PHYSICAL THEORY (IN PROGRESS)

Thomas Wieting Reed College, 2010

Basic Definitions

1° Let **R** and **C** denote the fields of real and complex numbers, respectively. Let \mathcal{E} denote the borel algebra of all measurable subsets of **R** and let \mathcal{P} denote the convex set of all probability measures defined on \mathcal{E} .

2° We begin with the primitive idea of a *physical system* and with the primitive ideas of *state* and *observable*. For such a system, we introduce the sets S of all states and O of all observables and we introduce a mapping Π carrying $S \times O$ to \mathcal{P} :

$$\Pi \,:\, \mathcal{S} \times \mathcal{O} \,\longrightarrow\, \mathcal{P}$$

We refer to the ordered triple:

$$\mathbf{T} = (\mathcal{S}, \mathcal{O}, \Pi)$$

as a *physical theory* for the given physical system. For any S in S, A in O, and E in \mathcal{E} , we interpret:

 $\Pi(S, A)(E)$

to be the probability that preparation of the physical system in the state S and measurement of the observable A yields a value in the set E.

Natural Requirements

3° For any physical theory **T**, we require that states and observables which are in practice indistinguishable are in fact identical, that is, for any S_1 and S_2 in S:

$$(\bullet) \quad [(\forall A \in \mathcal{O})(\Pi(S_1, A) = \Pi(S_2, A))] \Longrightarrow [S_1 = S_2]$$

and, for any A_1 and A_2 in \mathcal{O} :

 $(\bullet) \quad [(\forall S \in \mathcal{S})(\Pi(S, A_1) = \Pi(S, A_2))] \Longrightarrow [A_1 = A_2]$

Should these requirements fail, we would simply replace S and O by appropriate sets of equivalence classes.

The Functional Calculus

4° We also require that, for any real valued borel function f defined on **R** and for any A in \mathcal{O} , there is some B in \mathcal{O} such that:

 $(\bullet) \quad (\forall S \in \mathcal{S})[\Pi(S, B) = f_*(\Pi(S, A))]$

Obviously, f and A uniquely determine B. We say that B is a function of A and we denote B by f(A). By definition, for each E in \mathcal{E} :

$$\Pi(S, f(A))(E) = f_*(\Pi(S, A))(E) = \Pi(S, A)(f^{-1}(E))$$

Commeasurability

 5° In terms of the foregoing action of functions on observables, we can define the relation of commeasurability. Thus, for any observables B_1 and B_2 in \mathcal{O} , we say that B_1 and B_2 are *commeasurable* iff there exists an observable A in \mathcal{O} such that both B_1 and B_2 are functions of A.

6° Let \mathcal{O}_o be any subset of \mathcal{O} . We say that the elements of \mathcal{O}_o are *mutually* commeasurable iff, for any B_1 and B_2 in \mathcal{O}_o , B_1 and B_2 are commeasurable. We require that:

(•) for any subset \mathcal{O}_{\circ} of \mathcal{O} , if the elements of \mathcal{O}_{\circ} are mutually commeasurable then there is some A in \mathcal{O} such that, for each B in \mathcal{O}_{\circ} , B is a function of A

We may refer to A as an ur-observable for \mathcal{O}_o .

Partial Algebras

7° Let us describe the concept of a partial algebra. Let \mathcal{O} be an arbitrary set. We say that \mathcal{O} is a *partial algebra* iff we have supplied \mathcal{O} with a family **A** of subsets of \mathcal{O} such that:

- (o) $\mathcal{O} = \cup \mathbf{A}$
- (o) for each \mathcal{A} in \mathbf{A} , \mathcal{A} is a commutative algebra over \mathbf{R}

(o) for any A_1 and A_2 in \mathbf{A} , $A_1 \cap A_2$ is itself in \mathbf{A} and is a subalgebra of both A_1 and A_2

(o) for any subset \mathcal{O}_{\circ} of \mathcal{O} , if the elements of \mathcal{O}_{\circ} are mutually compatible then there is some \mathcal{A} in \mathbf{A} such that $\mathcal{O}_{\circ} \subseteq \mathcal{A}$

To support the last of the foregoing conditions, we provide the following definitions. For any B_1 and B_2 in \mathcal{O} , we say that B_1 and B_2 are *compatible* iff there is some \mathcal{A} in \mathbf{A} such that both B_1 and B_2 belong to \mathcal{A} . In turn, we say that the elements of \mathcal{O}_{\circ} are *mutually compatible* iff, for any B_1 and B_2 in \mathcal{O}_{\circ} , B_1 and B_2 are compatible.

