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1 Introduction

1◦ The basic operations of Arithmetic are Addition, Subtraction, Multipli-
cation, and Division. Let us mention the operation of “extraction of roots,”
as well. In terms of these operations, we can form Polynomial Functions, such
as:

f(z) = 1 − 3z + z2

we can form Rational Functions, such as:

g(z) =
1 − 3z + z2

2 + z3

and we can form Algebraic Functions, such as:

h(z) =

√
1 − 3z + z2

2 + z3

However, for many studies in Mathematics and for many applications of Math-
ematics to other fields, we require functions of greater variety and complexity.
The object of this essay, then, is to develop the theory of Power Series and to
apply that theory to design an extensive Library of functions. In due course,
we will recover the familiar Classical Functions:

log

exp

cos

sin

...
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and we will design many others. In particular, we will sketch the theory
of Second Order Ordinary Linear Differential Equations and describe several
instances of such equations, the solutions of which form families of Special
Functions in the study of Mathematical Physics.

2 Sequences and Series

2◦ By a sequence of complex numbers, we mean a function ζ for which the
domain is Z+ and the codomain is C. For each j in Z+, we refer to ζ(j) as
the j-th term of ζ. Very often, we describe such a sequence ζ by displaying
its terms in a suggestive array, for example:

ζ : (
1

1 + i
)1, (

1
1 + i

)2, (
1

1 + i
)3, . . .

or in an explicit formula:

ζ(j) = (
1

1 + i
)j (j ∈ Z+)

or, schematically, in a diagram of the complex plane:

ζ(3)

ζ(2)
ζ(1)

C := R2

Figure 1

3◦ Let ζ be a sequence of complex numbers. Let A and B be subsets of C.
We say that ζ lies frequently in A iff:

(∀j ∈ Z+)(∃k ∈ Z+)[ j ≤ k ∧ ζ(k) ∈ A ]
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We say that ζ lies eventually in B iff:

(∃j ∈ Z+)(∀k ∈ Z+)[ j ≤ k ⇒ ζ(k) ∈ B ]

These relations will prove useful in our study of convergence, soon to follow.

4• Let B be the complement of A in C:

B = C\A

Show that ζ lies eventually in B iff it is false that ζ lies frequently in A. In the
same way, show that ζ lies frequently in B iff it is false that ζ lies eventually
in A.

5◦ Let w be a complex number and let r be a positive real number. Let
Dr(w) denote the subset of C comprised of all complex numbers z for which
|z − w| < r. That is:

Dr(w) = { z : |z − w| < r }

We refer to Dr(w) as the open disk in C for which the center is w and the
radius is r.

6• Let z be any complex number in Dr(w). Find the largest positive real
number s such that:

Ds(z) ⊆ Dr(w)

See Figure 2.

7◦ Now let ζ be a sequence of complex numbers and let w be a complex
number. We say that ζ converges to w iff, for any positive real number r,
ζ lies eventually in Dr(w). This relation is the fundamental idea for the our
study. We will express the relation as follows:

ζ −→ w

See Figure 3.

8• Show that, for any sequence ζ of complex numbers and for any complex
numbers w1 and w2:

(ζ −→ w1 ∧ ζ −→ w2) ⇒ (w1 = w2)
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w

z

C := R2

Figure 2

ζ(3)

ζ(2)
ζ(1)

w

C := R2

Figure 3
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9◦ Let ζ be a sequence of complex numbers. We say that ζ is convergent iff
there exists a complex number w such that ζ converges to w. By the foregoing
article, such a complex number w (if it exists) is unique. We refer to w as the
limit of ζ and denote it by:

lim(ζ)

Hence:
ζ −→ lim(ζ)

10◦ Very often, we will express the matter schematically, as follows:

ζ(j) −→ w

or, more explicitly, as follows:

lim
j→∞

ζ(j) = w

11◦ Let ζ be a convergent sequence of complex numbers. Let w = lim(ζ).
By definition, ζ must lie eventually in D1(w), so we can introduce a positive
integer j such that, for any positive integer k, if j ≤ k then ζ(k) ∈ D1(w).
Hence, the range of ζ is a subset of the following set:

{ζ(1)} ∪ {ζ(2)} ∪ . . . ∪ {ζ(j − 1)} ∪ D1(w)

It follows that the range of ζ is a bounded subset of C. We infer that if ζ is
convergent then it is bounded .

12◦ Let z be a complex number. Let ζ be the sequence of complex numbers
defined as follows:

ζ(j) = zj

where j is any positive integer. We refer to ζ as the geometric sequence with
common ratio z. For the case:

z =
1

1 + i

we recover the sequence first described in article 2◦. Such sequences play a
basic role in our study.

13◦ Let z be a complex number and let ζ be the geometric sequence with
common ratio z. We contend that if |z| < 1 then ζ −→ 0. That is:

zj −→ 0
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Of course, we may as well assume that z �= 0. To prove the contention, let r
be any positive real number. We must show that ζ lies eventually in Dr(0).
Let a be the positive real number defined as follows: a = (1/|z|) − 1. Let us
apply the Principle of Archimedes to introduce a positive integer j for which:

1
j

< ar

Let k be any positive integer for which j ≤ k. We have:

|zk − 0| = |z|k =
1

(1 + a)k
≤ 1

ka
≤ 1

ja
< r

Hence, ζ(k) ∈ Dr(0). We conclude that ζ lies eventually in Dr(0). Therefore,
ζ −→ 0. For the critical step in the foregoing computation, we used the fact
that:

ka ≤ (1 + a)k

One can easily prove the fact by applying Mathematical Induction.

14• Note that if 1 < |z| then ζ is not bounded, hence not convergent. Discuss
the case in which |z| = 1. To that end, consider the subcases:

θ ∈ 2πQ and θ /∈ 2πQ

where θ is the polar angle for z. See article 26•.

15◦ Given two sequences ζ1 and ζ2 of complex numbers, we can apply the
basic operations of Arithmetic to form four new sequences of complex num-
bers: the Sum, the Difference, the Product, and the Quotient of ζ1 and ζ2, as
follows:

(ζ1 + ζ2)(j) = ζ1(j) + ζ2(j)

(ζ1 − ζ2)(j) = ζ1(j) − ζ2(j)

(ζ1ζ2)(j) = ζ1(j)ζ2(j)

(
ζ1

ζ2
)(j) =

ζ1(j)
ζ2(j)

where j is any positive integer. Of course, for the last case, we assume that
ζ2(j) �= 0. Given a complex number c and a sequence ζ of complex numbers,
we can form a new sequence: the Scalar Product, as follows:

(c ζ)(j) = c ζ(j)

6



where j is any positive integer. Obviously, this operation is a special case of
the foregoing operation of Multiplication of sequences.

16◦ Let us point to the following natural facts. For any sequences ζ1 and ζ2

of complex numbers, if ζ1 and ζ2 are convergent then ζ1 + ζ2, ζ1 − ζ2, ζ1ζ2,
and ζ1/ζ2 are convergent and:

lim(ζ1 + ζ2) = lim(ζ1) + lim(ζ2)

lim(ζ1 − ζ2) = lim(ζ1) − lim(ζ2)

lim(ζ1ζ2) = lim(ζ1)lim(ζ2)

lim(ζ1/ζ2) = lim(ζ1)/lim(ζ2)

Of course, for the last case, we assume that lim(ζ2) �= 0. Moreover, for
any sequence ζ of complex numbers and for any complex number c, if ζ is
convergent then cζ is convergent and:

lim(c ζ) = c lim(ζ)

The proofs of these facts are not difficult. For illustration, let us prove the fact
for Products of sequences. Thus, let us assume that ζ1 and ζ2 are convergent
and let us introduce the limits:

w1 = lim(ζ1) and w2 = lim(ζ2)

We must show that ζ1ζ2 converges to w1w2:

ζ1ζ2 −→ w1w2

Let r be any positive real number. With reference to article 11◦, we can
introduce a positive real number a such that, for every positive integer k,
|ζ2(k)| ≤ a. Let r′ and r′′ be positive real numbers for which r′a < (1/2)r and
|w1|r′′ < (1/2)r. Since ζ1 −→ w1, ζ1 must lie eventually in Dr′(w1). Hence,
we can introduce a positive integer j′ such that, for any positive integer k,
if j′ ≤ k then |ζ1(k) − w1| < r′. Since ζ2 −→ w2, ζ2 must lie eventually in
Dr′′(w2). Hence, we can introduce a positive integer j′′ such that, for any
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positive integer k, if j′′ ≤ k then |ζ2(k) − w2| < r′′. Let j be the larger of j′

and j′′. For any positive integer k, if j ≤ k then j′ ≤ k and j′′ ≤ k, so:

|ζ1(k)ζ2(k) − w1w2| = |ζ1(k)ζ2(k) − w1ζ2(k) + w1ζ2(k) − w1w2|
≤ |ζ1(k)ζ2(k) − w1ζ2(k)| + |w1ζ2(k) − w1w2|
= |ζ1(k) − w1||ζ2(k)| + |w1||ζ2(k) − w2|
< r′a + |w1|r′′

< (1/2)r + (1/2)r
= r

Therefore, ζ1ζ2 lies eventually in Dr(w1w2). It follows that ζ1ζ2 converges to
w1w2.

