PHYSICAL THEORY (IN PROGRESS)

Thomas Wieting
Reed College, 2010

Basic Definitions

1° Let \mathbf{R} and \mathbf{C} denote the fields of real and complex numbers, respectively. Let \mathcal{E} denote the borel algebra of all measurable subsets of \mathbf{R} and let \mathcal{P} denote the convex set of all probability measures defined on \mathcal{E}.
2° We begin with the primitive idea of a physical system and with the primitive ideas of state and observable. For such a system, we introduce the sets \mathcal{S} of all states and \mathcal{O} of all observables and we introduce a mapping Π carrying $\mathcal{S} \times \mathcal{O}$ to \mathcal{P} :

$$
\Pi: \mathcal{S} \times \mathcal{O} \longrightarrow \mathcal{P}
$$

We refer to the ordered triple:

$$
\mathbf{T}=(\mathcal{S}, \mathcal{O}, \Pi)
$$

as a physical theory for the given physical system. For any S in \mathcal{S}, A in \mathcal{O}, and E in \mathcal{E}, we interpret:

$$
\Pi(S, A)(E)
$$

to be the probability that preparation of the physical system in the state S and measurement of the observable A yields a value in the set E.

Natural Requirements

3° For any physical theory \mathbf{T}, we require that states and observables which are in practice indistinguishable are in fact identical, that is, for any S_{1} and S_{2} in \mathcal{S} :
$(\bullet) \quad\left[(\forall A \in \mathcal{O})\left(\Pi\left(S_{1}, A\right)=\Pi\left(S_{2}, A\right)\right)\right] \Longrightarrow\left[S_{1}=S_{2}\right]$
and, for any A_{1} and A_{2} in \mathcal{O} :
(•) $\left[(\forall S \in \mathcal{S})\left(\Pi\left(S, A_{1}\right)=\Pi\left(S, A_{2}\right)\right)\right] \Longrightarrow\left[A_{1}=A_{2}\right]$
Should these requirements fail, we would simply replace \mathcal{S} and \mathcal{O} by appropriate sets of equivalence classes.

The Functional Calculus

4° We also require that，for any real valued borel function f defined on \mathbf{R} and for any A in \mathcal{O} ，there is some B in \mathcal{O} such that：
$(\bullet) \quad(\forall S \in \mathcal{S})\left[\Pi(S, B)=f_{*}(\Pi(S, A))\right]$
Obviously，f and A uniquely determine B ．We say that B is a function of A and we denote B by $f(A)$ ．By definition，for each E in \mathcal{E} ：

$$
\Pi(S, f(A))(E)=f_{*}(\Pi(S, A))(E)=\Pi(S, A)\left(f^{-1}(E)\right)
$$

Commeasurability

5° In terms of the foregoing action of functions on observables，we can define the relation of commeasurability．Thus，for any observables B_{1} and B_{2} in \mathcal{O} ， we say that B_{1} and B_{2} are commeasurable iff there exists an observable A in \mathcal{O} such that both B_{1} and B_{2} are functions of A ．
6° Let \mathcal{O}_{o} be any subset of \mathcal{O} ．We say that the elements of \mathcal{O}_{o} are mutually commeasurable iff，for any B_{1} and B_{2} in \mathcal{O}_{o}, B_{1} and B_{2} are commeasurable． We require that：
（•）for any subset \mathcal{O} 。 of \mathcal{O} ，if the elements of \mathcal{O} 。 are mutually commea－ surable then there is some A in \mathcal{O} such that，for each B in \mathcal{O}_{\circ}, B is a function of A

We may refer to A as an $u r$－observable for \mathcal{O}_{o} ．

Partial Algebras

7° Let us describe the concept of a partial algebra．Let \mathcal{O} be an arbitrary set．We say that \mathcal{O} is a partial algebra iff we have supplied \mathcal{O} with a family A of subsets of \mathcal{O} such that：
（o） $\mathcal{O}=\cup \mathbf{A}$
（o）for each \mathcal{A} in \mathbf{A}, \mathcal{A} is a commutative algebra over \mathbf{R}
（o）for any \mathcal{A}_{1} and \mathcal{A}_{2} in $\mathbf{A}, \mathcal{A}_{1} \cap \mathcal{A}_{2}$ is itself in \mathbf{A} and is a subalgebra of both \mathcal{A}_{1} and \mathcal{A}_{2}
（○）for any subset \mathcal{O}_{\circ} of \mathcal{O} ，if the elements of \mathcal{O} 。 are mutually compat－ ible then there is some \mathcal{A} in \mathbf{A} such that $\mathcal{O}_{\circ} \subseteq \mathcal{A}$

To support the last of the foregoing conditions, we provide the following definitions. For any B_{1} and B_{2} in \mathcal{O}, we say that B_{1} and B_{2} are compatible iff there is some \mathcal{A} in \mathbf{A} such that both B_{1} and B_{2} belong to \mathcal{A}. In turn, we say that the elements of \mathcal{O} 。 are mutually compatible iff, for any B_{1} and B_{2} in \mathcal{O}_{\circ}, B_{1} and B_{2} are compatible.
8° Let us emphasize that, under the foregoing conditions, the neutral elements 0 and 1 for the various algebras \mathcal{A} in \mathbf{A} are all the same.

