THE THEOREM OF POINCARÉ

1° Let *n* be a positive integer. Let *k* be an integer for which $0 \le k < n$. Let Ω be a region in \mathbb{R}^n . Let μ be a k+1 form on Ω . We inquire whether or not there exists a *k* form λ on Ω for which:

$$\mu = d\lambda$$

Of course, for such a form λ to exist it would be necessary that $d\mu = 0$. But is that condition sufficient? The Theorem of Poincaré, soon to follow, implies that if $d\mu = 0$ and if Ω is *contractible* to a point then such a form λ exists.

 2° Let *I* be the unit interval in **R**:

$$I = [0, 1]$$

Let $\hat{\Omega}$ be the "cylinder" in $\mathbf{R}^{n+1} = \mathbf{R} \times \mathbf{R}^n$ based on Ω , defined as follows:

 $\hat{\Omega} = I \times \Omega$

Let J_0 and J_1 be the mappings carrying Ω to $\hat{\Omega}$, defined as follows:

(1)
$$J_0(w) = (0, w), \quad J_1(w) = (1, w)$$

where w is any member of Ω . One says that Ω is contractible to a point iff there is a mapping H carrying $\hat{\Omega}$ to Ω and there is a member ω of Ω such that:

$$(H \cdot J_0)(w) = H(0, w) = \omega, \quad (H \cdot J_1)(w) = H(1, w) = w$$

where w is any member of Ω . One refers to H as a contraction mapping for Ω with contraction constant ω .

3° Now let ν be a k+1 form on $\hat{\Omega}$. Let $K(\nu)$ be the k form on Ω defined by the following rules. To make the rules legible, we adopt the following notation. Let A be any subset of the set $\{1, 2, 3, \ldots, n\}$ having ℓ members. We may display the members of A in order as follows:

$$A: \quad j_1 < j_2 < \cdots j_\ell$$

Let dw^A denote the ℓ form on \mathbf{R}^n defined as follows:

$$dw^A = dw^{j_1} dw^{j_2} \cdots dw^{j_\ell}$$

For the case in which $A = \emptyset$ we intend that $d^A = 1$, the base for the 0 forms on \mathbb{R}^n . Now the k + 1 form ν on $\hat{\Omega}$ can be expressed as follows:

$$\nu = \sum_B f_B dt dw^B + \sum_C g_C dw^C$$

where B and C run through the subsets of the set $\{1, 2, 3, ..., n\}$ having k and k + 1 members, respectively, and where f_B and g_C are any functions defined on $\hat{\Omega}$. At last, we proceed to define $K(\nu)$:

(2)
$$K(\nu) = \sum_{B} \phi_{B} dw^{E}$$

where ϕ_B arises by integrating f_B over *I*. That is:

(3)
$$\phi_B(w) = \int_0^1 f_B(t, w) dt$$

where w is any member of Ω .

4° The Theorem of Poincaré states that:

(II)
$$dK(\nu) + K(d\nu) = J_1^*(\nu) - J_0^*(\nu)$$

We prove the theorem as follows.

5° By (1), we find that $J_0^*(t) = t \cdot J_0 = 0$ and $J_1^*(t) = t \cdot J_1 = 1$, so that $J_0^*(dt) = 0$ and $J_1^*(dt) = 0$. Moreover, for each j $(1 \le j \le n)$, $J_0^*(w^j) = w^j \cdot J_0 = w^j = w^j \cdot J_1 = J_1^*(w^j)$, so that $J_0^*(dw^B) = dw^B = J_1^*(dw^B)$ and $J_0^*(dw^C) = dw^C = J_1^*(dw^C)$. Hence:

(4)
$$J_0^*(\nu) = \sum_C J_0^*(g_C) dw^C, \qquad J_1^*(\nu) = \sum_C J_1^*(g_C) dw^C$$

Of course:

(5)
$$J_0^*(g_C)(w) = g_C(0, w), \qquad J_1^*(g_C)(w) = g_C(1, w)$$

where w is any member of Ω .

 6° By (2), we find that:

(6)
$$dK(\nu) = \sum_{B} \left[\sum_{j=1}^{n} \frac{\partial}{\partial w^{j}} \phi_{B} dw^{j}\right] dw^{B}$$

Moreover:

$$d\nu = \sum_{B} \left[\sum_{j=1}^{n} \frac{\partial}{\partial w^{j}} f_{B} dw^{j}\right] dt dw^{B} + \sum_{C} \left[\frac{\partial}{\partial t} g_{C} dt\right] dw^{C} + \sigma$$

where σ is a k + 2 form for which the factor dt is missing. Of course:

(7)
$$\int_0^1 \frac{\partial}{\partial w^j} f_B(t, w) dt = \frac{\partial}{\partial w^j} \phi_B(w)$$

and:

(8)
$$\int_0^1 \frac{\partial}{\partial t} g_C(t, w) dt = g_C(1, w) - g_C(0, w)$$

where w is any member of Ω . Reviewing (2) through (8), we find that:

$$K(d\nu) = -\sum_{B} \left[\sum_{j=1}^{n} \frac{\partial}{\partial w^{j}} \phi_{B} dw^{j}\right] dw^{B} + \sum_{C} (g_{C}(1,w) - g_{C}(0,w)) dw^{C}$$

= $-dK(\nu) + J_{1}^{*}(\nu) - J_{0}^{*}(\nu)$

The proof is complete.

7° Let us apply the theorem to settle our original question. Thus, let μ a differential k + 1 form on Ω for which $d\mu = 0$. Let H be a contraction mapping for Ω with contraction constant ω . Let $\nu = H^*(\mu)$. Obviously, $d\nu = H^*(d\mu) = 0$. Let $\lambda = K(\nu)$, a differential k form on Ω . By the Theorem of Poincarè, we find that:

$$d\lambda = dK(\nu) = dK(\nu) + K(d\nu) = J_1^*(\nu) - J_0^*(\nu) = (H \cdot J_1)^*(\mu) - (H \cdot J_0)^*(\mu) = \mu$$

since $H \cdot J_1$ is the identity mapping on Ω and $H \cdot J_0$ is the constant mapping with constant value ω .