THE THEOREM OF POINCARE

1°  Let n be a positive integer. Let k be an integer for which 0 < k& < n.
Let €2 be a region in R™. Let p be a k+ 1 form on 2. We inquire whether or
not there exists a k form A on 2 for which:

w=dA

Of course, for such a form A to exist it would be necessary that dy = 0. But
is that condition sufficient? The Theorem of Poincaré, soon to follow, implies
that if du = 0 and if Q is contractible to a point then such a form A exists.

2°  Let I be the unit interval in R:
I=10,1]

Let Q be the “cylinder” in R"™! = R x R™ based on 2, defined as follows:

Q=IxQ
Let Jy and J; be the mappings carrying €2 to (), defined as follows:
(1) Jo(w) = (O,M), Jl(w) = (1,11))

where w is any member of ). One says that €2 is contractible to a point iff
there is a mapping H carrying Q to © and there is a member w of Q such
that:

(H - Jo)(w) = H(0,w) =w, (H-Ji)(w)=H(1l,w)=w

where w is any member of 2. One refers to H as a contraction mapping for
Q with contraction constant w.

3°  Now let v be a k+1 form on Q. Let K (v) be the k form on Q defined by
the following rules. To make the rules legible, we adopt the following notation.
Let A be any subset of the set {1,2,3, ... ,n} having ¢ members. We may
display the members of A in order as follows:

A 1 <ja< - g

Let dw? denote the ¢ form on R™ defined as follows:

dw? = dw dw’? - dw’*



For the case in which A = () we intend that d? = 1, the base for the 0 forms
on R™. Now the k 4+ 1 form v on € can be expressed as follows:

v=> fpdtdw® + > gcdw
B C

where B and C run through the subsets of the set {1,2,3, ... ,n} having k
and k + 1 members, respectively, and where fp and gc are any functions
defined on Q. At last, we proceed to define K(v):

(2) K(v) =) épdw”
B
where ¢p arises by integrating fg over I. That is:

3) onw) = [ Jatt,wpa
where w is any member of ().

4°  The Theorem of Poincaré states that:

(11) dK(v)+ K(dv) = J; (v) = J§(v)

We prove the theorem as follows.

5° By (1), we find that J5(t) =¢-Jo =0 and J;(t) =¢-J; = 1, so that
JO (dt) = 0 and Jj(dt) = 0. Moreover, for each j (1 < j < n), Ji(w’) =

Jo=w =wl - Jy = J1 (w’), so that J&(dw?) = dw®? = J;(dw?) and
JO (dw®) = dw® = J;(dw®). Hence:
(4) Jow) =D J5ge)dwS,  Jiw) =3 Ji(g0)duw”

c c

Of course:
() Jo(g0)(w) = gc(0,w),  Ji(go)(w) = ge(1,w)

where w is any member of €.

6° By (2), we find that:

©) AK0) = Y I3 g ondul|du”

B j=1



Moreover:

:Ziai pdw|dtdw? —I—Z gcdtdw +o
B

j=1

where ¢ is a k + 2 form for which the factor dt is missing. Of course:

(7) / 0 Tttt = b (w)
and
(8) / 2 get, wydt = go(1,u) — go(0,w)

where w is any member of Q. Reviewing (2) through (8), we find that:

Z Z ppdu’] dw® +Z go(1,w) — go (0, w))dw®
= —dK(V) Ji(w) = J5(v)
The proof is complete.

7°  Let us apply the theorem to settle our original question. Thus, let
a differential £ + 1 form on 2 for which du = 0. Let H be a contraction
mapping for Q with contraction constant w. Let v = H*(u). Obviously,
dv = H*(dp) = 0. Let A = K(v), a differential & form on Q. By the Theorem
of Poincare, we find that:

d\ = dK(v)
=dK(v)+ K(dv)
— Ji) - T )
=(H - J1)" (1) — (H - Jo)"(n)
=n

since H - J; is the identity mapping on 2 and H - Jy is the constant mapping
with constant value w.