Homomorphisms of Partial Algebras

9° Let \mathcal{O}^{\prime} and $\mathcal{O}^{\prime \prime}$ be partial algebras and let \mathbf{A}^{\prime} and $\mathbf{A}^{\prime \prime}$ be the corresponding families of commutative algebras over \mathbf{R}. Let H be a mapping carrying \mathcal{O}^{\prime} to $\mathcal{O}^{\prime \prime}$. We refer to H as a homomorphism iff, for any \mathcal{A}^{\prime} in \mathbf{A}^{\prime}, there is some $\mathcal{A}^{\prime \prime}$ in $\mathbf{A}^{\prime \prime}$ such that $H\left(\mathcal{A}^{\prime}\right) \subseteq \mathcal{A}^{\prime \prime}$ and such that the restriction/contraction of H to \mathcal{A}^{\prime} and $\mathcal{A}^{\prime \prime}$ is (in the usual sense) a homomorphism.

The Partial Algebra of Observables

10° Let us return to the context of the physical theory \mathbf{T}. Now we simply declare that:
(-) the set \mathcal{O} of observables is a partial algebra
As required, we mention the corresponding family \mathbf{A} of commutative algebras over R. Naturally, we impose a condition which intertwines the structure of \mathcal{O} just defined with the foregoing functional calculus:
(\bullet) for any B_{1} and B_{2} in \mathcal{O}, B_{1} and B_{2} are compatible iff they are commeasurable, in which case, for any A in \mathcal{O} and for any real valued borel functions f_{1} and f_{2} defined on \mathbf{R} :

$$
\begin{aligned}
&\left(B_{1}=f_{1}(A)\right) \wedge\left(B_{2}=f_{2}(A)\right) \\
& \quad \Longrightarrow\left(B_{1}+B_{2}=\left(f_{1}+f_{2}\right)(A)\right) \wedge\left(B_{1} B_{2}=\left(f_{1} f_{2}\right)(A)\right)
\end{aligned}
$$

11° Let \mathcal{O}_{o} be any subset of \mathcal{O}. Obviously, the elements of \mathcal{O}_{o} are mutually compatible iff the elements of \mathcal{O}_{o} are mutually commeasurable. In such a context, we may introduce an ur-observable A for \mathcal{O}_{o}. By elementary argument, we would find that the elements of $\mathcal{O}_{o} \cup\{A\}$ are mutually compatible. Hence, there would be some \mathcal{A} in \mathbf{A} such that $\mathcal{O}_{o} \cup\{A\} \subseteq \mathcal{A}$.
12° Let us introduce certain innocuous but useful conditions on A. First, let \mathcal{A}_{1} and \mathcal{A}_{2} be any commutative algebras over \mathbf{R} such that \mathcal{A}_{1} is a subalgebra of \mathcal{A}_{2}. We assume that:
(\bullet) if $\mathcal{A}_{2} \in \mathbf{A}$ then $\mathcal{A}_{1} \in \mathbf{A}$
Second, let \mathbf{A}_{o} be any chain in \mathbf{A}. That is, let \mathbf{A}_{o} be any subset of \mathbf{A} such that, for any \mathcal{A}_{1} and \mathcal{A}_{2} in \mathbf{A}_{o}, either \mathcal{A}_{1} is a subalgebra of \mathcal{A}_{2} or \mathcal{A}_{2} is a subalgebra of \mathcal{A}_{1}. Naturally, $\cup \mathbf{A}_{o}$ is a commutative algebra over \mathbf{R}. We assume that:
(•) $\cup \mathbf{A}_{o} \in \mathbf{A}$
13° Under the second of the foregoing conditions, we may apply Zorn's Lemma to infer that, for any \mathcal{A} in \mathbf{A}, there is some \mathcal{M} in \mathbf{A} such that $\mathcal{A} \subseteq \mathcal{M}$ and such that \mathcal{M} is maximal. The latter assertion means that, for any \mathcal{B} in \mathbf{A}, if $\mathcal{M} \subseteq \mathcal{B}$ then $\mathcal{M}=\mathcal{B}$.
14° We shall refer to a maximal member of \mathbf{A} as a context.

Boolean Rings

15° Let us review the basic properties of boolean rings. Let \mathcal{B} be any ring. We say that \mathcal{B} is a boolean ring iff, for each X in $\mathcal{B}, X^{2}=X$. Let \mathcal{B} be such a ring. Let us represent the operation of addition not by + but by \oplus. We find that, for any Y in \mathcal{B} :

$$
Y \oplus Y=(Y \oplus Y)^{2}=Y^{2} \oplus Y^{2} \oplus Y^{2} \oplus Y^{2}=Y \oplus Y \oplus Y \oplus Y
$$

so that, $Y \oplus Y=0$. In turn, for any Y_{1} and Y_{2} in \mathcal{B} :

$$
Y_{1} \oplus Y_{2}=\left(Y_{1} \oplus Y_{2}\right)^{2}=Y_{1}^{2} \oplus Y_{1} Y_{2} \oplus Y_{2} Y_{1} \oplus Y_{2}^{2}=Y_{1} \oplus Y_{1} Y_{2} \oplus Y_{2} Y_{1} \oplus Y_{2}
$$

so that, $Y_{1} Y_{2} \oplus Y_{2} Y_{1}=0$. Hence, $Y_{1} Y_{2}=Y_{2} Y_{1}$. Consequently, boolean rings must be commutative.
16° Let \mathcal{A} be a commutative algebra over \mathbf{R}. Let \mathcal{B} be the subset of \mathcal{A} consisting of all idempotent elements of \mathcal{A}, that is, the subset consisting of all elements X for which $X^{2}=X$. Clearly, \mathcal{B} is closed under multiplication in \mathcal{A}. Let us supply \mathcal{B} with the operation of multiplication which descends from \mathcal{A}. However, \mathcal{B} is not (in general) closed under addition in \mathcal{A}. In compensation, let us supply \mathcal{B} with the operation of addition defined as follows:

