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Basic Definitions

1◦ Let R and C denote the fields of real and complex numbers, respectively.
Let E denote the borel algebra of all measurable subsets of R and let P denote
the convex set of all probability measures defined on E .

2◦ We begin with the primitive idea of a physical system and with the
primitive ideas of state and observable. For such a system, we introduce the
sets S of all states and O of all observables and we introduce a mapping Π
carrying S ×O to P :

Π : S ×O −→ P
We refer to the ordered triple:

T = (S,O,Π)

as a physical theory for the given physical system. For any S in S, A in O,
and E in E , we interpret:

Π(S,A)(E)

to be the probability that preparation of the physical system in the state S
and measurement of the observable A yields a value in the set E.

Natural Requirements

3◦ For any physical theory T, we require that states and observables which
are in practice indistinguishable are in fact identical, that is, for any S1 and
S2 in S:

(•) [(∀A ∈ O)(Π(S1, A) = Π(S2, A))] =⇒ [S1 = S2]

and, for any A1 and A2 in O:

(•) [(∀S ∈ S)(Π(S,A1) = Π(S,A2))] =⇒ [A1 = A2]

Should these requirements fail, we would simply replace S and O by appro-
priate sets of equivalence classes.
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The Functional Calculus

4◦ We also require that, for any real valued borel function f defined on R
and for any A in O, there is some B in O such that:

(•) (∀S ∈ S)[ Π(S,B) = f∗(Π(S,A))]

Obviously, f and A uniquely determine B. We say that B is a function of A
and we denote B by f(A). By definition, for each E in E :

Π(S, f(A))(E) = f∗(Π(S,A))(E) = Π(S,A)(f−1(E))

Commeasurability

5◦ In terms of the foregoing action of functions on observables, we can define
the relation of commeasurability. Thus, for any observables B1 and B2 in O,
we say that B1 and B2 are commeasurable iff there exists an observable A in
O such that both B1 and B2 are functions of A.

6◦ Let Oo be any subset of O. We say that the elements of Oo are mutually
commeasurable iff, for any B1 and B2 in Oo, B1 and B2 are commeasurable.
We require that:

(•) for any subset O◦ of O, if the elements of O◦ are mutually commea-
surable then there is some A in O such that, for each B in O◦, B is a function
of A

We may refer to A as an ur -observable for Oo.

Partial Algebras

7◦ Let us describe the concept of a partial algebra. Let O be an arbitrary
set. We say that O is a partial algebra iff we have supplied O with a family
A of subsets of O such that:

(◦) O = ∪A

(◦) for each A in A, A is a commutative algebra over R

(◦) for any A1 and A2 in A, A1 ∩A2 is itself in A and is a subalgebra
of both A1 and A2

(◦) for any subset O◦ of O, if the elements of O◦ are mutually compat-
ible then there is some A in A such that O◦ ⊆ A
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To support the last of the foregoing conditions, we provide the following def-
initions. For any B1 and B2 in O, we say that B1 and B2 are compatible iff
there is some A in A such that both B1 and B2 belong to A. In turn, we say
that the elements of O◦ are mutually compatible iff, for any B1 and B2 in O◦,
B1 and B2 are compatible.

8◦ Let us emphasize that, under the foregoing conditions, the neutral ele-
ments 0 and 1 for the various algebras A in A are all the same.

Homomorphisms of Partial Algebras

9◦ Let O′ and O′′ be partial algebras and let A′ and A′′ be the correspond-
ing families of commutative algebras over R. Let H be a mapping carrying O′

to O′′. We refer to H as a homomorphism iff, for any A′ in A′, there is some
A′′ in A′′ such that H(A′) ⊆ A′′ and such that the restriction/contraction of
H to A′ and A′′ is (in the usual sense) a homomorphism.