 8° Let us emphasize that, under the foregoing conditions, the neutral elements 0 and 1 for the various algebras \mathcal{A} in \mathbf{A} are all the same.

Homomorphisms of Partial Algebras

9° Let \mathcal{O}' and \mathcal{O}'' be partial algebras and let \mathbf{A}' and \mathbf{A}'' be the corresponding families of commutative algebras over \mathbf{R} . Let H be a mapping carrying \mathcal{O}' to \mathcal{O}'' . We refer to H as a *homomorphism* iff, for any \mathcal{A}' in \mathbf{A}' , there is some \mathcal{A}'' in \mathbf{A}'' such that $H(\mathcal{A}') \subseteq \mathcal{A}''$ and such that the restriction/contraction of H to \mathcal{A}' and \mathcal{A}'' is (in the usual sense) a homomorphism.

The Partial Algebra of Observables

 $10^\circ\,$ Let us return to the context of the physical theory T. Now we simply declare that:

(•) the set \mathcal{O} of observables is a partial algebra

As required, we mention the corresponding family \mathbf{A} of commutative algebras over \mathbf{R} . Naturally, we impose a condition which intertwines the structure of \mathcal{O} just defined with the foregoing functional calculus:

(•) for any B_1 and B_2 in \mathcal{O} , B_1 and B_2 are compatible iff they are commeasurable, in which case, for any A in \mathcal{O} and for any real valued borel functions f_1 and f_2 defined on \mathbf{R} :

$$(B_1 = f_1(A)) \land (B_2 = f_2(A)) \Longrightarrow (B_1 + B_2 = (f_1 + f_2)(A)) \land (B_1B_2 = (f_1f_2)(A))$$

11° Let \mathcal{O}_o be any subset of \mathcal{O} . Obviously, the elements of \mathcal{O}_o are mutually compatible iff the elements of \mathcal{O}_o are mutually commeasurable. In such a context, we may introduce an ur-observable A for \mathcal{O}_o . By elementary argument, we would find that the elements of $\mathcal{O}_o \cup \{A\}$ are mutually compatible. Hence, there would be some \mathcal{A} in \mathbf{A} such that $\mathcal{O}_o \cup \{A\} \subseteq \mathcal{A}$.

12° Let us introduce certain innocuous but useful conditions on **A**. First, let \mathcal{A}_1 and \mathcal{A}_2 be any commutative algebras over **R** such that \mathcal{A}_1 is a subalgebra of \mathcal{A}_2 . We assume that:

(•) if
$$\mathcal{A}_2 \in \mathbf{A}$$
 then $\mathcal{A}_1 \in \mathbf{A}$

Second, let \mathbf{A}_o be any *chain* in \mathbf{A} . That is, let \mathbf{A}_o be any subset of \mathbf{A} such that, for any \mathcal{A}_1 and \mathcal{A}_2 in \mathbf{A}_o , either \mathcal{A}_1 is a subalgebra of \mathcal{A}_2 or \mathcal{A}_2 is a subalgebra of \mathcal{A}_1 . Naturally, $\cup \mathbf{A}_o$ is a commutative algebra over \mathbf{R} . We assume that:

$$(\bullet) \cup \mathbf{A}_o \in \mathbf{A}$$

13° Under the second of the foregoing conditions, we may apply Zorn's Lemma to infer that, for any \mathcal{A} in \mathbf{A} , there is some \mathcal{M} in \mathbf{A} such that $\mathcal{A} \subseteq \mathcal{M}$ and such that \mathcal{M} is *maximal*. The latter assertion means that, for any \mathcal{B} in \mathbf{A} , if $\mathcal{M} \subseteq \mathcal{B}$ then $\mathcal{M} = \mathcal{B}$.

 14° We shall refer to a maximal member of **A** as a *context*.