17• Prove the facts for Sums, Differences, and Quotients.

18◦ Given a sequence ζ of complex numbers, we can apply certain familiar
operations on C to form four new sequences of complex numbers: the Real
and Imaginary Parts, the Conjugate, and the Absolute Value of ζ, as follows:

Re(ζ)(j) = Re(ζ(j))

Im(ζ)(j) = Im(ζ(j))

ζ∗(j) = ζ(j)∗

|ζ|(j) = |ζ(j)|

where j is any positive integer.

19• Prove that if ζ is convergent then ζ∗ and |ζ| are convergent and:

lim(ζ∗) = lim(ζ)∗

lim(|ζ|) = |lim(ζ)|

20• Prove that ζ is convergent iff Re(ζ) and Im(ζ) are convergent and:

lim(Re(ζ)) = Re(lim(ζ))

lim(Im(ζ)) = Im(lim(ζ))
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21◦ Let us proceed to prove two fundamental theorems in our subject: the
Theorem of Bolzano and Weierstrass, which forges a link between bounded
sequences and convergent sequences, and the Theorem of Cauchy, which iden-
tifies convergent sequences in practical terms. These theorems, modified and
generalized ad infinitum, are two of the cornerstones of Modern Analysis.

22◦ Let ζo and ζ be any sequences of complex numbers. We say that ζo is a
subsequence of ζ iff:

ζo = ζ · ι
where ι is a strictly increasing function for which both the domain and the
codomain equal Z+. We mean to say that, for any positive integers j and k,
if j < k then ι(j) < ι(k). We refer to ι as a selection function. Obviously, for
each positive integer j, the j-th term of ζo is the ι(j)-th term of ζ:

ζo(j) = ζ(ι(j))

23• Let ζo be a subsequence of the sequence ζ. Show that if ζ is convergent
then ζo is convergent and:

lim(ζo) = lim(ζ)

24◦ By article 11◦, convergent sequences must be bounded. To the contrary,
bounded sequences are not necessarily convergent. However, by the Theo-
rem of Bolzano and Weierstrass, bounded sequences must admit convergent
subsequences.

Theorem 1 For any sequence ζ of complex numbers, if ζ is bounded then
there exists a subsequence ζo of ζ such that ζo is convergent.

For the proof, let us introduce the real and imaginary Parts of ζ:

η′ = Re(ζ), η′′ = Im(ζ)

Let J be the subset of Z+ comprised of all positive integers j such that, for
any positive integer k, if j < k then η′(k) ≤ η′(j). One might refer to the
integers j in J as η′-leaders. Of course, either J is finite or J is infinite.

Let us consider first the case in which J is infinite. Let ι be the selection
function which lists the members of J in order:

J : ι(1) < ι(2) < ι(3) < · · ·

Clearly, the subsequence:
η′

o = η′ · ι
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of η′ is decreasing. By application of the Greatest Lower Bound Principle for
R, we find that η′

o is convergent. In fact, η′
o converges to the greatest lower

bound for its range. See article 25•.
Let us consider now the case in which J is finite. Obviously, we can

introduce a positive integer ι(1) such that, for each j in J , j < ι(1). Since
ι(1) /∈ J , we can introduce a positive integer ι(2) such that ι(1) < ι(2) and
η′(ι(1)) < η′(ι(2)). Since ι(2) /∈ J , we can introduce a positive integer ι(3)
such that ι(2) < ι(3) and η′(ι(2)) < η′(ι(3)). In this manner, we can define a
selection function ι such that the subsequence:

η′
o = η′ · ι

of η′ is (strictly) increasing. By application of the Least Upper Bound Prin-
ciple for R, we find that η′

o is convergent. In fact, η′
o converges to the least

upper bound for its range. See article 25•.
Hence, whether J be finite or infinite, we can show that there is a sub-

sequence η′
o = η′ · ι of η′ such that η′

o is convergent.
We hasten to note that the corresponding subsequence η′′

o = η′′ · ι of
η′′ need not be convergent. However, we can introduce the subset Ko of Z+

comprised of all the η′′
o -leaders and we can apply the foregoing argument to

show that there is a subsequence:

η′′
oo = η′′

o · κ = η′′ · (ι · κ)

of η′′
o such that η′′

oo is convergent. Of course, κ is a suitable selection function.
Clearly, the subsequence:

η′
oo = η′

o · κ = η′ · (ι · κ)

of η′ is convergent. See article 23•.
Now we can introduce the subsequence:

ζoo = ζ · (ι · κ)

of ζ. By design, the real and imaginary Parts η′
oo and η′′

oo of ζoo are convergent.
We infer that ζoo is convergent. See article 20•. The proof of the Theorem of
Bolzano and Weierstrass is complete.

25• Let ζ be a bounded sequence of real numbers. Apply the Greatest Lower
Bound Principle to show that, if ζ is decreasing then ζ converges to the
greatest lower bound for its range. Apply the Least Upper Bound Principle
to show that, if ζ is increasing then ζ converges to the least upper bound for
its range.

26• Let z be a complex number for which the polar radius (that is, the
absolute value) is 1 and for which the polar angle is θ. Let θ = 2πu, where u
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is an irrational number. Let ζ be the geometric sequence with common ratio
z. Let w be any complex number for which the polar radius is 1. Show that
there is a subsequence ζo of ζ which converges to w.

27◦ Let ζ be any sequence of complex numbers. We say that ζ is Cauchy iff:

(∀r ∈ R+)(∃j ∈ Z+)(∀k′ ∈ Z+)(∀k′′ ∈ Z+)
[ (j ≤ k′ ∧ j ≤ k′′) ⇒ |ζ(k′) − ζ(k′′) | < r]

One should note that this property of sequences can be verified by direct
inspection of the terms. For contrast, one should note that the property of
convergence requires, for verification, specification of the limit. Remarkably,
by the Theorem of Cauchy, the two properties are equivalent.

Theorem 2 For any sequence ζ of complex numbers, ζ is convergent iff ζ
is Cauchy.

