THE THEOREM OF POINCARÉ

$1^{\circ} \quad$ Let n be a positive integer. Let k be an integer for which $0 \leq k<n$. Let Ω be a region in \mathbf{R}^{n}. Let μ be a $k+1$ form on Ω. We inquire whether or not there exists a k form λ on Ω for which:

$$
\mu=d \lambda
$$

Of course, for such a form λ to exist it would be necessary that $d \mu=0$. But is that condition sufficient? The Theorem of Poincaré, soon to follow, implies that if $d \mu=0$ and if Ω is contractible to a point then such a form λ exists.
2° Let I be the unit interval in \mathbf{R} :

$$
I=[0,1]
$$

Let $\hat{\Omega}$ be the "cylinder" in $\mathbf{R}^{n+1}=\mathbf{R} \times \mathbf{R}^{n}$ based on Ω, defined as follows:

$$
\hat{\Omega}=I \times \Omega
$$

Let J_{0} and J_{1} be the mappings carrying Ω to $\hat{\Omega}$, defined as follows:

$$
\begin{equation*}
J_{0}(w)=(0, w), \quad J_{1}(w)=(1, w) \tag{1}
\end{equation*}
$$

where w is any member of Ω. One says that Ω is contractible to a point iff there is a mapping H carrying $\hat{\Omega}$ to Ω and there is a member ω of Ω such that:

$$
\left(H \cdot J_{0}\right)(w)=H(0, w)=\omega, \quad\left(H \cdot J_{1}\right)(w)=H(1, w)=w
$$

where w is any member of Ω. One refers to H as a contraction mapping for Ω with contraction constant ω.
3° Now let ν be a $k+1$ form on $\hat{\Omega}$. Let $K(\nu)$ be the k form on Ω defined by the following rules. To make the rules legible, we adopt the following notation. Let A be any subset of the set $\{1,2,3, \ldots, n\}$ having ℓ members. We may display the members of A in order as follows:

$$
A: \quad j_{1}<j_{2}<\cdots j_{\ell}
$$

Let $d w^{A}$ denote the ℓ form on \mathbf{R}^{n} defined as follows:

$$
d w^{A}=d w^{j_{1}} d w^{j_{2}} \cdots d w^{j_{\ell}}
$$

For the case in which $A=\emptyset$ we intend that $d^{A}=1$, the base for the 0 forms on \mathbf{R}^{n}. Now the $k+1$ form ν on $\hat{\Omega}$ can be expressed as follows:

$$
\nu=\sum_{B} f_{B} d t d w^{B}+\sum_{C} g_{C} d w^{C}
$$

where B and C run through the subsets of the set $\{1,2,3, \ldots, n\}$ having k and $k+1$ members, respectively, and where f_{B} and g_{C} are any functions defined on $\hat{\Omega}$. At last, we proceed to define $K(\nu)$:

$$
\begin{equation*}
K(\nu)=\sum_{B} \phi_{B} d w^{B} \tag{2}
\end{equation*}
$$

where ϕ_{B} arises by integrating f_{B} over I. That is:

$$
\begin{equation*}
\phi_{B}(w)=\int_{0}^{1} f_{B}(t, w) d t \tag{3}
\end{equation*}
$$

where w is any member of Ω.
4° The Theorem of Poincaré states that:

$$
d K(\nu)+K(d \nu)=J_{1}^{*}(\nu)-J_{0}^{*}(\nu)
$$

We prove the theorem as follows.
$5^{\circ} \quad$ By (1), we find that $J_{0}^{*}(t)=t \cdot J_{0}=0$ and $J_{1}^{*}(t)=t \cdot J_{1}=1$, so that $J_{0}^{*}(d t)=0$ and $J_{1}^{*}(d t)=0$. Moreover, for each $j(1 \leq j \leq n), J_{0}^{*}\left(w^{j}\right)=$ $w^{j} \cdot J_{0}=w^{j}=w^{j} \cdot J_{1}=J_{1}^{*}\left(w^{j}\right)$, so that $J_{0}^{*}\left(d w^{B}\right)=d w^{B}=J_{1}^{*}\left(d w^{B}\right)$ and $J_{0}^{*}\left(d w^{C}\right)=d w^{C}=J_{1}^{*}\left(d w^{C}\right)$. Hence:

$$
\begin{equation*}
J_{0}^{*}(\nu)=\sum_{C} J_{0}^{*}\left(g_{C}\right) d w^{C}, \quad J_{1}^{*}(\nu)=\sum_{C} J_{1}^{*}\left(g_{C}\right) d w^{C} \tag{4}
\end{equation*}
$$

Of course:

$$
\begin{equation*}
J_{0}^{*}\left(g_{C}\right)(w)=g_{C}(0, w), \quad J_{1}^{*}\left(g_{C}\right)(w)=g_{C}(1, w) \tag{5}
\end{equation*}
$$

where w is any member of Ω.
$6^{\circ} \quad \mathrm{By}(2)$, we find that:

$$
\begin{equation*}
d K(\nu)=\sum_{B}\left[\sum_{j=1}^{n} \frac{\partial}{\partial w^{j}} \phi_{B} d w^{j}\right] d w^{B} \tag{6}
\end{equation*}
$$

Moreover:

$$
d \nu=\sum_{B}\left[\sum_{j=1}^{n} \frac{\partial}{\partial w^{j}} f_{B} d w^{j}\right] d t d w^{B}+\sum_{C}\left[\frac{\partial}{\partial t} g_{C} d t\right] d w^{C}+\sigma
$$

where σ is a $k+2$ form for which the factor $d t$ is missing. Of course:

$$
\begin{equation*}
\int_{0}^{1} \frac{\partial}{\partial w^{j}} f_{B}(t, w) d t=\frac{\partial}{\partial w^{j}} \phi_{B}(w) \tag{7}
\end{equation*}
$$

and:

$$
\begin{equation*}
\int_{0}^{1} \frac{\partial}{\partial t} g_{C}(t, w) d t=g_{C}(1, w)-g_{C}(0, w) \tag{8}
\end{equation*}
$$

where w is any member of Ω. Reviewing (2) through (8), we find that:

$$
\begin{aligned}
K(d \nu) & =-\sum_{B}\left[\sum_{j=1}^{n} \frac{\partial}{\partial w^{j}} \phi_{B} d w^{j}\right] d w^{B}+\sum_{C}\left(g_{C}(1, w)-g_{C}(0, w)\right) d w^{C} \\
& =-d K(\nu)+J_{1}^{*}(\nu)-J_{0}^{*}(\nu)
\end{aligned}
$$

The proof is complete.
7° Let us apply the theorem to settle our original question. Thus, let μ a differential $k+1$ form on Ω for which $d \mu=0$. Let H be a contraction mapping for Ω with contraction constant ω. Let $\nu=H^{*}(\mu)$. Obviously, $d \nu=H^{*}(d \mu)=0$. Let $\lambda=K(\nu)$, a differential k form on Ω. By the Theorem of Poincarè, we find that:

$$
\begin{aligned}
d \lambda & =d K(\nu) \\
& =d K(\nu)+K(d \nu) \\
& =J_{1}^{*}(\nu)-J_{0}^{*}(\nu) \\
& =\left(H \cdot J_{1}\right)^{*}(\mu)-\left(H \cdot J_{0}\right)^{*}(\mu) \\
& =\mu
\end{aligned}
$$

since $H \cdot J_{1}$ is the identity mapping on Ω and $H \cdot J_{0}$ is the constant mapping with constant value ω.

