
THE THEOREM OF POINCARÉ

1◦ Let n be a positive integer. Let k be an integer for which 0 ≤ k < n.
Let Ω be a region in Rn. Let µ be a k + 1 form on Ω. We inquire whether or
not there exists a k form λ on Ω for which:

µ = dλ

Of course, for such a form λ to exist it would be necessary that dµ = 0. But
is that condition sufficient? The Theorem of Poincaré, soon to follow, implies
that if dµ = 0 and if Ω is contractible to a point then such a form λ exists.

2◦ Let I be the unit interval in R:

I = [0, 1]

Let Ω̂ be the “cylinder” in Rn+1 = R × Rn based on Ω, defined as follows:

Ω̂ = I × Ω

Let J0 and J1 be the mappings carrying Ω to Ω̂, defined as follows:

(1) J0(w) = (0, w), J1(w) = (1, w)

where w is any member of Ω. One says that Ω is contractible to a point iff
there is a mapping H carrying Ω̂ to Ω and there is a member ω of Ω such
that:

(H · J0)(w) = H(0, w) = ω, (H · J1)(w) = H(1, w) = w

where w is any member of Ω. One refers to H as a contraction mapping for
Ω with contraction constant ω.

3◦ Now let ν be a k+1 form on Ω̂. Let K(ν) be the k form on Ω defined by
the following rules. To make the rules legible, we adopt the following notation.
Let A be any subset of the set {1, 2, 3, . . . , n} having � members. We may
display the members of A in order as follows:

A : j1 < j2 < · · · j�

Let dwA denote the � form on Rn defined as follows:

dwA = dwj1dwj2 · · · dwj�
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For the case in which A = ∅ we intend that dA = 1, the base for the 0 forms
on Rn. Now the k + 1 form ν on Ω̂ can be expressed as follows:

ν =
∑
B

fBdtdwB +
∑
C

gCdwC

where B and C run through the subsets of the set {1, 2, 3, . . . , n} having k
and k + 1 members, respectively, and where fB and gC are any functions
defined on Ω̂. At last, we proceed to define K(ν):

(2) K(ν) =
∑
B

φBdwB

where φB arises by integrating fB over I. That is:

(3) φB(w) =
∫ 1

0

fB(t, w)dt

where w is any member of Ω.

4◦ The Theorem of Poincaré states that:

(Π) dK(ν) + K(dν) = J∗
1 (ν) − J∗

0 (ν)

We prove the theorem as follows.

5◦ By (1), we find that J∗
0 (t) = t · J0 = 0 and J∗

1 (t) = t · J1 = 1, so that
J∗

0 (dt) = 0 and J∗
1 (dt) = 0. Moreover, for each j (1 ≤ j ≤ n), J∗

0 (wj) =
wj · J0 = wj = wj · J1 = J∗

1 (wj), so that J∗
0 (dwB) = dwB = J∗

1 (dwB) and
J∗

0 (dwC) = dwC = J∗
1 (dwC). Hence:

(4) J∗
0 (ν) =

∑
C

J∗
0 (gC)dwC , J∗

1 (ν) =
∑
C

J∗
1 (gC)dwC

Of course:

(5) J∗
0 (gC)(w) = gC(0, w), J∗

1 (gC)(w) = gC(1, w)

where w is any member of Ω.

6◦ By (2), we find that:

(6) dK(ν) =
∑
B

[
n∑

j=1

∂

∂wj
φBdwj ]dwB
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Moreover:

dν =
∑
B

[
n∑

j=1

∂

∂wj
fBdwj ]dtdwB +

∑
C

[
∂

∂t
gCdt]dwC + σ

where σ is a k + 2 form for which the factor dt is missing. Of course:

(7)
∫ 1

0

∂

∂wj
fB(t, w)dt =

∂

∂wj
φB(w)

and:

(8)
∫ 1

0

∂

∂t
gC(t, w)dt = gC(1, w) − gC(0, w)

where w is any member of Ω. Reviewing (2) through (8), we find that:

K(dν) = −
∑
B

[
n∑

j=1

∂

∂wj
φBdwj ]dwB +

∑
C

(gC(1, w) − gC(0, w))dwC

= −dK(ν) + J∗
1 (ν) − J∗

0 (ν)

The proof is complete.

7◦ Let us apply the theorem to settle our original question. Thus, let µ
a differential k + 1 form on Ω for which dµ = 0. Let H be a contraction
mapping for Ω with contraction constant ω. Let ν = H∗(µ). Obviously,
dν = H∗(dµ) = 0. Let λ = K(ν), a differential k form on Ω. By the Theorem
of Poincarè, we find that:

dλ = dK(ν)
= dK(ν) + K(dν)
= J∗

1 (ν) − J∗
0 (ν)

= (H · J1)∗(µ) − (H · J0)∗(µ)
= µ

since H · J1 is the identity mapping on Ω and H · J0 is the constant mapping
with constant value ω.
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