Boolean Rings

15° Let us review the basic properties of boolean rings. Let \mathcal{B} be any ring. We say that \mathcal{B} is a *boolean* ring iff, for each X in \mathcal{B} , $X^2 = X$. Let \mathcal{B} be such a ring. Let us represent the operation of addition not by + but by \oplus . We find that, for any Y in \mathcal{B} :

$$Y \oplus Y = (Y \oplus Y)^2 = Y^2 \oplus Y^2 \oplus Y^2 \oplus Y^2 = Y \oplus Y \oplus Y \oplus Y$$

so that, $Y \oplus Y = 0$. In turn, for any Y_1 and Y_2 in \mathcal{B} :

$$Y_1 \oplus Y_2 = (Y_1 \oplus Y_2)^2 = Y_1^2 \oplus Y_1 Y_2 \oplus Y_2 Y_1 \oplus Y_2^2 = Y_1 \oplus Y_1 Y_2 \oplus Y_2 Y_1 \oplus Y_2$$

so that, $Y_1Y_2 \oplus Y_2Y_1 = 0$. Hence, $Y_1Y_2 = Y_2Y_1$. Consequently, boolean rings must be commutative.

16° Let \mathcal{A} be a commutative algebra over \mathbf{R} . Let \mathcal{B} be the subset of \mathcal{A} consisting of all idempotent elements of \mathcal{A} , that is, the subset consisting of all elements X for which $X^2 = X$. Clearly, \mathcal{B} is closed under multiplication in \mathcal{A} . Let us supply \mathcal{B} with the operation of multiplication which descends from \mathcal{A} . However, \mathcal{B} is not (in general) closed under addition in \mathcal{A} . In compensation, let us supply \mathcal{B} with the operation of addition defined as follows:

$$X \oplus Y = X + Y - 2XY$$

where X and Y are any elements of \mathcal{B} . Remarkably, under the operations of addition and multiplication just described, \mathcal{B} is a boolean ring. In future, we will refer to \mathcal{B} as the boolean "subring" of \mathcal{A} , composed of the idempotent elements of \mathcal{A} .

17° Let \mathcal{B} be a boolean ring. Let 0 and 1 be the neutral elements for \mathcal{B} . We introduce the relation \leq on \mathcal{B} as follows:

$$X_1 \le X_2 \Longleftrightarrow X_1 = X_1 X_2$$

One can easily check that \leq is a partial order relation on \mathcal{B} . Obviously, for each X in \mathcal{B} , $0 \leq X \leq 1$. Moreover, for any Y_1 and Y_2 in \mathcal{B} :

$$Y_1 \wedge Y_2 = Y_1 Y_2$$
 and $Y_1 \vee Y_2 = Y_1 \oplus Y_2 \oplus Y_1 Y_2$

serve as the *infimum* and the *supremum*, respectively, of the set:

```
\{Y_1, Y_2\}
```

That is, $Y_1 \wedge Y_2 \leq Y_1$ and $Y_1 \wedge Y_2 \leq Y_2$, while, for any X in \mathcal{B} , if $X \leq Y_1$ and $X \leq Y_2$ then $X \leq Y_1 \wedge Y_2$. Moreover, $Y_1 \leq Y_1 \vee Y_2$ and $Y_2 \leq Y_1 \vee Y_2$, while, for any Z in \mathcal{B} , if $Y_1 \leq Z$ and $Y_2 \leq Z$ then $Y_1 \vee Y_2 \leq Z$.

18° Finally, for each X in \mathcal{B} , we define the *complement* of X as follows:

$$X' = 1 \oplus X$$

Clearly:

$$X \wedge X' = 0, \quad X \vee X' = 1, \quad X'' = X$$

We find that, for any X_1 and X_2 in \mathcal{B} :

$$X_1 \le X_2 \Longleftrightarrow X_2' \le X_1'$$

19° We say that \mathcal{B} is *complete* iff, for each subset \mathcal{C} of \mathcal{B} , there are elements:

$$\wedge \mathcal{C}$$
 and $\vee \mathcal{C}$

of \mathcal{B} which serve as the infimum and supremum of \mathcal{C} , respectively. That is:

$$\begin{aligned} (\forall Y \in \mathcal{C})(\wedge \mathcal{C} \leq Y) \\ \wedge \ (\forall X \in \mathcal{B})[(\forall Y \in \mathcal{C})(X \leq Y) \Longrightarrow (X \leq \wedge \mathcal{C})] \end{aligned}$$

and:

$$\begin{aligned} (\forall Y \in \mathcal{C})(Y \leq \lor \mathcal{C}) \\ \land \ (\forall Z \in \mathcal{B})[(\forall Y \in \mathcal{C})(Y \leq Z) \Longrightarrow (\lor \mathcal{C} \leq Z)] \end{aligned}$$