The Partial Algebra of Observables

10◦ Let us return to the context of the physical theory T. Now we simply
declare that:

(•) the set O of observables is a partial algebra

As required, we mention the corresponding family A of commutative algebras
over R. Naturally, we impose a condition which intertwines the structure of
O just defined with the foregoing functional calculus:

(•) for any B1 and B2 in O, B1 and B2 are compatible iff they are
commeasurable, in which case, for any A in O and for any real valued borel
functions f1 and f2 defined on R:

(B1 = f1(A)) ∧ (B2 = f2(A))
=⇒ (B1 +B2 = (f1 + f2)(A)) ∧ (B1B2 = (f1f2)(A))

11◦ Let Oo be any subset of O. Obviously, the elements of Oo are mutually
compatible iff the elements of Oo are mutually commeasurable. In such a con-
text, we may introduce an ur-observable A for Oo. By elementary argument,
we would find that the elements of Oo ∪{A} are mutually compatible. Hence,
there would be some A in A such that Oo ∪ {A} ⊆ A.

12◦ Let us introduce certain innocuous but useful conditions on A. First, let
A1 and A2 be any commutative algebras over R such that A1 is a subalgebra
of A2. We assume that:
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(•) if A2 ∈ A then A1 ∈ A

Second, let Ao be any chain in A. That is, let Ao be any subset of A such
that, for any A1 and A2 in Ao, either A1 is a subalgebra of A2 or A2 is
a subalgebra of A1. Naturally, ∪Ao is a commutative algebra over R. We
assume that:

(•) ∪Ao ∈ A

13◦ Under the second of the foregoing conditions, we may apply Zorn’s
Lemma to infer that, for any A in A, there is some M in A such that A ⊆ M
and such that M is maximal . The latter assertion means that, for any B in
A, if M ⊆ B then M = B.

14◦ We shall refer to a maximal member of A as a context .

Boolean Rings

15◦ Let us review the basic properties of boolean rings. Let B be any ring.
We say that B is a boolean ring iff, for each X in B, X2 = X . Let B be such a
ring. Let us represent the operation of addition not by + but by ⊕. We find
that, for any Y in B:

Y ⊕ Y = (Y ⊕ Y )2 = Y 2 ⊕ Y 2 ⊕ Y 2 ⊕ Y 2 = Y ⊕ Y ⊕ Y ⊕ Y

so that, Y ⊕ Y = 0. In turn, for any Y1 and Y2 in B:

Y1 ⊕ Y2 = (Y1 ⊕ Y2)2 = Y 2
1 ⊕ Y1Y2 ⊕ Y2Y1 ⊕ Y 2

2 = Y1 ⊕ Y1Y2 ⊕ Y2Y1 ⊕ Y2

so that, Y1Y2 ⊕ Y2Y1 = 0. Hence, Y1Y2 = Y2Y1. Consequently, boolean rings
must be commutative.

16◦ Let A be a commutative algebra over R. Let B be the subset of A
consisting of all idempotent elements of A, that is, the subset consisting of all
elements X for which X2 = X . Clearly, B is closed under multiplication in A.
Let us supply B with the operation of multiplication which descends from A.
However, B is not (in general) closed under addition in A. In compensation,
let us supply B with the operation of addition defined as follows:

X ⊕ Y = X + Y − 2XY

where X and Y are any elements of B. Remarkably, under the operations of
addition and multiplication just described, B is a boolean ring. In future, we
will refer to B as the boolean “subring” of A, composed of the idempotent
elements of A.
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17◦ Let B be a boolean ring. Let 0 and 1 be the neutral elements for B. We
introduce the relation ≤ on B as follows:

X1 ≤ X2 ⇐⇒ X1 = X1X2

One can easily check that ≤ is a partial order relation on B. Obviously, for
each X in B, 0 ≤ X ≤ 1. Moreover, for any Y1 and Y2 in B:

Y1 ∧ Y2 = Y1Y2 and Y1 ∨ Y2 = Y1 ⊕ Y2 ⊕ Y1Y2

serve as the infimum and the supremum, respectively, of the set:

{Y1, Y2}

That is, Y1 ∧ Y2 ≤ Y1 and Y1 ∧ Y2 ≤ Y2, while, for any X in B, if X ≤ Y1 and
X ≤ Y2 then X ≤ Y1 ∧ Y2. Moreover, Y1 ≤ Y1 ∨ Y2 and Y2 ≤ Y1 ∨ Y2, while,
for any Z in B, if Y1 ≤ Z and Y2 ≤ Z then Y1 ∨ Y2 ≤ Z.