$$
X \oplus Y=X+Y-2 X Y
$$

where X and Y are any elements of \mathcal{B}. Remarkably, under the operations of addition and multiplication just described, \mathcal{B} is a boolean ring. In future, we will refer to \mathcal{B} as the boolean "subring" of \mathcal{A}, composed of the idempotent elements of \mathcal{A}.
17° Let \mathcal{B} be a boolean ring. Let 0 and 1 be the neutral elements for \mathcal{B}. We introduce the relation \leq on \mathcal{B} as follows:

$$
X_{1} \leq X_{2} \Longleftrightarrow X_{1}=X_{1} X_{2}
$$

One can easily check that \leq is a partial order relation on \mathcal{B}. Obviously, for each X in $\mathcal{B}, 0 \leq X \leq 1$. Moreover, for any Y_{1} and Y_{2} in \mathcal{B} :

$$
Y_{1} \wedge Y_{2}=Y_{1} Y_{2} \quad \text { and } \quad Y_{1} \vee Y_{2}=Y_{1} \oplus Y_{2} \oplus Y_{1} Y_{2}
$$

serve as the infimum and the supremum, respectively, of the set:

$$
\left\{Y_{1}, Y_{2}\right\}
$$

That is, $Y_{1} \wedge Y_{2} \leq Y_{1}$ and $Y_{1} \wedge Y_{2} \leq Y_{2}$, while, for any X in \mathcal{B}, if $X \leq Y_{1}$ and $X \leq Y_{2}$ then $X \leq Y_{1} \wedge Y_{2}$. Moreover, $Y_{1} \leq Y_{1} \vee Y_{2}$ and $Y_{2} \leq Y_{1} \vee Y_{2}$, while, for any Z in \mathcal{B}, if $Y_{1} \leq Z$ and $Y_{2} \leq Z$ then $Y_{1} \vee Y_{2} \leq Z$.
18° Finally, for each X in \mathcal{B}, we define the complement of X as follows:

$$
X^{\prime}=1 \oplus X
$$

Clearly:

$$
X \wedge X^{\prime}=0, \quad X \vee X^{\prime}=1, \quad X^{\prime \prime}=X
$$

We find that, for any X_{1} and X_{2} in \mathcal{B} :

$$
X_{1} \leq X_{2} \Longleftrightarrow X_{2}^{\prime} \leq X_{1}^{\prime}
$$

19° We say that \mathcal{B} is complete iff, for each subset \mathcal{C} of \mathcal{B}, there are elements:

$$
\wedge \mathcal{C} \text { and } \vee \mathcal{C}
$$

of \mathcal{B} which serve as the infimum and supremum of \mathcal{C}, respectively. That is:

$$
\left.\begin{array}{rl}
(\forall Y \in \mathcal{C}) & (\wedge \mathcal{C} \leq Y) \\
& \wedge(\forall X
\end{array}\right)
$$

and:

$$
\begin{aligned}
(\forall Y \in \mathcal{C}) & (Y \leq \vee \mathcal{C}) \\
& \wedge(\forall Z \in \mathcal{B})[(\forall Y \in \mathcal{C})(Y \leq Z) \Longrightarrow(\vee \mathcal{C} \leq Z)]
\end{aligned}
$$

20° We say that \mathcal{B} is countably complete iff, for each countable subset \mathcal{C} of \mathcal{B}, there are elements:
$\wedge \mathcal{C}$ and $\vee \mathcal{C}$
of \mathcal{B} which serve as the infimum and supremum of \mathcal{C}, respectively. Of course, in this case, we may display the elements of \mathcal{C} in a list:

$$
Y_{1}, Y_{2}, Y_{3}, Y_{4}, \ldots
$$

and we may choose to denote the infimum and the supremum of \mathcal{C} as follows:

$$
\wedge \mathcal{C}=\wedge_{j} Y_{j}, \quad \vee \mathcal{C}=\vee_{j} Y_{j}
$$

21° For any X_{1} and X_{2} in \mathcal{B}, we say that X_{1} and X_{2} are disjoint iff:

$$
X_{1} \wedge X_{2}=0
$$

It is the same to say that $X_{1} \leq X_{2}^{\prime}$ or that $X_{2} \leq X_{1}^{\prime}$. For any subset \mathcal{C} of \mathcal{B}, we say that the elements of \mathcal{C} are mutually disjoint iff, for any Y_{1} and Y_{2} in \mathcal{C}, Y_{1} and Y_{2} are disjoint.
22° We say that \mathcal{B} is countably generated iff, for each subset \mathcal{C} of \mathcal{B}, if the elements of \mathcal{C} are mutually disjoint then \mathcal{C} is countable.
23° One can easily show that if \mathcal{B} is countably generated and countably complete then \mathcal{B} is complete.
24° Let \mathcal{B}_{1} and \mathcal{B}_{2} be boolean rings. Let H be a homomorphism carrying \mathcal{B}_{1} to \mathcal{B}_{2}. For any X and Y in \mathcal{B}_{1}, we find that:

$$
X \leq Y \Longleftrightarrow X=X Y \Longrightarrow H(X)=H(X) H(Y) \Longleftrightarrow H(X) \leq H(Y)
$$

Hence, H preserves order.