Let us assume first that ζ is convergent. Let w = lim(ζ). Let r be any positive
real number and let s = (1/2)r. Of course, ζ must lie eventually in Ds(w).
Hence, we can introduce a positive integer j such that, for any positive integer
k, if j ≤ k then |ζ(k)−w| < s. In turn, for any positive integers k′ and k′′, if
j ≤ k′ and j ≤ k′′ then:

|ζ(k′) − ζ(k′′) = |ζ(k′) − w + w − ζ(k′′)|
≤ |ζ(k′) − w| + |w − ζ(k′′)|
< s + s

= r

We infer that ζ is Cauchy.
Let us assume now that ζ is Cauchy. One can easily adapt the argument

in article 11• to show that ζ is bounded. See the following article. By the
Theorem of Bolzano and Weierstrass, we can introduce a subsequence:

ζo = ζ · ι

of ζ such that ζo is convergent. Of course, ι is a suitable selection function.
Let wo = lim(ζo). We contend that ζ itself converges to wo. Let r be any
positive real number. Let s = (1/2)r. Since ζ is Cauchy, we can introduce a
positive integer j1 such that, for any positive integers k′ and k′′, if j1 ≤ k′ and
j1 ≤ k′′ then |ζ(k′) − ζ(k′′)| < s. Since ζo lies eventually in Ds(wo), we can
introduce a positive integer j2 such that, for any positive integer k, if j2 ≤ k
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then |ζo(k)−wo| < s. Let j be the larger of j1 and j2. For any positive integer
k, if j ≤ k then j1 ≤ k ≤ ι(k) and j2 ≤ k, so:

|ζ(k) − wo| = |ζ(k) − ζo(k) + ζo(k) − wo|
≤ |ζ(k) − ζ(ι(k))| + |ζo(k) − wo|
< s + s

= r

Hence, ζ lies eventually in Dr(wo). We infer that ζ converges to wo. The
proof of the Theorem of Cauchy is complete.

28• Show that, for any sequence ζ of complex numbers, if ζ is Cauchy then
it is bounded. To do so, imitate the argument in article 11•.

29◦ Let us turn from Sequences to Series. By a series of complex numbers,
we mean an ordered pair (ζ, σ) of sequences of complex numbers such that σ
is the sequence of partial sums for ζ:

σ(k) =
k∑

j=1

ζ(j)

where k is any positive integer. By introducing σ, we shift our attention from
the question of convergence of ζ to the question of summability .

30◦ We say that the series (ζ, σ) of complex numbers is convergent iff the
sequence σ of complex numbers is convergent. We refer to the limit of σ as
the sum of ζ:

Σ(ζ) = lim(σ)

That is:
∞∑

j=1

ζ(j) = lim
k→∞

k∑
j=1

ζ(j)

31◦ Most often, one denotes the series (ζ, σ) informally as follows:

ζ(1) + ζ(2) + ζ(3) + · · ·

or, slightly more formally, as follows:

∞∑
j=1

ζ(j)
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However, this notation begs the question of convergence and blurs the distinc-
tion between the series and the “sum.” Nevertheless, it has several advantages.
In the following Section on Power Series, we will adopt the more common
notation. For now, we will insist upon the more precise notation of ordered
pairs.

32• Show that, for any series (ζ, σ) of complex numbers, if (ζ, σ) is convergent
then ζ converges to 0.

33• Let (ζ, σ) be the series of complex (in fact, rational) numbers defined as
follows:

ζ(j) =
1
j

where j is any positive integer, and:

σ(k) = 1 +
1
2

+
1
3

+ · · · +
1
k

where k is any positive integer. We refer to ζ as the harmonic sequence and
to (ζ, σ) as the harmonic series. Show that ζ converges to 0 but that (ζ, σ)
is not convergent. The following hint should be helpful:

1
2

+
1
2

+
1
2

≤ (
1
3

+
1
4
) + (

1
5

+
1
6

+
1
7

+
1
8
) + (

1
9

+
1
10

+
1
11

+
1
12

+
1
13

+
1
14

+
1
15

+
1
16

)

34◦ Let (ζ, σ) be the series of complex (in fact, rational) numbers defined as
follows:

ζ(j) =
1

j(j + 1)
=

1
j
− 1

j + 1

where j is any positive integer, and:

σ(k) = (1 − 1
2
) + (

1
2
− 1

3
) + (

1
3
− 1

4
) + · · · + (

1
k
− 1

k + 1
) = 1 − 1

k + 1

where k is any positive integer. For reference, let us call (ζ, σ) the telescopic
series. Obviously:

σ −→ 1

Hence, (ζ, σ) is convergent, and:

∞∑
j=1

1
j(j + 1)

= 1
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35◦ Let z be a complex number. Let (ζ, σ) be the series of complex numbers
defined as follows:

ζ(j) = zj

where j is any positive integer, and:

σ(k) = z1 + z2 + z3 + · · · + zk

where k is any positive integer. Of course, ζ is the geometric sequence with
common ratio z. We refer to (ζ, σ) as the geometric series with common
ratio z. Obviously, if 1 ≤ |z| then ζ does not converge to 0, so (ζ, σ) is not
convergent. However, if |z| < 1 then (ζ, σ) is convergent. In fact:

σ(k) −→ z

1 − z

so that: ∞∑
j=1

zj =
z

1 − z

Let us prove that it is so. For each positive integer k, we have:

(1 − z)σ(k) = (z + z2 + z3 + · · · + zk) − (z2 + z3 + z4 + · · · + zk+1)

so:

σ(k) =
z − zk+1

1 − z
−→ z

1 − z

See article 13◦. The proof is complete.

36◦ For the telescopic series and for the various geometric series’, we were
able to present an explicit formula for the sequence σ and to compute lim(σ),
hence to compute Σ(ζ). Such examples are unusual. They are also useful,
because they can be applied to show, by comparison, that other series are
convergent.

37◦ Let us describe the Method of Comparison. Let (ζ1, σ1) and (ζ2, σ2) be
series’ of complex numbers such that, for any positive integer j:

|ζ1(j)| ≤ ζ2(j)

It follows that, for any positive integer k:

|σ1(k)| = |
k∑

j=1

ζ1(j)| ≤
k∑

j=1

|ζ1(j)| ≤
k∑

j=1

ζ2(j) = σ2(k)
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Obviously, the terms of ζ2 and σ2 must be nonnegative real numbers. We
contend that if (ζ2, σ2) is convergent then (ζ1, σ1) is convergent, and:

|Σ(ζ1)| ≤ Σ(ζ2)

That is:

|
∞∑

j=1

ζ1(j) | ≤
∞∑

j=1

ζ2(j)

Informally:

| ζ1(1) + ζ1(2) + ζ1(3) + · · · + ζ1(j) + · · · |
≤ ζ2(1) + ζ2(2) + ζ2(3) + · · · + ζ2(j) + · · ·

Let us prove the contention. We assume that σ2 is convergent. We must prove
that σ1 is convergent and that:

| lim(σ1) | ≤ lim(σ2)

Let w2 = lim(σ2). Since σ2 is increasing, w2 is the least upper bound for the
range of σ2. Of course, 0 ≤ w2. Let r be any positive real number. Since σ2

lies eventually in Dr(w2), we can introduce a positive integer j such that, for
any positive integer k, if j ≤ k then:

w2 − r < σ2(k) ≤ w2

Hence, for any positive integers k′ and k′′, if j ≤ k′ < k′′ then:

|σ1(k′′) − σ1(k′)| = |
k′′∑

j=k′+1

ζ1(j) | ≤
k′′∑

j=k′+1

ζ2(j) = σ2(k′′) − σ2(k′) < r

It follows that σ1 is Cauchy, therefore convergent. Let w1 = lim(σ1). Let
us suppose that w2 < |w1|. Taking r to be |w1| − w2, we could introduce a
positive integer j such that σ1(j) lies in Dr(w1), so that:

|σ1(j) − w1| < |w1| − w2

and:

σ2(j) ≤ w2 < |w1| − |w1 − σ1(j)| ≤ |w1 − (w1 − σ1(j)) | = |σ1(j)|

a contradiction. We conclude that |w1| ≤ w2. The proof is complete. For
the critical step in the foregoing computation, we used the fact that, for any
complex numbers z1 and z2:

|z1| − |z2| ≤ | z1 − z2 |
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38• By comparison with the telescopic series, show that:

∞∑
j=1

1
j2

< 2

In fact: ∞∑
j=1

1
j2

=
π2

6

but we have no method to prove this fact right now.

39◦ Finally, let us develop two basic tests for the convergence of series’: the
Root Test and the Ratio Test. We justify these simple tests by comparison
with geometric series’.