18◦ Finally, for each X in B, we define the complement of X as follows:

X ′ = 1 ⊕X

Clearly:
X ∧X ′ = 0, X ∨X ′ = 1, X ′′ = X

We find that, for any X1 and X2 in B:

X1 ≤ X2 ⇐⇒ X ′
2 ≤ X ′

1

19◦ We say that B is complete iff, for each subset C of B, there are elements:

∧ C and ∨C

of B which serve as the infimum and supremum of C, respectively. That is:

(∀Y ∈ C)(∧C ≤ Y )
∧ (∀X ∈ B)[(∀Y ∈ C)(X ≤ Y ) =⇒ (X ≤ ∧C)]

and:
(∀Y ∈ C)(Y ≤ ∨C)

∧ (∀Z ∈ B)[(∀Y ∈ C)(Y ≤ Z) =⇒ (∨C ≤ Z)]

20◦ We say that B is countably complete iff, for each countable subset C of
B, there are elements:

∧ C and ∨C
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of B which serve as the infimum and supremum of C, respectively. Of course,
in this case, we may display the elements of C in a list:

Y1, Y2, Y3, Y4, . . .

and we may choose to denote the infimum and the supremum of C as follows:

∧C = ∧jYj , ∨C = ∨jYj

21◦ For any X1 and X2 in B, we say that X1 and X2 are disjoint iff:

X1 ∧X2 = 0

It is the same to say that X1 ≤ X ′
2 or that X2 ≤ X ′

1. For any subset C of B,
we say that the elements of C are mutually disjoint iff, for any Y1 and Y2 in
C, Y1 and Y2 are disjoint.

22◦ We say that B is countably generated iff, for each subset C of B, if the
elements of C are mutually disjoint then C is countable.

23◦ One can easily show that if B is countably generated and countably
complete then B is complete.

24◦ Let B1 and B2 be boolean rings. Let H be a homomorphism carrying B1

to B2. For any X and Y in B1, we find that:

X ≤ Y ⇐⇒ X = XY =⇒ H(X) = H(X)H(Y ) ⇐⇒ H(X) ≤ H(Y )

Hence, H preserves order.

Partial Boolean Rings

25◦ Let us describe the concept of a partial boolean ring. Let Q be an
arbitrary set. We say that Q is a partial boolean ring iff we have supplied Q
with a family B of subsets of Q such that:

(◦) Q = ∪B

(◦) for each B in B, B is a boolean ring

(◦) for any B1 and B2 in B, B1 ∩ B2 is itself in B and is a boolean
subring of both B1 and B2

(◦) for any subset Q◦ of Q, if the elements of Q◦ are mutually compat-
ible then there is some B in B such that Q◦ ⊆ B
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To support the last of the foregoing conditions, we provide the following def-
initions. For any Q1 and Q2 in Q, we say that Q1 and Q2 are compatible iff
there is some B in B such that both Q1 and Q2 belong to B. In turn, we say
that the elements of Q◦ are mutually compatible iff, for any Q1 and Q2 in Q◦,
Q1 and Q2 are compatible.

26◦ Let us emphasize that, under the foregoing conditions, the neutral ele-
ments 0 and 1 for the various boolean rings B in B are all the same.

27◦ We say that the partial boolean ring Q is complete iff, for each B1 in
B, there is some B2 in B such that B1 ⊆ B2 and such that B2 is complete.
In this context, we mean to require that, for any subset C of B1, if there are
elements ∧1 C and ∨1 C in B1 which serve, respectively, as the infimum and
the supremum of C in B1 then ∧1 C = ∧2 C and ∨1 C = ∨2 C, where ∧2 C and
∨2 C are the elements in B2 which serve, respectively, as the infimum and the
supremum of C in B2.

Homomorphisms of Partial Boolean Rings

28◦ Let Q′ and Q′′ be partial boolean rings and let B′ and B′′ be the corre-
sponding families of boolean rings. Let H be a mapping carrying Q′ to Q′′.
We refer to H as a homomorphism iff, for any B′ in B′, there is some B′′ in
B′′ such that H(B′) ⊆ B′′ and such that the restriction/contraction of H to
B′ and B′′ is (in the usual sense) a homomorphism.

