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1 Recursive Functions

1◦ Let N stand for the set of all nonnegative integers and let Z+ stand for
the set of all positive integers. For any k in Z+, let Nk stand for the set of
all ordered k-tuples of nonnegative integers. Let Fk stand for the set of all
functions f for which the domain of f is a subset of Nk and the codomain is
N. Let Tk stand for the subset of Fk consisting of all total functions, that is,
functions f for which the domain is Nk. Let:

F = ∪k∈Z+Fk

T = ∪k∈Z+Tk

2◦ By the null function one means the function ν in T1 defined as follows:

ν(x) := 0 (x ∈ N)

By the successor function one means the function σ in T1 defined as follows:

σ(x) := x + 1 (x ∈ N)

Given any j and k in Z+ for which j ≤ k, one defines the projection function
πj

k in Tk as follows:

πj
k(x) := xj (x := (x1, x2, . . . , xk) ∈ Nk)

We shall refer to the foregoing array as the seed functions for the theory of
recursive functions.

3◦ Let k and 
 be any positive integers, let f := (f1, f2, . . . , f�) be any 
-
tuple of functions in Fk and let g be any function in F�. Let h =: g · f =
g · (f1, f2, . . . , f�) be the function in Fk defined as follows:

h(x) := g(f(x)) := g(f1(x), f2(x), . . . , f�(x))
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where x is any k-tuple in the intersection of the domains of f1, f2, and f� for
which f(x) is in the domain of g. We shall say that h follows from g and f by
composition.

4◦ Let w be any number in N and let h be any function in T2. By the
familiar procedure of induction, we obtain a function g in T1 determined as
follows:

g(0) = w
g(z + 1) = h(z, g(z)) (z ∈ N)

We shall say that g follows from w and h by recursion. More generally, let k
be any positive integer, let f be any function in Tk, and let h be any function
in Tk+2. Again by induction, we obtain a function g in Tk+1 determined as
follows:

g(x, 0) = f(x) (x ∈ Nk)
g(x, y + 1) = h(x, y, g(x, y)) (x ∈ Nk, y ∈ N)

We shall say that g follows from f and h by recursion.

5◦ Let k be any positive integer and let g be any function in Fk+1. Let us
say that a given k-tuple x in Nk is admissible iff there exists a number y in
N such that:

(1) for any z in N, if z ≤ y then (x, z) is in the domain of g;
(2) for any z in N, if z < y then g(x, y) �= 0;
(3) g(x, y) = 0.

Obviously, y would be unique. Now we may introduce the function f in Fk

defined as follows:
f(x) := y

where x is any admissible k-tuple in Nk and where y is the indicated number
in N. We shall say that f follows from g by minimization. When g is total
and when every k-tuple in Nk is admissible we shall say that f follows from
g by regular minimization. In this case, f would also be total.

6◦ One defines the set R to be the smallest subset of F which contains
the seed functions and which is closed under the operations of composition,
recursion, and minimization. One refers to the functions in R as recursive.
One defines the set P to be the smallest subset of F which contains the
seed functions and which is closed under the operations of composition and
recursion. One refers to the functions in P as primitive recursive. Clearly,
P ⊆ T ∩ R.

7◦ The following fundamental theorem is called the Normal Form Theorem
of Kleene. For a smooth statement of the theorem, we require certain notation.
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Thus, let v be any function in T3 and let x be any number in N. We shall
denote by vx the function in T2 defined as follows:

vx(y, z) := v(x, y, z) ((y, z) ∈ N2)

Theorem 1 There exist (primitive recursive) functions u in T1 ∩ P and v
in T3 ∩P such that, for any (recursive) function f in F1 ∩R, there is some x
in N such that f = u · g, where g is the (recursive) function in F1 ∩R which
follows from vx by minimization.

One may prove this theorem by developing the relation between recursive
functions and functions computable by “machines”.

Theorem 2 The smallest subset of F which contains the seed functions and
which is closed under the operations of composition, recursion, and regular
minimization equals T ∩ R.

One refers to the functions in T ∩ R as total recursive.

2 Recursive Mappings

8◦ Let k and 
 be any positive integers. Clearly, every mapping f carrying a
subset of Nk to N� may be identified as an 
-tuple (f1, f2, . . . , f�) of functions
in Fk:

f := (f1, f2, . . . , f�)

Of course, the domain of f equals the intersection of the domains of the
functions f1, f2, . . ., f�. One says that f is primitive recursive iff, for any j
(1 ≤ j ≤ k), fj is primitive recursive. Similarly, one says that f is recursive
iff, for any j (1 ≤ j ≤ k), fj is recursive and that f is total recursive iff, for
any j (1 ≤ j ≤ k), fj is total recursive.