Partial Boolean Rings

25° Let us describe the concept of a partial boolean ring. Let \mathcal{Q} be an arbitrary set. We say that \mathcal{Q} is a partial boolean ring iff we have supplied \mathcal{Q} with a family \mathbf{B} of subsets of \mathcal{Q} such that:
(o) $\mathcal{Q}=\cup \mathbf{B}$
(o) for each \mathcal{B} in \mathbf{B}, \mathcal{B} is a boolean ring
(o) for any \mathcal{B}_{1} and \mathcal{B}_{2} in $\mathbf{B}, \mathcal{B}_{1} \cap \mathcal{B}_{2}$ is itself in \mathbf{B} and is a boolean subring of both \mathcal{B}_{1} and \mathcal{B}_{2}
(o) for any subset \mathcal{Q}_{\circ} of \mathcal{Q}, if the elements of \mathcal{Q} 。 are mutually compatible then there is some \mathcal{B} in \mathbf{B} such that $\mathcal{Q} \circ \subseteq \mathcal{B}$

To support the last of the foregoing conditions, we provide the following definitions. For any Q_{1} and Q_{2} in \mathcal{Q}, we say that Q_{1} and Q_{2} are compatible iff there is some \mathcal{B} in \mathbf{B} such that both Q_{1} and Q_{2} belong to \mathcal{B}. In turn, we say that the elements of \mathcal{Q}_{\circ} are mutually compatible iff, for any Q_{1} and Q_{2} in \mathcal{Q}_{\circ}, Q_{1} and Q_{2} are compatible.
26° Let us emphasize that, under the foregoing conditions, the neutral elements 0 and 1 for the various boolean rings \mathcal{B} in \mathbf{B} are all the same.
27° We say that the partial boolean ring \mathcal{Q} is complete iff, for each \mathcal{B}_{1} in \mathbf{B}, there is some \mathcal{B}_{2} in \mathcal{B} such that $\mathcal{B}_{1} \subseteq \mathcal{B}_{2}$ and such that \mathcal{B}_{2} is complete. In this context, we mean to require that, for any subset \mathcal{C} of \mathcal{B}_{1}, if there are elements $\wedge_{1} \mathcal{C}$ and $\vee_{1} \mathcal{C}$ in \mathcal{B}_{1} which serve, respectively, as the infimum and the supremum of \mathcal{C} in \mathcal{B}_{1} then $\wedge_{1} \mathcal{C}=\wedge_{2} \mathcal{C}$ and $\vee_{1} \mathcal{C}=\vee_{2} \mathcal{C}$, where $\wedge_{2} \mathcal{C}$ and $\vee_{2} \mathcal{C}$ are the elements in \mathcal{B}_{2} which serve, respectively, as the infimum and the supremum of \mathcal{C} in \mathcal{B}_{2}.

Homomorphisms of Partial Boolean Rings

28° Let \mathcal{Q}^{\prime} and $\mathcal{Q}^{\prime \prime}$ be partial boolean rings and let \mathbf{B}^{\prime} and $\mathbf{B}^{\prime \prime}$ be the corresponding families of boolean rings. Let H be a mapping carrying \mathcal{Q}^{\prime} to $\mathcal{Q}^{\prime \prime}$. We refer to H as a homomorphism iff, for any \mathcal{B}^{\prime} in \mathbf{B}^{\prime}, there is some $\mathcal{B}^{\prime \prime}$ in $\mathbf{B}^{\prime \prime}$ such that $H\left(\mathcal{B}^{\prime}\right) \subseteq \mathcal{B}^{\prime \prime}$ and such that the restriction/contraction of H to \mathcal{B}^{\prime} and $\mathcal{B}^{\prime \prime}$ is (in the usual sense) a homomorphism.

Questions

29° Let us return to the context of the physical theory \mathbf{T}. Let \mathcal{Q} be any observable in \mathcal{O}. We contend that $Q^{2}=Q$ iff:

$$
\begin{equation*}
(\forall S \in \mathcal{S})[\Pi(S, Q)(\{0,1\})=1] \tag{*}
\end{equation*}
$$

To prove the contention, we introduce the real valued borel function σ defined on \mathbf{R} as follows: for each x in $\mathbf{R}, \sigma(x)=x^{2}$. By article $10^{\circ}, Q^{2}=\sigma(Q)$. Let us assume that condition $(*)$ holds. Let S be any state in \mathcal{S}. Clearly:

$$
\Pi\left(S, Q^{2}\right)(\{0\})=\Pi(S, Q)\left(\sigma^{-1}(\{0\})=\Pi(S, Q)(\{0\})\right.
$$

Moreover, since $\Pi(S, Q)(\{-1\})=0$:

$$
\Pi\left(S, Q^{2}\right)(\{1\})=\Pi(S, Q)\left(\sigma^{-1}(\{1\})=\Pi(S, Q)(\{-1,1\})=\Pi(S, Q)(\{1\})\right.
$$

Obviously:

$$
\Pi\left(S, Q^{2}\right)(\{0,1\})=\Pi(S, Q)(\{0,1\})=1
$$

We infer that:

$$
\Pi\left(S, Q^{2}\right)(\mathbf{R} \backslash\{0,1\})=0=\Pi(S, Q)(\mathbf{R} \backslash\{0,1\})
$$

By article 3°, we infer that $Q^{2}=Q$. Now let us assume that $Q^{2}=Q$. Let S be any state in \mathcal{S}. Let E be any (borel) set in \mathcal{E}. Clearly:

$$
\Pi(S, Q)(E)=\Pi\left(S, Q^{2}\right)(E)=\Pi(S, Q)\left(\sigma^{-1}(E)\right)
$$

Let \mathbf{R}^{-}be the (borel) subset of \mathbf{R} consisting of all negative real numbers. Obviously, $\sigma^{-1}\left(\mathbf{R}^{-}\right)=\emptyset$. Hence, by relation $(\star), \Pi(S, Q)\left(\mathbf{R}^{-}\right)=0$. Let x be any positive real number and let $y=\sigma(x)$. If $x<1$ then, by relation (\star), $\Pi(S, Q)([y, x))=0$. If $1<x$ then, by relation $(\star), \Pi(S, Q)([x, y))=0$. Now, by elementary steps, we find that:

$$
\Pi(S, Q)((0,1))=0 \quad \text { and } \quad \Pi(S, Q)((1, \longrightarrow))=0
$$