Questions

29◦ Let us return to the context of the physical theory T. Let Q be any
observable in O. We contend that Q2 = Q iff:

(∗) (∀S ∈ S)[Π(S,Q)({0, 1}) = 1]

To prove the contention, we introduce the real valued borel function σ defined
on R as follows: for each x in R, σ(x) = x2. By article 10◦, Q2 = σ(Q). Let
us assume that condition (∗) holds. Let S be any state in S. Clearly:

Π(S,Q2)({0}) = Π(S,Q)(σ−1({0}) = Π(S,Q)({0})

Moreover, since Π(S,Q)({−1}) = 0:

Π(S,Q2)({1}) = Π(S,Q)(σ−1({1}) = Π(S,Q)({−1, 1}) = Π(S,Q)({1})

Obviously:
Π(S,Q2)({0, 1}) = Π(S,Q)({0, 1}) = 1
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We infer that:

Π(S,Q2)(R\{0, 1}) = 0 = Π(S,Q)(R\{0, 1})
By article 3◦, we infer that Q2 = Q. Now let us assume that Q2 = Q. Let S
be any state in S. Let E be any (borel) set in E . Clearly:

(�) Π(S,Q)(E) = Π(S,Q2)(E) = Π(S,Q)(σ−1(E))

Let R− be the (borel) subset of R consisting of all negative real numbers.
Obviously, σ−1(R−) = ∅. Hence, by relation (�), Π(S,Q)(R−) = 0. Let x
be any positive real number and let y = σ(x). If x < 1 then, by relation (�),
Π(S,Q)([y, x)) = 0. If 1 < x then, by relation (�), Π(S,Q)([x, y)) = 0. Now,
by elementary steps, we find that:

Π(S,Q)((0, 1)) = 0 and Π(S,Q)((1,−→)) = 0

Hence, Π(S,Q)({0, 1}) = 1. We infer that condition (∗) holds.

30◦ Now let Q be the subset of O consisting of all observables Q such that
Q2 = Q. We refer to such observables as questions . For any Q in Q and S in
S, we interpret:

Π(S,Q)({0}) and Π(S,Q)({1})
to be the probabilities that preparation of the physical system in the state S
and “measurement” of the question Q will yield the answers “no” and “yes,”
respectively.

31◦ Questions are legion. Indeed, let A be any observable in O, let F be any
borel set in E , and let chF be the characteristic function of F :

chF (x) =
{

0 if x /∈ F
1 if x ∈ F

Obviously, ch2
F = chF . By article 10◦, it is plain that chF (A) is a question in

Q.

32◦ Now let f be a real valued borel function defined on R, let F = f−1({1}),
and let g = chF . We contend that if f(A) is a question then g(A) = f(A).
To prove the contention, we note that, for each S in S:

Π(S, g(A))({1}) = Π(S,A)(F ) = Π(S, f(A))({1})
and that:

Π(S, g(A))({0}) = 1 − Π(S,A)(F ) = Π(S, f(A))({0})
We infer that:

Π(S, g(A))(R\{0, 1}) = 0 = Π(S, f(A))(R\{0, 1})
By article 3◦, we infer that g(A) = f(A).
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LOGIC: the Partial Boolean Ring of Questions

33◦ Let us recall that O is a partial algebra and let us recover the family
A of commutative algebras over R with which O is supplied. Let B be the
corresponding family of boolean rings, defined as follows:

B = Q∩ A

We mean to say that, for any subset B of Q, B ∈ B iff there is some A in A
such that B = Q ∩A. Of course, B is the boolean “subring” of A, composed
of the idempotent elements of A. Obviously:

(•) the set Q of questions is a partial boolean ring

We refer to Q as the LOGIC for the physical theory T.