 20° We say that \mathcal{B} is *countably complete* iff, for each countable subset \mathcal{C} of \mathcal{B} , there are elements:

$$\wedge \mathcal{C}$$
 and $\vee \mathcal{C}$

of \mathcal{B} which serve as the infimum and supremum of \mathcal{C} , respectively. Of course, in this case, we may display the elements of \mathcal{C} in a list:

$$Y_1, Y_2, Y_3, Y_4, \ldots$$

and we may choose to denote the infimum and the supremum of \mathcal{C} as follows:

$$\wedge \mathcal{C} = \wedge_j Y_j, \quad \forall \mathcal{C} = \vee_j Y_j$$

21° For any X_1 and X_2 in \mathcal{B} , we say that X_1 and X_2 are *disjoint* iff:

$$X_1 \wedge X_2 = 0$$

It is the same to say that $X_1 \leq X'_2$ or that $X_2 \leq X'_1$. For any subset C of \mathcal{B} , we say that the elements of C are *mutually disjoint* iff, for any Y_1 and Y_2 in C, Y_1 and Y_2 are disjoint.

22° We say that \mathcal{B} is *countably generated* iff, for each subset \mathcal{C} of \mathcal{B} , if the elements of \mathcal{C} are mutually disjoint then \mathcal{C} is countable.

23° One can easily show that if \mathcal{B} is countably generated and countably complete then \mathcal{B} is complete.

24° Let \mathcal{B}_1 and \mathcal{B}_2 be boolean rings. Let H be a homomorphism carrying \mathcal{B}_1 to \mathcal{B}_2 . For any X and Y in \mathcal{B}_1 , we find that:

$$X \leq Y \Longleftrightarrow X = XY \Longrightarrow H(X) = H(X)H(Y) \Longleftrightarrow H(X) \leq H(Y)$$

Hence, H preserves order.

Partial Boolean Rings

 25° Let us describe the concept of a partial boolean ring. Let Q be an arbitrary set. We say that Q is a *partial boolean ring* iff we have supplied Q with a family **B** of subsets of Q such that:

- (o) $\mathcal{Q} = \cup \mathbf{B}$
- (o) for each \mathcal{B} in **B**, \mathcal{B} is a boolean ring

(o) for any \mathcal{B}_1 and \mathcal{B}_2 in \mathbf{B} , $\mathcal{B}_1 \cap \mathcal{B}_2$ is itself in \mathbf{B} and is a boolean subring of both \mathcal{B}_1 and \mathcal{B}_2

(o) for any subset \mathcal{Q}_{\circ} of \mathcal{Q} , if the elements of \mathcal{Q}_{\circ} are mutually compatible then there is some \mathcal{B} in **B** such that $\mathcal{Q}_{\circ} \subseteq \mathcal{B}$

To support the last of the foregoing conditions, we provide the following definitions. For any Q_1 and Q_2 in Q, we say that Q_1 and Q_2 are *compatible* iff there is some \mathcal{B} in **B** such that both Q_1 and Q_2 belong to \mathcal{B} . In turn, we say that the elements of Q_{\circ} are *mutually compatible* iff, for any Q_1 and Q_2 in Q_{\circ} , Q_1 and Q_2 are compatible.

 26° Let us emphasize that, under the foregoing conditions, the neutral elements 0 and 1 for the various boolean rings \mathcal{B} in **B** are all the same.

27° We say that the partial boolean ring \mathcal{Q} is *complete* iff, for each \mathcal{B}_1 in **B**, there is some \mathcal{B}_2 in \mathcal{B} such that $\mathcal{B}_1 \subseteq \mathcal{B}_2$ and such that \mathcal{B}_2 is complete. In this context, we mean to require that, for any subset \mathcal{C} of \mathcal{B}_1 , if there are elements $\wedge_1 \mathcal{C}$ and $\vee_1 \mathcal{C}$ in \mathcal{B}_1 which serve, respectively, as the infimum and the supremum of \mathcal{C} in \mathcal{B}_1 then $\wedge_1 \mathcal{C} = \wedge_2 \mathcal{C}$ and $\vee_1 \mathcal{C} = \vee_2 \mathcal{C}$, where $\wedge_2 \mathcal{C}$ and $\vee_2 \mathcal{C}$ are the elements in \mathcal{B}_2 which serve, respectively, as the infimum and the supremum of \mathcal{C} in \mathcal{B}_2 .