Hence, $\Pi(S, Q)(\{0,1\})=1$. We infer that condition (*) holds.
30° Now let \mathcal{Q} be the subset of \mathcal{O} consisting of all observables Q such that $Q^{2}=Q$. We refer to such observables as questions. For any Q in \mathcal{Q} and S in \mathcal{S}, we interpret:

$$
\Pi(S, Q)(\{0\}) \text { and } \Pi(S, Q)(\{1\})
$$

to be the probabilities that preparation of the physical system in the state S and "measurement" of the question Q will yield the answers "no" and "yes," respectively.
31° Questions are legion. Indeed, let A be any observable in \mathcal{O}, let F be any borel set in \mathcal{E}, and let $c h_{F}$ be the characteristic function of F :

$$
\operatorname{ch}_{F}(x)= \begin{cases}0 & \text { if } x \notin F \\ 1 & \text { if } x \in F\end{cases}
$$

Obviously, $c h_{F}^{2}=c h_{F}$. By article 10°, it is plain that $c h_{F}(A)$ is a question in \mathcal{Q}.
32° Now let f be a real valued borel function defined on \mathbf{R}, let $F=f^{-1}(\{1\})$, and let $g=c h_{F}$. We contend that if $f(A)$ is a question then $g(A)=f(A)$. To prove the contention, we note that, for each S in \mathcal{S} :

$$
\Pi(S, g(A))(\{1\})=\Pi(S, A)(F)=\Pi(S, f(A))(\{1\})
$$

and that:

$$
\Pi(S, g(A))(\{0\})=1-\Pi(S, A)(F)=\Pi(S, f(A))(\{0\})
$$

We infer that:

$$
\Pi(S, g(A))(\mathbf{R} \backslash\{0,1\})=0=\Pi(S, f(A))(\mathbf{R} \backslash\{0,1\})
$$

By article 3°, we infer that $g(A)=f(A)$.

LOGIC: the Partial Boolean Ring of Questions

33° Let us recall that \mathcal{O} is a partial algebra and let us recover the family \mathbf{A} of commutative algebras over \mathbf{R} with which \mathcal{O} is supplied. Let \mathbf{B} be the corresponding family of boolean rings, defined as follows:

$$
\mathbf{B}=\mathcal{Q} \cap \mathbf{A}
$$

We mean to say that, for any subset \mathcal{B} of $\mathcal{Q}, \mathcal{B} \in \mathbf{B}$ iff there is some \mathcal{A} in \mathbf{A} such that $\mathcal{B}=\mathcal{Q} \cap \mathcal{A}$. Of course, \mathcal{B} is the boolean "subring" of \mathcal{A}, composed of the idempotent elements of \mathcal{A}. Obviously:
(•) the set \mathcal{Q} of questions is a partial boolean ring

We refer to \mathcal{Q} as the LOGIC for the physical theory \mathbf{T}.
34° Let Q_{1} and Q_{2} be compatible questions in \mathcal{Q}. We contend that $Q_{1} \leq Q_{2}$ iff:

$$
\begin{equation*}
(\forall S \in \mathcal{S})\left[\Pi\left(S, Q_{1}\right)(\{1\}) \leq \Pi\left(S, Q_{2}\right)(\{1\})\right] \tag{*}
\end{equation*}
$$

To prove the contention, we argue as follows. By article 34°, we may introduce an observable B in \mathcal{O} and (borel) sets F_{1} and F_{2} in \mathcal{E} such that:

$$
Q_{1}=\operatorname{ch}_{F_{1}}(B), \quad Q_{2}=c h_{F_{2}}(B)
$$

Let us assume that $Q_{1} \leq Q_{2}$. By definition, $Q_{1}=Q_{1} Q_{2}$. Consequently:

$$
Q_{1}=c h_{F_{1} \cap F_{2}}(B)
$$

Accordingly, we may assume that $F_{1}=F_{1} \cap F_{2} \subseteq F_{2}$. Hence, for any state S in \mathcal{S} :

$$
\Pi\left(S, Q_{1}\right)(\{1\})=\Pi(S, B)\left(F_{1}\right) \leq \Pi(S, B)\left(F_{2}\right)=\Pi\left(S, Q_{2}\right)(\{1\})
$$

We infer that condition (*) holds.
35° Now let us assume that condition (*) holds. We claim that $Q_{1} \leq Q_{2}$. To support the claim, we impose the following (more or less natural) condition on the logic \mathcal{Q} :
(•) $\quad(\forall Q \in \mathcal{Q})[(Q \neq 0) \Longrightarrow(\exists S \in \mathcal{S})(\Pi(S, Q)(\{1\})=1)]$

The Convex Set of States

36° We also declare that:
(-) the set \mathcal{S} of states is countably convex
By this condition, we mean that, for any countable family:

$$
S_{1}, S_{2}, S_{3}, \ldots
$$

in \mathcal{S} and for a corresponding family:

$$
c_{1}, c_{2}, c_{3}, \ldots
$$

of nonnegative real numbers, if:

$$
\sum_{j} c_{j}=1
$$

then there is some S in \mathcal{S} such that, for each A in \mathcal{O} and for each E in \mathcal{E} :

$$
\Pi(S, A)(E)=\sum_{j} c_{j} \Pi\left(S_{j}, A\right)(E)
$$

By article $3^{\circ}, S$ would be unique. We express S as a convex sum:

$$
S=\sum_{j} c_{j} S_{j}
$$

37° Let us recall that, for any S in \mathcal{S}, S is an extreme point of \mathcal{S} iff, for any S_{1} and S_{2} in \mathcal{S} and for any nonnegative real numbers c_{1} and c_{2} :

$$
\left(c_{1}+c_{2}=1\right) \wedge\left(S=c_{1} S_{1}+c_{2} S_{2}\right) \Longrightarrow\left(S=S_{1}\right) \vee\left(S=S_{2}\right)
$$

We refer to the extreme points in \mathcal{S} as pure states.