40◦ Let (ζ, σ) be a series of complex numbers. Let ρ be the corresponding
sequence of roots:

ρ(j) = j
√
|ζ(j)|

where j is any positive integer. Let us assume first that there is a real number
r such that 0 < r < 1 and such that ρ lies eventually in the interval [ 0, r ].
For instance, ρ might be convergent and lim(ρ) < 1. Under this assumption,
we can introduce a positive integer k such that, for any positive integer j, if
k ≤ j then 0 ≤ ρ(j) ≤ r, so:

|ζ(j)| = ρ(j)j ≤ rj

Since 0 < r < 1, the geometric series with common ratio r is convergent. By
the Method of Comparison, the series (ζ, σ) is convergent, and:

|
∞∑

j=1

ζ(j) | ≤
k−1∑
j=1

|ζ(j)| +
∞∑

j=k

rj

Let us assume now that ρ lies frequently in the interval (1,→). For instance,
ρ might be convergent and 1 < lim(ρ); or ρ might be unbounded. Under this
assumption, one can easily check that ζ does not converge to 0. Hence, the
series (ζ, σ) is not convergent.

41◦ The foregoing remarks comprise the Root Test. Usually, one simply
assumes that ρ is convergent, then inquires whether:

lim(ρ) < 1 or 1 < lim(ρ)
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In the former case, one infers that (ζ, σ) is convergent; in the latter, not
convergent. By the way, the case in which lim(ρ) = 1 is inconclusive. See
article 44•.

42◦ Let (ζ, σ) be a series of complex numbers. Let ρ be the corresponding
sequence of ratios:

ρ(j) =
|ζ(j + 1)|
|ζ(j)|

where j is any positive integer. Of course, we assume that ζ(j) �= 0. Let us
assume first that there is a real number r such that 0 < r < 1 and such that
ρ lies eventually in the interval [ 0, r ]. For instance, ρ might be convergent
and lim(ρ) < 1. Under this assumption, we can introduce a positive integer
k such that, for any positive integer j, if k ≤ j then 0 ≤ ρ(j) ≤ r, so:

|ζ(j + 1)|

=
|ζ(j + 1)|
|ζ(j)|

|ζ(j)|
|ζ(j − 1)| · · ·

|ζ(k + 1)|
|ζ(k)| |ζ(k)|

≤ rj+1−k |ζ(k)|

=
|ζ(k)|

rk
rj+1

Since 0 < r < 1, the geometric series with common ratio r is convergent. By
the Method of Comparison, the series (ζ, σ) is convergent, and:

|
∞∑

j=1

ζ(j) | ≤
k∑

j=1

|ζ(j)| + |ζ(k)|
rk

∞∑
j=k+1

rj

Let us assume now that ρ lies frequently in the interval (1,→). For instance,
ρ might be convergent and 1 < lim(ρ); or ρ might be unbounded. Under this
assumption, one can easily check that ζ does not converge to 0. Hence, the
series (ζ, σ) is not convergent.

43◦ The foregoing remarks comprise the Ratio Test. Usually, one simply
assumes that ρ is convergent, then inquires whether:

lim(ρ) < 1 or 1 < lim(ρ)

In the former case, one infers that (ζ, σ) is convergent; in the latter, not
convergent. By the way, the case in which lim(ρ) = 1 is inconclusive. See
article 44•.
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44• With reference to articles 33• and 38•, apply the Root and Ratio Tests
to the series’: ∞∑

j=1

1
j

and
∞∑

j=1

1
j2

and see what happens. The following relation will be useful:

j
√

j = exp(
1
j
log(j)) −→ exp(0) = 1

45• Show that the following series converges:

∞∑
j=1

j2−j

46• Let ω be any sequence of digits, so that, for each positive integer j, ω(j)
equals:

0, 1, 2, 3, 4, 5, 6, 7, 8, or 9

Show that the following decimal series converges:

∞∑
j=1

ω(j)10−j

and that:

0 ≤
∞∑

j=1

ω(j)10−j ≤ 1

47• Let ζ0 be a strictly decreasing sequence of positive real numbers for
which:

ζ0 −→ 0

Let ζ be the corresponding alternating sequence:

ζ(j) = (−1)j−1ζ0(j)

where j is any positive real number. Show that the alternating series:

∞∑
j=1

ζ(j) = ζ0(1) − ζ0(2) + ζ0(3) − ζ0(4) + · · ·
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is convergent, and that:

|
∞∑

j=1

ζ(j) −
k∑

j=1

ζ(j)| < ζ0(k + 1)

where k is any positive integer.

3 Power Series

48◦ For convenience of expression, let us replace the index set Z+ by the
index set Z+

0 :
Z+

0 = {0} ∪ Z+

and let us redefine a sequence of complex numbers to be a function ζ for
which the domain is Z+

0 and the codomain is C. With minimal effort, one
can accomodate the preceding discussion to this change of notation.

49◦ Let γ be any sequence of complex numbers. By the formal power series’
defined by γ, we mean the following series’:

γ(0)z0 + γ(1)z1 + γ(2)z2 + · · · γ(j)zj + · · ·

or, more economically:
∞∑

j=0

γ(j)zj

where z is any complex number. Of course, the displayed expression is the
common notation for the series (ζz, σz):

ζz(j) = γ(j)zj

σz(k) =
k∑

j=0

γ(j)zj

where j and k are any nonnegative integers.

50◦ Clearly, the sequence γ defines a function f , as follows:

f(z) =
∞∑

j=0

γ(j)zj

where z is any complex number for which the foregoing series converges. We
refer to f , rather awkwardly, as the power series defined by γ. Let us em-
phasize that f is a function for which the domain D is a subset of C and the
codomain is C.
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51◦ For example, we may take γ to be the sequence with constant value 1:

γ(j) = 1

where j is any nonnegative integer. For the corresponding power series f , we
find that:

f(z) =
∞∑

j=0

zj =
1

1 − z

where |z| < 1. See article 35◦. For this case, D = D1(0). Naturally, we will
refer to f as the geometric power series.

52◦ Now let γ be any sequence of complex numbers and let f be the power
series defined by γ. Let us identify the domain D of f . We contend that there
is a nonnegative extended real number δ:

0 ≤ δ ≤ ∞

such that, for any complex number z, if |z| < δ then z is contained in D, while
if δ < |z| then z is not contained in D. For the cases in which |z| = δ, the
questions are often subtle. We ignore such cases. Hence, we identify D with
Dδ(0):

D = Dδ(0)

We refer to δ as the radius of convergence for f . See Figure 4.

0
δ

C := R2

Figure 4
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53◦ For the extreme values δ = 0 and δ = ∞, we make the following natural
interpretations:

D0(0) = ∅ and D∞(0) = C

54◦ Let us prove the foregoing contention. Let ∆ be the set comprised of all
nonnegative real numbers d such that ζd is bounded. See article 48◦. Clearly,
0 ∈ ∆, so ∆ is not empty. Let δ be the least upper bound for ∆. For the case
in which ∆ is not bounded, we interpret δ to be ∞. Let z be any complex
number. Let us assume first that δ < |z|. It follows that |z| is not contained
in ∆, so ζz is not bounded. Hence, (ζz, σz) is not convergent. Therefore, z
is not contained in D. Let us assume now that 0 ≤ |z| < δ. Let d be a real
number in ∆ such that 0 ≤ |z| < d < δ. Of course, ζd is bounded, so we can
introduce a nonnegative real number a such that, for any nonnegative integer
j:

|γ(j)dj | ≤ a

Hence:

|ζz(j)| = |γ(j)zj | = |γ(j)dj zj

dj
| = |γ(j)dj ||z

d
|j ≤ arj

where:

0 ≤ r =
|z|
d

< 1

Since the geometric series with common ratio r is convergent, we infer, by
comparison, that (ζz, σz) is convergent. Therefore, z is contained in D. The
proof of the contention is complete.

55◦ Let γ be any sequence of complex numbers. In many cases, we can apply
the Root or Ratio Test to calculate the radius of convergence for the power
series f defined by γ. To that end, let ρ be the sequence of roots:

ρ(j) = j
√
|γ(j)|

where j is any nonnegative integer. It may happen that ρ is convergent. In
such a case, let r = lim(ρ):

0 ≤ r ≤ ∞

For the extreme value r = ∞, we mean that:

(∀a ∈ R+)(∃j ∈ Z+
0 )(∀k ∈ Z+

0 )[ j ≤ k ⇒ a ≤ ρ(k) ]

Clearly, for any complex number z:

j
√
|γ(j)zj | = ρ(j)|z| −→ r|z|
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By the Root Test, if r|z| < 1 then z lies in the domain of f , while if 1 < r|z|
then z does not lie in the domain of f . We infer that the radius of convergence
for f equals:

δ =
1

lim(ρ)

For the extreme values r = 0 and r = ∞, we find that δ equals ∞ and 0,
respectively.