34◦ Let Q1 and Q2 be compatible questions in Q. We contend that Q1 ≤ Q2

iff:

(∗) (∀S ∈ S)[Π(S,Q1)({1}) ≤ Π(S,Q2)({1})]

To prove the contention, we argue as follows. By article 34◦, we may introduce
an observable B in O and (borel) sets F1 and F2 in E such that:

Q1 = chF1(B), Q2 = chF2(B)

Let us assume that Q1 ≤ Q2. By definition, Q1 = Q1Q2. Consequently:

Q1 = chF1∩F2(B)

Accordingly, we may assume that F1 = F1 ∩ F2 ⊆ F2. Hence, for any state S
in S:

Π(S,Q1)({1}) = Π(S,B)(F1) ≤ Π(S,B)(F2) = Π(S,Q2)({1})

We infer that condition (∗) holds.

35◦ Now let us assume that condition (∗) holds. We claim that Q1 ≤ Q2. To
support the claim, we impose the following (more or less natural) condition
on the logic Q:

(•) (∀Q ∈ Q)[(Q �= 0) =⇒ (∃S ∈ S)(Π(S,Q)({1}) = 1)]

......
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The Convex Set of States

36◦ We also declare that:

(•) the set S of states is countably convex

By this condition, we mean that, for any countable family:

S1, S2, S3, . . .

in S and for a corresponding family:

c1, c2, c3, . . .

of nonnegative real numbers, if:

∑
j

cj = 1

then there is some S in S such that, for each A in O and for each E in E :

Π(S,A)(E) =
∑

j

cjΠ(Sj , A)(E)

By article 3◦, S would be unique. We express S as a convex sum:

S =
∑

j

cjSj

37◦ Let us recall that, for any S in S, S is an extreme point of S iff, for any
S1 and S2 in S and for any nonnegative real numbers c1 and c2:

(c1 + c2 = 1) ∧ (S = c1S1 + c2S2) =⇒ (S = S1) ∨ (S = S2)

We refer to the extreme points in S as pure states.

Reconstruction of S, O, and Π from Q

38◦ For any S in S, we introduce the mapping:

S̄ : Q −→ [0, 1]

as follows:
S̄(Q) = Π(S,Q)({1})
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where Q is any question in Q. ...... Obviously, S̄(0) = 0 and S̄(1) = 1. ......
Moreover, for each Q in Q:

S̄(Q′) = 1 − S̄(Q)

...... Finally, we contend that, for each countable subset:

Q1, Q2, Q3, Q4, . . .

of Q, if the elements are mutually compatible and mutually disjoint then:

S̄(∨jQj) =
∑

j

S̄(Qj)

......

39◦ Under these conditions, we refer to S̄ as a normalized measure on Q.

40◦ One can easily check that, for any S1 and S2 in S, if S̄1 = S̄2 then
S1 = S2,

41◦ For any A in A, we introduce the mapping:

Ā : E −→ Q

as follows:
Ā(E) = chE(A)

where E is any (borel) set in E . We contend that, for each countable subset:

E1, E2, E3, E4, . . .

of E , if the sets are mutually disjoint then the elements:

Ā(E1), Ā(E2), Ā(E3), Ā(E4), . . .

in Q are mutually compatible and mutually disjoint.
......

42◦ Under these conditions, we refer to Ā as a question-valued measure de-
fined on E .

43◦ One can easily check that, for any A1 and A2 in A, if Ā1 = Ā2 then
A1 = A2.

44◦ Relate Ā1, Ā2, A1 +A2, and A1A2.

11



45◦ Obviously, for any S in S and for any A in O, the following relation is
both meaningful and true:

Π(S,A) = S̄ · Ā

because, for any (borel) set E in E :

(S̄ · Ā)(E) = S̄((Ā)(E))
= S̄(chE(A))
= Π(S, chE(A))({1})
= Π(S,A)(ch−1

E ({1}))
= Π(S,A)(E)

46◦ At this point, we might say that the basic structure for a physical theory
T is the underlying logic Q and that the structures S, O, and Π can be
reconstructed from Q.

47◦ States are positive linear functionals on the “bounded” observables.
......