Let k, 
, and m be any positive integers. Let f be any mapping carrying
a subset of Nk to N� and let g be any mapping carrying a subset of N� to
Nm. Let h := g · f be the composition of f and g. Clearly, if f and g are
(primitive/total) recursive then h is (primitive/total) recursive.

Theorem 3 For any positive integers k and 
, there exists a bijective map-
ping h carrying Nk to N� such that both h and h−1 are primitive recursive.

To be explicit, let us note that h has domain Nk and range N�. In practice,
one uses the various mappings h to reduce general questions about recursive
mappings to questions about recursive mappings carrying (a subset of) N to
N.
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3 Recursively Enumerable/Decidable Sets

9◦ Let k be any positive integer. Let A be any nonempty subset of Nk. One
says that A is recursively enumerable iff there exists a total recursive mapping
f carrying N to Nk such that the range of f equals A. When A is empty one
takes A to be recursively enumerable by default.

10◦ Now let A be any subset of Nk. One says that A is recursively decidable
iff both A and Nk\A are recursively enumerable. When both A and Nk\A
are nonempty, this condition means that there exist total recursive mappings
f and g carrying N to Nk such that the range of f equals A and the range
of g equals Nk\A. When either A or Nk\A is empty, then in fact A is
recursively decidable, because there does exist a total (actually, primitive)
recursive mapping h carrying N to Nk such that the range of h equals Nk.
[ See Theorem 3. ]

11◦ Obviously, every recursively decidable set is recursively enumerable. The
converse, however, is far from true. In fact, the distinction between the two
concepts lies at the base of the study of computability.

12◦ Let k and 
 be any positive integers. Let f be any recursive mapping
carrying a subset A of Nk to N�. Let B be the range of f . We plan to show
that A is a recursively enumerable set. Of course, it would follow that B is
also a recursively enumerable set. Moreover, we plan to show that there exists
a recursive mapping g carrying the subset B of N� to Nk such that, for any
y in B, f(g(y)) = y. One refers to g as a recursive cross-section of f . Let us
formulate these important results as theorems.

Theorem 4 The domain and range of any recursive mapping are recursively
enumerable sets.

Theorem 5 Every recursive mapping admits a recursive cross-section.

By Theorem 3, we may introduce a bijective mappings h′ carrying N to Nk

and h′′ carrying N� to N such that h′, h′−1, h′′ and h′′−1 are primitive
recursive. Let f := h′′ · f · h′. Clearly, Theorems 4 and 5 will be true for f
if they are true for (the seemingly more special case of) f . Let us denote the
domain of f by Ao and the range by Bo. Let us prove that Ao is recursively
enumerable and that there exists a recursive function g such that the domain
of g is Bo and such that, for any y in Bo, f(g(y)) = y.

Of course, we may assume that Ao is not empty. Let ao be a particu-
lar number in Ao. Invoking the Normal Form Theorem of Kleene, we may
introduce a number x in N such that f = u · g, where g is the (recursive)
function in F1 ∩ R which follows from vx by Minimization. Let t′ and t′′ be
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the (primitive recursive) functions in T1∩P such that, for any p in N, if p = 0
then t′(p) = 0 and t′′(p) = 1 while if 0 < p then t′(p) = 1 and t′′(p) = 0. Let
s := t′ · vx and let:

r(y, z) :=
d∑

c=0

(
z∏

d=0

s(y, z)) ((y, z) ∈ N2)

Clearly, both s and r are primitive recursive. Finally, let:

q(y, z) := aot
′′((z+1)−̇r(y, z))+t′((z+1)−̇r(y, z))u(r(y, z)) ((y, z) ∈ N2)

Clearly, q is primitive recursive. One can check that the range of q equals Ao.
By appealing once again to Theorem 3, we may conclude that Ao is recursively
enumerable.

To show that there exists a recursive cross-section g for f , we argue as
follows. Let e be a (total recursive) function in T1 ∩R such that the range of
e equals Ao. Let d := f · e. Clearly, d is a (total recursive) function in T1 ∩R
and the range of d equals Bo. Let:

h(x, y) := (y−̇d(x)) + (d(x)−̇y) ((x, y) ∈ N2)

Clearly, h is a (total recursive) function in T2 ∩ R. One can check that the
(recursive) function c in F1 ∩ R which follows from h by minimization is a
recursive cross-section for d. Obviously, e · c is a recursive cross-section for
f . •
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