Homomorphisms of Partial Boolean Rings

28° Let \mathcal{Q}' and \mathcal{Q}'' be partial boolean rings and let \mathbf{B}' and \mathbf{B}'' be the corresponding families of boolean rings. Let H be a mapping carrying \mathcal{Q}' to \mathcal{Q}'' . We refer to H as a *homomorphism* iff, for any \mathcal{B}' in \mathbf{B}' , there is some \mathcal{B}'' in \mathbf{B}'' such that $H(\mathcal{B}') \subseteq \mathcal{B}''$ and such that the restriction/contraction of H to \mathcal{B}' and \mathcal{B}'' is (in the usual sense) a homomorphism.

Questions

29° Let us return to the context of the physical theory **T**. Let Q be any observable in \mathcal{O} . We contend that $Q^2 = Q$ iff:

$$(*) \qquad (\forall S \in \mathcal{S})[\Pi(S,Q)(\{0,1\}) = 1]$$

To prove the contention, we introduce the real valued borel function σ defined on **R** as follows: for each x in **R**, $\sigma(x) = x^2$. By article 10°, $Q^2 = \sigma(Q)$. Let us assume that condition (*) holds. Let S be any state in S. Clearly:

$$\Pi(S,Q^2)(\{0\}) = \Pi(S,Q)(\sigma^{-1}(\{0\})) = \Pi(S,Q)(\{0\})$$

Moreover, since $\Pi(S, Q)(\{-1\}) = 0$:

$$\Pi(S,Q^2)(\{1\}) = \Pi(S,Q)(\sigma^{-1}(\{1\}) = \Pi(S,Q)(\{-1,1\}) = \Pi(S,Q)(\{1\})$$

Obviously:

$$\Pi(S,Q^2)(\{0,1\}) = \Pi(S,Q)(\{0,1\}) = 1$$

We infer that:

$$\Pi(S,Q^2)(\mathbf{R}\setminus\{0,1\}) = 0 = \Pi(S,Q)(\mathbf{R}\setminus\{0,1\})$$

By article 3°, we infer that $Q^2 = Q$. Now let us assume that $Q^2 = Q$. Let S be any state in S. Let E be any (borel) set in \mathcal{E} . Clearly:

(*)
$$\Pi(S,Q)(E) = \Pi(S,Q^2)(E) = \Pi(S,Q)(\sigma^{-1}(E))$$

Let \mathbf{R}^- be the (borel) subset of \mathbf{R} consisting of all negative real numbers. Obviously, $\sigma^{-1}(\mathbf{R}^-) = \emptyset$. Hence, by relation (\star) , $\Pi(S,Q)(\mathbf{R}^-) = 0$. Let x be any positive real number and let $y = \sigma(x)$. If x < 1 then, by relation (\star) , $\Pi(S,Q)([y,x)) = 0$. If 1 < x then, by relation (\star) , $\Pi(S,Q)([x,y)) = 0$. Now, by elementary steps, we find that:

$$\Pi(S,Q)((0,1)) = 0 \quad \text{and} \quad \Pi(S,Q)((1,\longrightarrow)) = 0$$

Hence, $\Pi(S,Q)(\{0,1\}) = 1$. We infer that condition (*) holds.

30° Now let \mathcal{Q} be the subset of \mathcal{O} consisting of all observables Q such that $Q^2 = Q$. We refer to such observables as *questions*. For any Q in \mathcal{Q} and S in \mathcal{S} , we interpret:

$$\Pi(S,Q)(\{0\})$$
 and $\Pi(S,Q)(\{1\})$

to be the probabilities that preparation of the physical system in the state S and "measurement" of the question Q will yield the answers "no" and "yes," respectively.

31° Questions are legion. Indeed, let A be any observable in \mathcal{O} , let F be any borel set in \mathcal{E} , and let ch_F be the characteristic function of F:

$$ch_F(x) = \begin{cases} 0 & \text{if } x \notin F \\ 1 & \text{if } x \in F \end{cases}$$

Obviously, $ch_F^2 = ch_F$. By article 10°, it is plain that $ch_F(A)$ is a question in Q.