Similarly, let ρ be the sequence of ratios:

ρ(j) =
|γ(j + 1)|
|γ(j)|

where j is any nonnegative integer. We assume that γ(j) �= 0. It may happen
that ρ is convergent. In such a case, let r = lim(ρ):

0 ≤ r ≤ ∞

Clearly, for any (nonzero) complex number z:

|γ(j + 1)zj+1|
|γ(j)zj | = ρ(j)|z| −→ r|z|

By the Ratio Test, if r|z| < 1 then z lies in the domain of f , while if 1 < r|z|
then z does not lie in the domain of f . We infer that the radius of convergence
for f equals:

δ =
1

lim(ρ)

For the extreme values r = 0 and r = ∞, we find that δ equals ∞ and 0,
respectively.

56• Apply both the Ratio and the Root Tests to confirm that the radius of
convergence for the geometric series equals 1.

57• Calculate the radius of convergence for the power series:

f(z) =
∞∑

j=0

j2−jzj

58• Let γ be any sequence of complex numbers. Let f be the power series
defined by γ and let δ be the radius of convergence for f :

f(z) =
∞∑

j=0

γ(j)zj
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where z is any complex number in Dδ(0). Let |γ| be the sequence of nonneg-
ative real numbers, defined as expected:

|γ|(j) = |γ(j)|

where j is any nonnegative integer. Let g be the power series defined by |γ|
and let ε be the radius of convergence for g:

g(z) =
∞∑

j=0

|γ(j)|zj

where z is any complex number in Dε(0). Check that ε = δ. Verify that, for
any complex number z in Dδ(0):

|f(z)| ≤ g(|z|)

That is:

|
∞∑

j=0

γ(j)zj | ≤
∞∑

j=0

|γ(j)||z|j

59◦ Finally, let us connect Power Series’ to the Calculus of Derivatives. Let
γ be any sequence of complex numbers. Let f be the power series defined by
γ and let δ be the radius of convergence for f :

f(z) =
∞∑

j=0

γ(j)zj

where z is any complex number in Dδ(0). In turn, let γ′ be the sequence of
complex numbers derived from γ, as follows:

γ′(j) = (j + 1)γ(j + 1)

where j is any nonnegative integer. Let f ′ be the power series defined by γ′

and let δ′ be the radius of convergence for f ′:

f ′(z) =
∞∑

j=0

γ′(j)zj

where z is any complex number in Dδ′(0). We contend that δ′ = δ and that,
in the usual sense, f ′ is the derivative of f .
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60◦ Let us first prove that δ′ = δ. Let d be any positive real number. Let ζd

and ζ ′d be the sequences of complex numbers, defined as expected:

ζd(j) = γ(j)dj

ζ ′d(j) = γ′(j)dj = (j + 1)γ(j + 1)dj

where j is any nonnnegative integer. If d < δ′ then there is a (nonnegative)
real number a such that, for any nonnegative integer j, |ζ ′d(j)| ≤ a, so:

|ζd(j + 1)| ≤ |(j + 1)γ(j + 1)dj+1| ≤ ad

It follows that ζd is bounded. Hence, d ≤ δ. Therefore, δ′ ≤ δ. If d < δ then
there is a (positive) real number c such that 1 < c and cd < δ and there are
(nonnegative) real numbers a and b such that, for any nonnegative integer j,
jc−j ≤ a and |ζcd(j)| ≤ b, so:

|ζ ′d(j)| = |(j + 1)c−(j+1)γ(j + 1)(cd)jc ≤ abc

It follows that ζ ′d is bounded. Hence, d ≤ δ′. Therefore, δ ≤ δ′. By combining
the two inequalities, we find that δ = δ′.

61◦ Of course, we can pass to the second derivative, just as well. Let γ′′ be
the sequence of complex numbers derived from γ′, as follows:

γ′′(j) = (j + 1)γ′(j + 1) = (j + 1)(j + 2)γ(j + 2)

where j is any nonnegative integer. Let f ′′ be the power series defined by γ′′

and let δ′′ be the radius of convergence for f ′′:

f ′′(z) =
∞∑

j=0

γ′′(j)zj

where z is any complex number in Dδ′′(0). For later reference, let us emphasize
that δ′′ = δ′ = δ. Moreover, let d be any positive real number and let ζ ′′d be
the sequence of complex numbers, defined as expected:

ζ ′′d (j) = γ′′(j)dj = (j + 1)(j + 2)γ(j + 2)dj

where j is any nonnnegative integer.

62◦ Now let us prove that f ′ is the derivative of f . Let z be any complex
number in Dδ(0). Let ζ be any sequence of complex numbers for which the
range is included in Dδ(0)\{z} and:

lim
j→∞

ζ(j) = z

24



We must prove that:

lim
j→∞

f(ζ(j)) − f(z)
ζ(j) − z

= f ′(z)

Let r be any positive real number. Let s be any positive real number for
which s ≤ r and |z| + s < δ. Let t = |z| + s. Let w be any complex number
in Ds(z)\{z}. We have:

∣∣f(w) − f(z)
w − z

− f ′(z)
∣∣

=
∣∣ ∞∑

�=1

γ(/ + 1)
[w�+1 − z�+1

w − z
− (/ + 1)z�

]∣∣
=

∣∣ ∞∑
�=1

γ(/ + 1)
[
(w� + w�−1z + · · · + wz�−1 + z�) − (/ + 1)z�

]∣∣
=

∣∣ ∞∑
�=1

γ(/ + 1)(w − z)
[
w�−1 + 2w�−2z + · · · + (/ − 1)wz�−2 + /z�−1

]∣∣
≤ |w − z|

∞∑
�=1

|γ(/ + 1)|1
2
/(/ + 1)t�−1

Since t < δ′′, the series:

∞∑
�=1

|γ(/ + 1)|/(/ + 1)t�−1 =
∞∑

m=0

|γ(m + 2)|(m + 1)(m + 2)tm

is convergent. Hence, we can introduce the nonnegative real number u, defined
as follows:

u =
∞∑

�=1

|γ(/ + 1)|1
2
/(/ + 1)t�−1

Finally, we can introduce a nonnegative integer j such that, for any nonneg-
ative integer k, if j ≤ k then:

|ζ(k) − z| < s

1 + u

hence: ∣∣f(ζ(k)) − f(z)
ζ(k) − z

− f ′(z)
∣∣ < r

The proof is complete.
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63◦ By the foregoing discussion, we can easily show that f is continuous. To
that end, let z be any complex number in Dδ(0). Let ζ be any sequence of
complex numbers for which the range is included in Dδ(0)\{z} and:

lim
j→∞

ζ(j) = z

Let r be any positive real number and let:

s =
r

|f ′(z)| + r

We can introduce a nonnegative integer j such that, for any nonnegative
integer k, if j ≤ k then:

∣∣f(ζ(k)) − f(z)
ζ(k) − z

− f ′(z)
∣∣ < r and |ζ(j) − z| < s

Hence:
|f(ζ(j)) − f(z)| ≤ (|f ′(z)| + r)|ζ(j) − z| < r

Therefore:
lim

j→∞
f(ζ(j)) = f(z)

It follows that f is continuous at z.

64◦ Let us emphasize that we can compute the derivative f ′ of a power series
f in simple fashion, term by term:

f(z) =
∞∑

j=0

γ(j)zj

= γ(0) +
∞∑

j=0

γ(j + 1)zj+1

= γ(0) + γ(1)z1 + γ(2)z2 + γ(3)z3 + γ(4)z4 · · ·

f ′(z) =
∞∑

j=0

γ′(j)zj

=
∞∑

j=0

(j + 1)γ(j + 1)zj

= γ(1) + 2γ(2)z1 + 3γ(3)z2 + 4γ(4)z3 + · · ·

In the following two Sections, we will make such computations many times.
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65• The Bernoulli Numbers are defined by the following relation:

z

exp(z) − 1
=

∞∑
k=0

Bk

k!
zk

Find B0, B1, B2, B3, and B4. Show that for any integer k, if 3 ≤ k and if k
is odd then Bk = 0.