Reconstruction of \mathcal{S}, \mathcal{O}, and Π from \mathcal{Q}

38° For any S in \mathcal{S}, we introduce the mapping:

$$
\bar{S}: \mathcal{Q} \longrightarrow[0,1]
$$

as follows:

$$
\bar{S}(Q)=\Pi(S, Q)(\{1\})
$$

where Q is any question in \mathcal{Q}. Obviously, $\bar{S}(0)=0$ and $\bar{S}(1)=1$. Moreover, for each Q in \mathcal{Q} :

$$
\bar{S}\left(Q^{\prime}\right)=1-\bar{S}(Q)
$$

...... Finally, we contend that, for each countable subset:

$$
Q_{1}, Q_{2}, Q_{3}, Q_{4}, \ldots
$$

of \mathcal{Q}, if the elements are mutually compatible and mutually disjoint then:

$$
\bar{S}\left(\vee_{j} Q_{j}\right)=\sum_{j} \bar{S}\left(Q_{j}\right)
$$

39° Under these conditions, we refer to \bar{S} as a normalized measure on \mathcal{Q}.
40° One can easily check that, for any S_{1} and S_{2} in \mathcal{S}, if $\bar{S}_{1}=\bar{S}_{2}$ then $S_{1}=S_{2}$,
41° For any A in \mathcal{A}, we introduce the mapping:

$$
\bar{A}: \mathcal{E} \longrightarrow \mathcal{Q}
$$

as follows:

$$
\bar{A}(E)=c h_{E}(A)
$$

where E is any (borel) set in \mathcal{E}. We contend that, for each countable subset:

$$
E_{1}, E_{2}, E_{3}, E_{4}, \ldots
$$

of \mathcal{E}, if the sets are mutually disjoint then the elements:

$$
\bar{A}\left(E_{1}\right), \bar{A}\left(E_{2}\right), \bar{A}\left(E_{3}\right), \bar{A}\left(E_{4}\right), \ldots
$$

in \mathcal{Q} are mutually compatible and mutually disjoint.
42° Under these conditions, we refer to \bar{A} as a question-valued measure defined on \mathcal{E}.
43° One can easily check that, for any A_{1} and A_{2} in \mathcal{A}, if $\bar{A}_{1}=\bar{A}_{2}$ then $A_{1}=A_{2}$.
44° Relate $\bar{A}_{1}, \bar{A}_{2}, \overline{A_{1}+A_{2}}$, and $\overline{A_{1} A_{2}}$.
45° Obviously, for any S in \mathcal{S} and for any A in \mathcal{O}, the following relation is both meaningful and true:

$$
\Pi(S, A)=\bar{S} \cdot \bar{A}
$$

because, for any (borel) set E in \mathcal{E} :

$$
\begin{aligned}
(\bar{S} \cdot \bar{A})(E) & =\bar{S}((\bar{A})(E)) \\
& =\bar{S}\left(c h_{E}(A)\right) \\
& =\Pi\left(S, c h_{E}(A)\right)(\{1\}) \\
& =\Pi(S, A)\left(c h_{E}^{-1}(\{1\})\right) \\
& =\Pi(S, A)(E)
\end{aligned}
$$

46° At this point, we might say that the basic structure for a physical theory \mathbf{T} is the underlying $\operatorname{logic} \mathcal{Q}$ and that the structures \mathcal{S}, \mathcal{O}, and Π can be reconstructed from \mathcal{Q}.
47° States are positive linear functionals on the "bounded" observables.

Homomorphisms of Physical Theories

48°
49°
50°

Classical Physical Theories

51° For a classical physical theory:

$$
\mathbf{T}=(\mathcal{S}, \mathcal{O}, \Pi)
$$

we begin with a standard borel space \mathbf{X}. The $\operatorname{logic} \mathcal{Q}$ of questions is the boolean ring composed of all borel subsets Q of \mathbf{X}. The states in \mathcal{S} are the probability measures S defined on \mathcal{Q}; the observables in \mathcal{O} are the real valued borel functions A defined on \mathbf{X}; and:

$$
\Pi(S, A)=\bar{S} \cdot \bar{A}
$$

To be clear, let us note that $\bar{S}=S$ and that, for any E in \mathcal{E} :

$$
\bar{A}(E)=A^{-1}(E) \quad \text { and } \quad \Pi(S, A)(E)=S\left(A^{-1}(E)\right)
$$

so that:

$$
\Pi(S, A)=A_{*}(S)
$$

52° The pure states in \mathcal{S} are the probability measures of the form:

$$
\Delta_{x}
$$

where x is any point in \mathbf{X}. By definition:

$$
\Delta_{x}(Q)=\left\{\begin{array}{ll}
0 & \text { if } x \notin Q \\
1 & \text { if } x \in Q
\end{array} \quad(Q \in \mathcal{Q})\right.
$$

Clearly, for any A in \mathcal{A}, the mean m of $\Pi\left(\Delta_{x}, A\right)$ is $A(x)$:

$$
m=\int_{\mathbf{R}} a \Pi\left(\Delta_{x}, A\right)(d a)=\int_{\mathbf{R}} a \Delta_{A(x)}(d a)=A(x)
$$

and the standard deviation s is 0 :

$$
s^{2}=\int_{\mathbf{R}}(a-m)^{2} \Pi\left(\Delta_{x}, A\right)(d a)=\int_{\mathbf{R}}(a-m)^{2} \Delta_{A(x)}(d a)=0
$$

