C) defined as follows:

MA =

(
A 0
0 (A∗)−1

)
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Obviously, MA lies in SU(2, 2)•. Moreover, H(2) ⊆ dom(MA) and, for each
H in H(2):

MA.H = AHA∗

By the foregoing relation, we recognize that MA defines the generic (proper
orthochronous) Lorentz Transformation on H(2). We infer that the matrix:

KMAK
−1

in SU(2, 2)◦, by its action on U, carries U− = K(H(2)) to itself and defines
an equivalent form of the foregoing (proper orthochronous) Lorentz Transfor-
mation.

27◦ We ought to develop the relation between U(2) and the space K(2)
identified with the light rays in R6, defined by the quadratic form:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


which one may identify with the quotient space of:

S1 × S3

by the equivalence relation:

(t′,u′) ≡ (t′′,u′′)⇐⇒ (∃s 6= 0)(t′′ = st′ ∧ u′′ = su′)

4 The Photon

28◦

29◦

5 RedShift

30◦

31◦
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