Homomorphisms of Physical Theories

48◦

49◦

50◦

Classical Physical Theories

51◦ For a classical physical theory:

T = (S,O,Π)

we begin with a standard borel space X. The logic Q of questions is the
boolean ring composed of all borel subsets Q of X. The states in S are the
probability measures S defined on Q; the observables in O are the real valued
borel functions A defined on X; and:

Π(S,A) = S̄ · Ā

To be clear, let us note that S̄ = S and that, for any E in E :

Ā(E) = A−1(E) and Π(S,A)(E) = S(A−1(E))
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so that:
Π(S,A) = A∗(S)

52◦ The pure states in S are the probability measures of the form:

∆x

where x is any point in X. By definition:

∆x(Q) =
{

0 if x /∈ Q
1 if x ∈ Q

(Q ∈ Q)

Clearly, for any A in A, the mean m of Π(∆x, A) is A(x):

m =
∫
R

aΠ(∆x, A)(da) =
∫
R

a∆A(x)(da) = A(x)

and the standard deviation s is 0:

s2 =
∫
R

(a−m)2Π(∆x, A)(da) =
∫
R

(a−m)2∆A(x)(da) = 0

Quantum Physical Theories

53◦ For a quantum physical theory:

T = (S,O,Π)

we begin with a separable complex hilbert space H. For any ψ1 and ψ2 in H,
we represent the inner product of ψ1 and ψ2 as follows:

〈〈 ψ1, ψ2 〉〉

The logic Q of questions is the partial boolean ring composed of all self adjoint
projection operators Q on H. Such operators are coextensive with closed
linear subspaces Q̃ of H:

Q̃ = ran(Q)

The states in S are the normalized nonnegative self adjoint operators of trace
class on H. One refers to such an operator as a density operator on H.
By the Theorem of A. M. Gleason, density operators S are coextensive with
normalized measures S̄ on Q:

S̄(Q) = tr(SQ)
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where Q is any question in Q. The observables in O are the (not necessarily
bounded but in any case densely defined) self adjoint operators A on H. By
the Theorem of M. H. Stone, such observables are coextensive with projection-
valued measures Ā on E :

〈〈 A(ψ1), ψ2 〉〉 =
∫
R

a 〈〈 Ā(da)(ψ1), ψ2 〉〉

where ψ1 and ψ2 are any vectors in H and where ψ1 ∈ dom(A). Finally:

Π(S,A) := S̄ · Ā

so that, for any E in E :

Π(S,A)(E) = tr(SĀ(E))

54◦ For each unit vector ϕ in H, one forms the self adjoint projection operator
Rϕ as follows:

Rϕ(ψ) = 〈〈 ψ, ϕ 〉〉ϕ
where ψ is any vector in H. Obviously:

ran(Rϕ) = Cϕ

so that ran(Rϕ) is 1-dimensional. As noted, one can identify such operators
with their ranges:

R̃ϕ = ran(Rϕ)

Now one can regard Rϕ either as a state or as a question:

Sϕ = Rϕ = Qϕ

Under the first view, on obtains precisely the pure states in S. Under the
second view, one interprets Qϕ to be the question whether the physical system
is in the pure state Sϕ. Let us explain this interpretation. For any unit vectors
ϕ1 and ϕ2 in H:

Π(Sϕ1 , Qϕ2)({1}) = tr(Sϕ1Qϕ2)
= 〈〈 (Sϕ1Qϕ2)(ϕ2), ϕ2 〉〉
= 〈〈 〈〈 ϕ2, ϕ1 〉〉ϕ1, ϕ2 〉〉
= | 〈〈 ϕ1, ϕ2 〉〉 |2
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Of course, Π(Sϕ1 , Qϕ2)({1}) is the probability that preparation of the physical
system in the pure state Sϕ1 and “measurement” of the questionQϕ2 will yield
the answer “yes.” Clearly:

Π(Sϕ1 , Qϕ2)({1}) = 1 iff | 〈〈 ϕ1, ϕ2 〉〉 |2 = 1
iff (∃z ∈ C)[ |z = 1| ∧ (ϕ2 = zϕ1) ])
iff Sϕ1 = Qϕ2

These observations “justify” the foregoing interpretation of Qϕ. One refers to
the numbers:

| 〈〈 ϕ1, ϕ2 〉〉 |2

as transition probabilities . Such numbers are the fundamental measurable
quantities for a quantum theory.