Quantum Physical Theories

53° For a quantum physical theory:

$$
\mathbf{T}=(\mathcal{S}, \mathcal{O}, \Pi)
$$

we begin with a separable complex hilbert space \mathbf{H}. For any ψ_{1} and ψ_{2} in \mathbf{H}, we represent the inner product of ψ_{1} and ψ_{2} as follows:

$$
\left\langle\psi_{1}, \psi_{2}\right\rangle
$$

The logic \mathcal{Q} of questions is the partial boolean ring composed of all self adjoint projection operators Q on \mathbf{H}. Such operators are coextensive with closed linear subspaces \tilde{Q} of \mathbf{H} :

$$
\tilde{Q}=\operatorname{ran}(Q)
$$

The states in \mathcal{S} are the normalized nonnegative self adjoint operators of trace class on \mathbf{H}. One refers to such an operator as a density operator on \mathbf{H}. By the Theorem of A. M. Gleason, density operators S are coextensive with normalized measures \bar{S} on \mathcal{Q} :

$$
\bar{S}(Q)=\operatorname{tr}(S Q)
$$

where Q is any question in \mathcal{Q}. The observables in \mathcal{O} are the (not necessarily bounded but in any case densely defined) self adjoint operators A on \mathbf{H}. By the Theorem of M. H. Stone, such observables are coextensive with projectionvalued measures \bar{A} on \mathcal{E} :

$$
\left\langle A\left(\psi_{1}\right), \psi_{2}\right\rangle=\int_{\mathbf{R}} a\left\langle\bar{A}(d a)\left(\psi_{1}\right), \psi_{2}\right\rangle
$$

where ψ_{1} and ψ_{2} are any vectors in \mathbf{H} and where $\psi_{1} \in \operatorname{dom}(A)$. Finally:

$$
\Pi(S, A):=\bar{S} \cdot \bar{A}
$$

so that, for any E in \mathcal{E} :

$$
\Pi(S, A)(E)=\operatorname{tr}(S \bar{A}(E))
$$

54° For each unit vector φ in \mathbf{H}, one forms the self adjoint projection operator R_{φ} as follows:

$$
R_{\varphi}(\psi)=\langle\psi \psi, \varphi\rangle \varphi
$$

where ψ is any vector in \mathbf{H}. Obviously:

$$
\operatorname{ran}\left(R_{\varphi}\right)=\mathbf{C} \varphi
$$

so that $\operatorname{ran}\left(R_{\varphi}\right)$ is 1-dimensional. As noted, one can identify such operators with their ranges:

$$
\tilde{R}_{\varphi}=\operatorname{ran}\left(R_{\varphi}\right)
$$

Now one can regard R_{φ} either as a state or as a question:

$$
S_{\varphi}=R_{\varphi}=Q_{\varphi}
$$

Under the first view, on obtains precisely the pure states in \mathcal{S}. Under the second view, one interprets Q_{φ} to be the question whether the physical system is in the pure state S_{φ}. Let us explain this interpretation. For any unit vectors φ_{1} and φ_{2} in \mathbf{H} :

$$
\begin{aligned}
\Pi\left(S_{\varphi_{1}}, Q_{\varphi_{2}}\right)(\{1\}) & =\operatorname{tr}\left(S_{\varphi_{1}} Q_{\varphi_{2}}\right) \\
& =\left\langle\left(S_{\varphi_{1}} Q_{\varphi_{2}}\right)\left(\varphi_{2}\right), \varphi_{2}\right\rangle \\
& =\left\langle 《\left\langle\varphi_{2}, \varphi_{1}\right\rangle \varphi_{1}, \varphi_{2}\right\rangle \\
& =\left|\left\langle\varphi_{1}, \varphi_{2}\right\rangle\right|^{2}
\end{aligned}
$$

Of course, $\Pi\left(S_{\varphi_{1}}, Q_{\varphi_{2}}\right)(\{1\})$ is the probability that preparation of the physical system in the pure state $S_{\varphi_{1}}$ and "measurement" of the question $Q_{\varphi_{2}}$ will yield the answer "yes." Clearly:

$$
\begin{array}{ll}
\Pi\left(S_{\varphi_{1}}, Q_{\varphi_{2}}\right)(\{1\})=1 & \text { iff }\left.\left|\left\langle\varphi_{1}, \varphi_{2}\right\rangle\right\rangle\right|^{2}=1 \\
& \text { iff } \left.\quad(\exists z \in \mathbf{C})\left[|z=1| \wedge\left(\varphi_{2}=z \varphi_{1}\right)\right]\right) \\
& \text { iff } \quad S_{\varphi_{1}}=Q_{\varphi_{2}}
\end{array}
$$

These observations "justify" the foregoing interpretation of Q_{φ}. One refers to the numbers:

$$
\left|\left\langle\varphi_{1}, \varphi_{2}\right\rangle\right|^{2}
$$

as transition probabilities. Such numbers are the fundamental measurable quantities for a quantum theory.
55° For each S in \mathcal{S}, one can introduce a countable family:

$$
\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, \ldots
$$

of mutually orthogonal unit vectors in \mathbf{H} and a corresponding family:

$$
w_{1}, w_{2}, w_{3}, w_{4}, \ldots
$$

of nonnegative real numbers such that:

$$
\sum_{j} w_{j}=1 \quad \text { and } \quad S=\sum_{j} w_{j} S_{\varphi_{j}}
$$