66• The Fibonacci Numbers are defined by the following relation:

z

1 − z − z2
=

∞∑
j=0

Fjz
j

Find the real numbers a and b for which:

1 − z − z2 = (1 − az)(1 − bz), a < 0 < b

Show that:

Fj =
bj − aj

√
5

(j = 0, 1, 2, 3, . . .)

To that end, first find the real numbers A and B such that:

z

1 − z − z2
=

A

1 − az
+

B

1 − bz

Find the radius of convergence for the power series.

4 Classical Functions

67◦ Having established the foregoing secure foundation, we can build the
familiar Classical Functions and many other functions, useful in practice. Let
us begin by describing the most important of them all. Let γ be the sequence
of positive rational numbers, defined as follows:

γ(j) =
1
j!

where j is any nonnegative integer. By the exponential function, we mean the
power series defined by γ:

exp(z) =
∞∑

j=0

1
j!

zj

= 1 + z +
1
2
z2 +

1
6
z3 +

1
24

z4 + · · ·
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By the Ratio Test, the radius of convergence for exp equals ∞, so the domain
of exp equals C. Let z be any complex number. Clearly:

exp′(z) =
∞∑

j=1

j
1
j!

zj−1 =
∞∑

k=0

1
k!

zk = exp(z)

Hence, the derivative of exp equals exp itself.

68◦ Obviously, exp(0) = 1. Let z1 and z2 be any complex numbers. We
contend that:

exp(z1 + z2) = exp(z1)exp(z2)

To fashion a proof, we first recall the Binomial Theorem:

(z1 + z2)j =
∑

j1+j2=j

j!
j1!j2!

zj1
1 zj2

2 (0 ≤ j1, 0 ≤ j2)

where j is any nonnegative integer. (For an analysis of this theorem, see
Professor Moriarty’s monograph on the subject.) With reference to Figure 5,
we then verify that, for any positive integer k:

∣∣( k∑
j1=0

1
j1!

z j1
1 )(

k∑
j2=0

1
j2!

z j2
2 ) −

k∑
j=0

1
j!

(z1 + z2)j
∣∣

≤
2k∑

j=k+1

1
j!

(|z1| + |z2|)j

Figure 5
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Finally, we pass to limit:

|exp(z1)exp(z2) − exp(z1 + z2)|

=
∣∣( lim

k→∞

k∑
j1=0

1
j1!

z j1
1 )( lim

k→∞

k∑
j2=0

1
j2!

z j2
2 ) − lim

k→∞

k∑
j=0

1
j!

(z1 + z2)j
∣∣

≤ lim
k→∞

2k∑
j=k+1

1
j!

(|z1| + |z2|)j

= 0

The proof of the contention is complete. Finally, for any complex number z,
we have:

1 = exp(0) = exp((−z) + z) = exp(−z)exp(z)

Hence, exp(z) �= 0 and:
1

exp(z)
= exp(−z)

69• Verify that, for any complex number z:

exp(z∗) = exp(z)∗

70◦ Now we plan to prove that:

(∀w ∈ C)[w �= 0 ⇒ (∃z ∈ C)[exp(z) = w] ]
(∃ν ∈ R+)(∀z ∈ C)[ exp(z) = 1 ⇔ (∃k ∈ Z)[z = 4νki] ]

We will find that 2ν coincides with π, the celebrated ratio of circumference
to diameter in a circle.

71◦ Let us prove the foregoing statements. We begin by observing that, for
any positive real number x, 1 < exp(x), 0 < exp(−x) = 1/exp(x) < 1, and
exp(2x) = (exp(x))2. Of course, exp′ = exp. We infer that the restriction
of exp to R is strictly increasing and that its range is included in R+. See
Figure 6.

72◦ We contend that, in fact, the range of the restriction of exp to R equals
R+. To prove the contention, we must show that, for any positive real number
u, there is a real number x for which exp(x) = u. Let u be any positive real
number. By the foregoing observations, we can introduce real numbers x′ and
x′′ such that exp(x′) < u < exp(x′′). In turn, we can apply the Intermediate
Value Theorem to produce x. See article 93◦. The proof of the contention is
complete.
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Figure 6

73• Let e stand for exp(1). Note that, for any positive integer k:

k∑
j=0

1
j!

< e =
k∑

j=0

1
j!

+
∞∑

j=k+1

1
j!

and:
∞∑

j=k+1

1
j!

=
1

(k + 1)!
(1 +

1
k + 2

+
1

(k + 2)(k + 3)
+ · · ·) <

2
(k + 1)!

See article 34◦. Apply the foregoing note to show that:

2.718 < e < 2.719

74◦ Let w and z be complex numbers, related as follows:

w = exp(z)

Let x and y be the real and imaginary parts of z, so that z = x + i y. We
have:

exp(z) = exp(x + iy)
= exp(x)exp(iy)
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Clearly:
exp(iy)exp(iy)∗ = exp(iy)exp(−iy) = exp(0) = 1

so:
|exp(iy)| = 1

Moreover, if y �= 0 then:

lim
k→∞

k−1∑
j=0

|exp(i
j + 1

k
y) − exp(i

j

k
y)| = lim

k→∞
k|exp(i

1
k
y) − 1|

= |y| lim
k→∞

∣∣∣∣∣
exp(i

1
k
y) − 1

i
1
k
y

∣∣∣∣∣ = |y| |exp′(0)| = |y|

We infer that exp(x) is the polar radius of exp(z):

|exp(z)| = exp(x)

and that y is the polar angle of exp(z). See Figure 7.

exp(z)

exp(iy)

0 1 exp(x)

Figure 7
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75◦ With regard to article 70◦, we must now prove that:

(∀w ∈ C)[ |w| = 1 ⇒ (∃y ∈ R)[exp(iy) = w] ]
(∃ν ∈ R+)(∀y ∈ R)[ exp(iy) = 1 ⇔ (∃k ∈ Z)[y = 4νk] ]

76◦ Let us prove the foregoing statements. To that end, we require the
Trigonometric Functions: the cosine function and the sine function, defined
in terms of exp as follows:

cos(z) =
1
2
(exp(iz) + exp(−iz)) = 1 − 1

2
z2 +

1
24

z4 − · · ·

sin(z) = − i

2
(exp(iz) − exp(−iz)) = z − 1

6
z3 +

1
120

z5 − · · ·

where z is any complex number. Of course:

exp(iz) = cos(z) + i sin(z)

77• Note that cos(0) = 1 and sin(0) = 0. Let z be any complex number.
Verify that:

cos′(z) = −sin(z)
sin′(z) = cos(z)

and that:
cos2(z) + sin2(z) = 1

78• Let z1 and z2 be any complex numbers. Verify that:

cos(z1 + z2) = cos(z1)cos(z2) − sin(z1)sin(z2)
sin(z1 + z2) = cos(z1)sin(z2) + sin(z1)cos(z2)

These relations are the Addition Formulae for the trigonometric functions.

79◦ We contend that there is a positive real number ν such that, for any
real number y, if 0 ≤ y < ν then 0 < cos(y) and such that cos(ν) = 0. Let
us assume for now that we have proved this contention. Since sin′ = cos,
the restriction of sin to [ 0, ν ] is strictly increasing and sin(ν) = 1. Since
cos′ = −sin, the restriction of cos to [0, ν ] is strictly decreasing. The addition
formulae imply that:

cos(z + ν) = −sin(z)
sin(z + ν) = cos(z)
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where z is any complex number. Hence, the restrictions of cos and sin to
[ ν, 2ν ] are strictly decreasing and strictly decreasing; the restrictions of cos
and sin to [ 2ν, 3ν ] are strictly increasing and strictly decreasing; and the
restrictions of cos and sin to [ 3ν, 4ν ] are strictly increasing and strictly
increasing, respectively. Moreover, cos(2ν) = −1, sin(2ν) = 0, cos(3ν) = 0,
sin(3ν) = −1, cos(4ν) = 1, and sin(4ν) = 0. See Figure 8. In that figure, we
have replaced 2ν by π.