55◦ For each S in S, one can introduce a countable family:

ϕ1, ϕ2, ϕ3, ϕ4, . . .

of mutually orthogonal unit vectors in H and a corresponding family:

w1, w2, w3, w4, . . .

of nonnegative real numbers such that:

∑
j

wj = 1 and S =
∑

j

wjSϕj

We intend that the foregoing series converge strongly. For any A in O and E
in E :

Π(S,A)(E) = tr(SĀ(E))

=
∑

j

wjtr(Sϕj Ā(E))

=
∑

j

wj〈〈 Ā(E)(ϕj), ϕj 〉〉

and:
Π(S,A)(E) =

∑
j

wjΠ(Sj , A)(E)

Consequently, as the notation suggests, S is a countable convex sum of pure
states.
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56◦ For each unit vector ϕ in H:

ϕ ∈ dom(A) iff
∫
R

a2〈〈 Ā(da)(ϕ), ϕ 〉〉 <∞

For the corresponding pure state Sϕ, one can compute the mean m and the
standard deviation s for Π(Sϕ, A) as follows:

m =
∫
R

aΠ(Sϕ, A)(da)

=
∫
R

a〈〈 Ā(da)(ϕ), ϕ 〉〉
= 〈〈 A(ϕ), ϕ 〉〉

and:
s2 =

∫
R

(a−m)2 Π(Sϕ, A)(da)

=
∫
R

(a−m)2 〈〈 Ā(da)(ϕ), ϕ 〉〉
= 〈〈 (A−mI)2(ϕ), ϕ 〉〉

where I is the identity operator on H. In general, s �= 0. However, if ϕ is an
eigenvector for A:

A(ϕ) = aϕ

then m = a and s = 0.

The Uncertainty Principle

57◦ Let us describe a special feature of the quantum physical theory (S,O,Π).
Let ϕ be a unit vector in H and let A1 and A2 be self adjoint operators on H
which meet the following condition:

ϕ ∈ dom(A1) ∩ dom(A2) ∩ dom(A1A2) ∩ dom(A2A1)

Let m1 and m2 be the means for Π(Sϕ, A1) and Π(Sϕ, A2) and let Â1 and Â2

be the self adjoint operators on H, defined as follows:

Â1 = A1 −m1I, Â2 = A2 −m2I

Let s1 and s2 be the standard deviations for Π(Sϕ, A1) and Π(Sϕ, A2). For
each real number a:

0 ≤ 〈〈 (Â1 + a
1
i
Â2)(ϕ), (Â1 + a

1
i
Â2)(ϕ) 〉〉

= 〈〈 Â2
1(ϕ), ϕ 〉〉 + a〈〈 1

i
(Â1Â2 − Â2Â1)(ϕ), ϕ 〉〉 + a2〈〈 Â2

2(ϕ), ϕ 〉〉
= s21 + aξ + a2s22

16



where:
ξ := 〈〈 1

i
(Â1Â2 − Â2Â1)(ϕ), ϕ 〉〉

which is a real number. It follows that:

1
4
ξ2 ≤ s21s

2
2

The relation just derived yields the Uncertainty Principle of Heisenberg. For
instance, if:

1
i
(Â1Â2 − Â2Â1)(ϕ) = ϕ

(so that ξ = 1) then:
1
2
≤ s1s2

Hence, the statistics of measurement for Π(Sϕ, A1) and Π(Sϕ, A2) will show
a striking property: the more accurate the empirical estimate of m1, the less
accurate the empirical estimate of m2; and conversely.

Von Neumann, Bell

58◦ Let T′ be a quantum physical theory. Can we design a classical physical
theory T′′ and an injective homomorphism H carrying T′ to T′′?

Dynamics

59◦ At this point, one might draw an analogy between our description of a
physical theory:

T = (S,O,Π)

and the composition of a play, for which there is stage and cast but no plot.
To complete the description, we must now add to S, O, and Π the several
features of dynamics.
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