We intend that the foregoing series converge strongly. For any A in \mathcal{O} and E in \mathcal{E} :

$$
\begin{aligned}
\Pi(S, A)(E) & =\operatorname{tr}(S \bar{A}(E)) \\
& =\sum_{j} w_{j} \operatorname{tr}\left(S_{\varphi_{j}} \bar{A}(E)\right) \\
& =\sum_{j} w_{j}\left\langle\bar{A}(E)\left(\varphi_{j}\right), \varphi_{j}\right\rangle
\end{aligned}
$$

and:

$$
\Pi(S, A)(E)=\sum_{j} w_{j} \Pi\left(S_{j}, A\right)(E)
$$

Consequently, as the notation suggests, S is a countable convex sum of pure states.
56° For each unit vector φ in \mathbf{H} :

$$
\varphi \in \operatorname{dom}(A) \quad \text { iff } \quad \int_{\mathbf{R}} a^{2}\langle\bar{A}(d a)(\varphi), \varphi\rangle<\infty
$$

For the corresponding pure state S_{φ}, one can compute the mean m and the standard deviation s for $\Pi\left(S_{\varphi}, A\right)$ as follows:

$$
\begin{aligned}
m & =\int_{\mathbf{R}} a \Pi\left(S_{\varphi}, A\right)(d a) \\
& =\int_{\mathbf{R}} a\langle\bar{A}(d a)(\varphi), \varphi\rangle \\
& =\langle\langle A(\varphi), \varphi\rangle
\end{aligned}
$$

and:

$$
\begin{aligned}
s^{2} & =\int_{\mathbf{R}}(a-m)^{2} \Pi\left(S_{\varphi}, A\right)(d a) \\
& =\int_{\mathbf{R}}(a-m)^{2}\langle\bar{A}(d a)(\varphi), \varphi\rangle \\
& =\left\langle(A-m I)^{2}(\varphi), \varphi\right\rangle
\end{aligned}
$$

where I is the identity operator on \mathbf{H}. In general, $s \neq 0$. However, if φ is an eigenvector for A :

$$
A(\varphi)=a \varphi
$$

then $m=a$ and $s=0$.

The Uncertainty Principle

57° Let us describe a special feature of the quantum physical theory $(\mathcal{S}, \mathcal{O}, \Pi)$. Let φ be a unit vector in \mathbf{H} and let A_{1} and A_{2} be self adjoint operators on \mathbf{H} which meet the following condition:

$$
\varphi \in \operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right) \cap \operatorname{dom}\left(A_{1} A_{2}\right) \cap \operatorname{dom}\left(A_{2} A_{1}\right)
$$

Let m_{1} and m_{2} be the means for $\Pi\left(S_{\varphi}, A_{1}\right)$ and $\Pi\left(S_{\varphi}, A_{2}\right)$ and let \hat{A}_{1} and \hat{A}_{2} be the self adjoint operators on \mathbf{H}, defined as follows:

$$
\hat{A}_{1}=A_{1}-m_{1} I, \quad \hat{A}_{2}=A_{2}-m_{2} I
$$

Let s_{1} and s_{2} be the standard deviations for $\Pi\left(S_{\varphi}, A_{1}\right)$ and $\Pi\left(S_{\varphi}, A_{2}\right)$. For each real number a :

$$
\begin{aligned}
0 \leq & \left.\|\left(\hat{A}_{1}+a \frac{1}{i} \hat{A}_{2}\right)(\varphi),\left(\hat{A}_{1}+a \frac{1}{i} \hat{A}_{2}\right)(\varphi)\right\rangle \\
& =\left\langle\left\langle\hat{A}_{1}^{2}(\varphi), \varphi\right\rangle+a 《 \frac{1}{i}\left(\hat{A}_{1} \hat{A}_{2}-\hat{A}_{2} \hat{A}_{1}\right)(\varphi), \varphi\right\rangle+a^{2}\left\langle\left\langle\hat{A}_{2}^{2}(\varphi), \varphi\right\rangle\right. \\
& =s_{1}^{2}+a \xi+a^{2} s_{2}^{2}
\end{aligned}
$$

where:

$$
\xi:=\left\langle\left\langle\frac{1}{i}\left(\hat{A}_{1} \hat{A}_{2}-\hat{A}_{2} \hat{A}_{1}\right)(\varphi), \varphi\right\rangle\right.
$$

which is a real number. It follows that:

$$
\frac{1}{4} \xi^{2} \leq s_{1}^{2} s_{2}^{2}
$$

The relation just derived yields the Uncertainty Principle of Heisenberg. For instance, if:

$$
\frac{1}{i}\left(\hat{A}_{1} \hat{A}_{2}-\hat{A}_{2} \hat{A}_{1}\right)(\varphi)=\varphi
$$

(so that $\xi=1$) then:

$$
\frac{1}{2} \leq s_{1} s_{2}
$$

Hence, the statistics of measurement for $\Pi\left(S_{\varphi}, A_{1}\right)$ and $\Pi\left(S_{\varphi}, A_{2}\right)$ will show a striking property: the more accurate the empirical estimate of m_{1}, the less accurate the empirical estimate of m_{2}; and conversely.

Von Neumann, Bell

58° Let \mathbf{T}^{\prime} be a quantum physical theory. Can we design a classical physical theory $\mathbf{T}^{\prime \prime}$ and an injective homomorphism H carrying \mathbf{T}^{\prime} to $\mathbf{T}^{\prime \prime}$?

Dynamics

59° At this point, one might draw an analogy between our description of a physical theory:

$$
\mathbf{T}=(\mathcal{S}, \mathcal{O}, \Pi)
$$

and the composition of a play, for which there is stage and cast but no plot. To complete the description, we must now add to \mathcal{S}, \mathcal{O}, and Π the several features of dynamics.