1 2 3 4 5 6

-1

-0.5

0.5

1

π 2π

Figure 8

80◦ Let us now prove the contention regarding ν. One can easily verify that,
for any y in [0, 1], 0 < cos(y) ≤ 1. See articles 47• and 76◦. Hence, for any y
in [0, 1]:

1 ≤ 1
cos2(y)

= (
sin

cos
)′(y)

By the Mean Value Theorem:

1 ≤ sin(1)
cos(1)

By the Intermediate Value Theorem, there is some ȳ in [0, 1] such that:

cos(ȳ) = sin(ȳ)

By the Addition Formulae:

cos(2ȳ) = cos2(ȳ) − sin2(ȳ) = 0

At this point, one can easily check that 2ȳ has the properties required of ν.

81• Apply the Intermediate Value Theorem to complete the proofs of the
statements in article 75◦.
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82• Note that, for any complex numbers z1 and z2, exp(z1) = exp(z2) iff
there is an integer k such that z2 = z1 +2πk. Moreover, note that exp(iπ)2 =
exp(i2π) = 1 and exp(iπ) �= 1. Hence:

exp(iπ) = −1

By the computation in article 74◦, π is the polar angle for −1. Hence, π is
the arc length of the unit semi-circle, which is as it “should be.”

83• Check that cos(1.5710) < 0 < cos(1.5705). Conclude that:

3.141 < π < 3.142

84◦ We have described the exponential function in detail. In process, we have
also described the trigonometric functions. Let us now describe the logarithm
function. Let E be the subset of C consisting of all complex numbers z:

z = x + iy

for which:
−π < y < π

By the foregoing discussion, it is plain that the restriction of exp to E is
injective. Let F be the range of the restriction of exp to E. One can easily
check that F consists of all complex numbers w:

w = u + iv

for which:
v �= 0 or 0 < u

Clearly, exp defines a bijective mapping carrying E to F . By the logarithm
function, we mean the inverse of that mapping:

log(w) = z iff exp(z) = w

where z is any number in E and where w is any number in F . Clearly:

log(w) = log(|w|) + iy

where |w| is the polar radius and y is the polar angle of w. See Figure 9. In
that figure, one finds a sketch of the range of the restriction of exp to the
subset:

[−1, 1] × [−3π/4, 3π/4]

of E.
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85◦ Let us prove that log coincides (locally) with a power series. Thus, let f
be the power series:

f(w) = w − 1
2
w2 +

1
3
w3 − 1

4
w4 + · · ·

The radius of convergence for f is 1, so the domain of f is D1(0). Let g be
the composition:

g(w) = exp(f(w))

and let h be the quotient:

h(w) =
g(w)
1 + w

We will show that h is constant, with constant value 1:

exp(f(w)) = 1 + w
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It will follow that f(w) lies in E and that:

log(1 + w) = w − 1
2
w2 +

1
3
w3 − 1

4
w4 + · · ·

Clearly:

f ′(w) = 1 − w + w2 − w3 + w4 − · · · =
1

1 + w

By the Chain Rule:

g′(w) = exp′(f(w))f ′(w) = g(w)
1

1 + w

By the Quotient Rule:

h′(w) =
(1 + w)g′(w) − g(w)

(1 + w)2
= 0

Of course, h(0) = 1. It follows that h is constant, with constant value 1. The
argument is complete.

86• Justify the foregoing argument, by showing that the functions g and h
are power series’ and that the Chain Rule and the Quotient Rule apply.

5 Second Order Ordinary Linear Differential Equations

87◦ Let p0, p1, and p2 be any power series’. We plan to describe various
power series’ f for which:

(E) p2(z)f ′′(z) + p1(z)f ′(z) + p0(z)f(z) = 0

One refers to the relation (E) as a Second Order Ordinary Linear Differential
Equation and one refers to such power series’ f as Solutions to the Equation.
We will not attempt to develop these matters in general. Rather, we will
simply sketch several important special cases. The computations involved in
these cases serve to illustrate the practical manipulation of power series’.

88◦ Let us consider first the case of Constant Coefficients, in which the given
power series’ p0, p1, and p2 are constants. We assume that p2 �= 0. The
Equation (E) now takes the following form:

(C) p2f
′′(z) + p1f

′(z) + p0f(z) = 0

Let ζ be any complex number. For a solution f to (C), we propose the
following power series:

f(z) = exp(ζz)
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Clearly:

p2f
′′(z) + p1f

′(z) + p0f(z) = (p2ζ
2 + p1ζ + p0)exp(ζz)

Hence, f is a solution to (C) iff ζ is a zero of the following Quadratic Equation:

p2z
2 + p1z + p0 = 0

The Quadratic Formula yields the following two zeros:

ζ± =
1

2p2
(−p1 ±

√
(p2

1 − 4p0p2) )

and the corresponding two solutions f± to (C):

f−(z) = exp(ζ−z), f+(z) = exp(ζ+z)

It turns out that, for any power series f , f is a solution of (C) iff it falls into
the following form:

f(z) = γ−f−(z) + γ+f+(z)

where γ− and γ+ are any complex numbers.

89• For the degenerate case:

p2
1 − 4p0p2 = 0

one finds that ζ− = ζ+. Show that, for this case, the following two power
series are solutions of (C):

f1(z) = exp(ζz), f2(z) = z exp(ζz)

where ζ = ζ− = ζ+.

90• Consider the following Equation with constant coefficients:

(Cω) f ′′(z) + ω2f(z) = 0

where ω is any positive real number. The solutions figure in the Classical
Theory of Simple Harmonic Motion. Verify that the following power series’
are solutions to (Cω):

f−(z) = exp(−iωz), f+(z) = exp(+iωz)

and:
g(z) = cos(ωz), h(z) = sin(ωz)
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91◦ For selected values of ω, let us display the graphs of the functions:

cos(ωx), sin(ωx)

ω = −2

π 2π

Figure 10

ω = 5

π 2π

Figure 11

92◦ Now let us consider the case of Hermite:

(H) f ′′(z) − 2z f ′(z) + λf(z) = 0

where λ is any complex number. The solutions figure in the Quantum Theory
of Simple Harmonic Motion. For a solution f to (H), we propose a power
series with undetermined coefficients:

f(z) =
∞∑

j=0

cjz
j
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We find that:

f ′′(z)−2z f ′(z) + λf(z)

=
∞∑

j=2

j(j − 1)cjz
j−2 − 2z

∞∑
j=1

jcjz
j−1 + λ

∞∑
j=0

cjz
j

=
∞∑

k=0

(k + 2)(k + 1)ck+2z
k −

∞∑
k=0

2kckz
k +

∞∑
j=0

λckz
k

=
∞∑

k=0

[
(k + 2)(k + 1)ck+2 − (2k − λ)ck

]
zk

Hence, f is a solution to (H) iff the following recursion relation holds:

ck+2 =
1

(k + 1)(k + 2)
(2k − λ)ck

where k is any nonnegative integer. Obviously, one can specify the initial
coefficients c0 and c1 arbitrarily. The rest are then determined. By the Ratio
Test, one finds that the radius of convergence for the corresponding power
series f is ∞.

93• Let λ = 2/, where / is a nonnegative integer. Show that there is a
polynomial H�, within constant multiple uniquely defined, which is a solution
to (H). Note that the degree of H� is /. Note that if / is odd then H� is odd,
while if / is even then H� is even. One refers to H� as the Hermite Polynomial
of degree /.
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-20
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Figure 12
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94◦ In turn, let us consider the case of Legendre:

(L′) (1 − z2)f ′′(z) − 2z f ′(z) + λf(z) = 0

where λ is any complex number. The solutions figure in the Equation of
Laplace and the theory of Spherical Harmonics. For a solution f to (L′), we
propose a power series with undetermined coefficients:

f(z) =
∞∑

j=0

cjz
j

We find that:

(1 − z2)f ′′(z) − 2z f ′(z) + λf(z)

= (1 − z2)
∞∑

j=2

j(j − 1)cjz
j−2 − 2z

∞∑
j=1

jcjz
j−1 + λ

∞∑
j=0

cjz
j

=
∞∑

k=0

(k + 2)(k + 1)ck+2z
k −

∞∑
k=0

k(k − 1)ckz
k −

∞∑
k=0

2kckz
k +

∞∑
j=0

λckz
k

=
∞∑

k=0

[
(k + 2)(k + 1)ck+2 − (k(k + 1) − λ)ck

]
zk

Hence, f is a solution to (L′) iff the following recursion relation holds:

ck+2 =
1

(k + 1)(k + 2)
(k(k + 1) − λ)ck

where k is any nonnegative integer. Obviously, one can specify the initial
coefficients c0 and c1 arbitrarily. The rest are then determined. By the Ratio
Test, one finds that, typically, the radius of convergence for the corresponding
power series f is 1.

95• Let λ = /(/ + 1), where / is a nonnegative integer. Show that there is a
polynomial L′

�, within constant multiple uniquely defined, which is a solution
to (L′). Note that the degree of L′

� is /. Note that if / is odd then L′
� is odd,

while if / is even then L′
� is even. One refers to L′

� as the Legendre Polynomial
of degree /.
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96◦ Let us consider the case of Laguerre:

(L′′) zf ′′(z) + (1 − z)f ′(z) + λf(z) = 0

where λ is any complex number. The solutions figure in the Quantum Theory
of the Hydrogen Atom. For a solution f to (L′′), we propose a power series
with undetermined coefficients:

f(z) =
∞∑

j=0

cjz
j

We find that:

zf ′′(z)+(1 − z)f ′(z) + λf(z)

= z

∞∑
j=2

j(j − 1)cjz
j−2 + (1 − z)

∞∑
j=1

jcjz
j−1 + λ

∞∑
j=0

cjz
j

=
∞∑

k=0

(k + 1)kck+1z
k +

∞∑
k=0

(k + 1)ck+1z
k −

∞∑
k=0

kckz
k +

∞∑
j=0

λckz
k

=
∞∑

k=0

[
(k + 1)2ck+1 − (k − λ)ck

]
zk

Hence, f is a solution to (L′′) iff the following recursion relation holds:

ck+1 =
1

(k + 1)2
(k − λ)ck
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where k is any nonnegative integer. In this notable case, one can freely specify
the initial coefficient c0 but no other. The rest are then determined. By the
Ratio Test, one finds that the radius of convergence for the corresponding
power series f is ∞.

97◦ We hasten to note that one can design another solution to (L′′) by other
methods.

98• Let λ = /, where / is a nonnegative integer. Show that the solution L′′
� to

(L′′), within constant multiple uniquely defined, is a polynomial. Note that
the degree of L′′

� is /. One refers to L′′
� as the Laguerre Polynomial of degree

/.
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99◦ Finally, let us consider the celebrated case of Bessel:

(B) z2f ′′(z) + z f ′(z) + (z2−λ2)f(z) = 0

where λ is any complex number. The solutions figure in the theory of the
Wave Equation and in many other contexts. Let u and v be the real and
imaginary parts of λ:

λ = u + iv

Of course, we may assume that:

(0 ≤ u) ∧ ((u = 0) ⇒ (0 ≤ v))
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For a solution f to (B), we propose a function of the following peculiar form:

(◦) f(z) = zε
∞∑

j=0

cjz
j

where ε is any complex number. We intend that:

zε = exp(ε log(z))

and that z be restricted to the domain F of the logarithm function. See article
84◦. Without loss of generality, we may assume that:

c0 �= 0

By a pattern of computation now familiar, we find that:

z2f ′′(z) + z f ′(z) + (z2−λ2)f(z)

= zε

{
(ε2−λ2)c0 + ((1 + ε)2−λ2)c1z +

∞∑
k=2

[
((k + ε)2−λ2)ck + ck−2

]
zk

}

Hence, f is a solution to (B) iff the following relations hold:

(•)
(ε2 − λ2)c0 = 0

((1 + ε)2 − λ2)c1 = 0

((k + ε)2−λ2)ck + ck−2 = 0

where k is any integer for which 2 ≤ k. Obviously:

ε = ±λ

Let K be the subset of Z+ consisting of all positive integers k such that:

(k + ε)2 − λ2 = k(k + 2ε) = 0

Of course, either K = ∅ or K �= ∅. Let us assume first that K = ∅. In this
case, we may select any two nonzero complex numbers c′0 and c′′0 , to obtain
the following two solutions f± to (B):

f−(z) = z−λ
∞∑

k=0

c′kz
k, f+(z) = zλ

∞∑
k=0

c′′kzk

where:
c′1 = 0

c′k = − 1
k(k − 2λ)

c′k−2
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and:
c′′1 = 0

c′′k = − 1
k(k + 2λ)

c′′k−2

and where k is any integer for which 2 ≤ k. Neither f− nor f+ is a constant
multiple of the other. Now let us consider the alternate case, in which K �= ∅.
Let / be any member of K. We find that:

ε = −λ, / + ε = λ

hence, that:
2λ = /

Relations (•) force the following chain of equalities:

. . . , c�−6 = 0, c�−4 = 0, c�−2 = 0

If / is even then the chain terminates at c0, contradicting our initial condition
that c0 �= 0. If / is odd then the chain terminates at c1, without conflict.
Hence, we may select any nonzero complex number c′�, to obtain the following
solution f− to (B):

f−(z) = z−λ
∞∑

k=�

c′kz
k

where:
c′�+1 = 0

c′k = − 1
k(k − 2λ)

c′′k−2

where k is any integer for which / + 2 ≤ k. However:

f−(z) = z−λ+�
∞∑

k=�

c′kz
k−�

= zλ
∞∑

n=0

c′�+nzn

and:
1

k(k − 2λ)
=

1
n(n + 2λ)

where k = /+n. Hence, f− merely reproduces the solution f+ to (B) obtained
by setting ε = λ and selecting a nonzero complex number c′′0 :

f+(z) = zλ
∞∑

k=0

c′′kzk
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where:
c′′1 = 0

c′′k = − 1
k(k + 2λ)

c′′k−2

and where k is any integer for which 2 ≤ k.

1◦ One can distinguish the cases in which K �= ∅ and K = ∅ by noting
whether or not 2λ is an integer. In the latter case, one obtains two solutions
f± to (B) of the form (◦), neither a constant multiple of the other. In the
former case, one obtains just one solution f of the form (◦). However, one
can design another solution by other means.

2• Show that the radii of convergence for the power series factors in the
various solutions to (B) equal ∞.

3◦ With reference to the foregoing discussion, let us introduce notation for
the Bessel Functions for integral values of λ:

Jλ : J0, J1, J2, J3, J4, . . .

For the first few nonnegative integers λ, let us display the graphs of the these
functions.
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6 Notes

4◦ Let us review the statements of certain basic theorems for Elementary
Calculus. Let X be a subset of R and let f be a function defined on X with
values in R. Let Y be the range of f . The Intermediate Value Theorem states
that if X is an interval in R and if f is continuous on X then Y is also an
interval in R. The Extreme Value Theorem states a refinement: if X is a
closed finite interval in R and if f is continuous on X then Y is also a closed
finite interval in R. One can fashion proofs of these theorems from the Least
Upper Bound Principle for R. The Mean Value Theorem states that, for any
real numbers v and w, if v ∈ X, if w ∈ X, if v < w, if [ v, w ] ⊆ X, if f is
continuous on [ v, w ], and if f is differentiable on (v, w) then there is a real
number u such that v < u < w and such that:

f ′(u) =
f(w) − f(v)

w − v

By very simple steps, one can derive this theorem from the Extreme Value
Theorem. Of course, the Mean Value Theorem implies that if X is an open
interval, if f is differentiable on X, and if the values of f ′ are positive then f
is strictly increasing on X.
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