32° Now let f be a real valued borel function defined on **R**, let $F = f^{-1}(\{1\})$, and let $g = ch_F$. We contend that if f(A) is a question then g(A) = f(A). To prove the contention, we note that, for each S in S:

$$\Pi(S, g(A))(\{1\}) = \Pi(S, A)(F) = \Pi(S, f(A))(\{1\})$$

and that:

$$\Pi(S, g(A))(\{0\}) = 1 - \Pi(S, A)(F) = \Pi(S, f(A))(\{0\})$$

We infer that:

$$\Pi(S, g(A))(\mathbf{R} \setminus \{0, 1\}) = 0 = \Pi(S, f(A))(\mathbf{R} \setminus \{0, 1\})$$

By article 3° , we infer that g(A) = f(A).

LOGIC: the Partial Boolean Ring of Questions

33° Let us recall that \mathcal{O} is a partial algebra and let us recover the family **A** of commutative algebras over **R** with which \mathcal{O} is supplied. Let **B** be the corresponding family of boolean rings, defined as follows:

$$\mathbf{B} = \mathcal{Q} \cap \mathbf{A}$$

We mean to say that, for any subset \mathcal{B} of \mathcal{Q} , $\mathcal{B} \in \mathbf{B}$ iff there is some \mathcal{A} in \mathbf{A} such that $\mathcal{B} = \mathcal{Q} \cap \mathcal{A}$. Of course, \mathcal{B} is the boolean "subring" of \mathcal{A} , composed of the idempotent elements of \mathcal{A} . Obviously:

(•) the set \mathcal{Q} of questions is a partial boolean ring

We refer to \mathcal{Q} as the **LOGIC** for the physical theory **T**.

 34° Let Q_1 and Q_2 be compatible questions in \mathcal{Q} . We contend that $Q_1 \leq Q_2$ iff:

(*)
$$(\forall S \in \mathcal{S})[\Pi(S, Q_1)(\{1\}) \le \Pi(S, Q_2)(\{1\})]$$

To prove the contention, we argue as follows. By article 34° , we may introduce an observable *B* in \mathcal{O} and (borel) sets F_1 and F_2 in \mathcal{E} such that:

$$Q_1 = ch_{F_1}(B), \quad Q_2 = ch_{F_2}(B)$$

Let us assume that $Q_1 \leq Q_2$. By definition, $Q_1 = Q_1 Q_2$. Consequently:

$$Q_1 = ch_{F_1 \cap F_2}(B)$$

Accordingly, we may assume that $F_1 = F_1 \cap F_2 \subseteq F_2$. Hence, for any state S in S:

$$\Pi(S, Q_1)(\{1\}) = \Pi(S, B)(F_1) \le \Pi(S, B)(F_2) = \Pi(S, Q_2)(\{1\})$$

We infer that condition (*) holds.

35° Now let us assume that condition (*) holds. We claim that $Q_1 \leq Q_2$. To support the claim, we impose the following (more or less natural) condition on the logic Q:

$$(\bullet) \quad (\forall Q \in \mathcal{Q})[(Q \neq 0) \Longrightarrow (\exists S \in \mathcal{S})(\Pi(S, Q)(\{1\}) = 1)]$$

.....

The Convex Set of States

 36° We also declare that:

(•) the set S of states is *countably convex*

By this condition, we mean that, for any countable family:

$$S_1, S_2, S_3, \ldots$$

in \mathcal{S} and for a corresponding family:

$$c_1, c_2, c_3, \ldots$$

of nonnegative real numbers, if:

$$\sum_{j} c_j = 1$$

then there is some S in S such that, for each A in \mathcal{O} and for each E in \mathcal{E} :

$$\Pi(S,A)(E) = \sum_{j} c_{j} \Pi(S_{j},A)(E)$$

By article 3° , S would be unique. We express S as a convex sum:

$$S = \sum_{j} c_j S_j$$

 37° Let us recall that, for any S in S, S is an *extreme* point of S iff, for any S_1 and S_2 in S and for any nonnegative real numbers c_1 and c_2 :

$$(c_1 + c_2 = 1) \land (S = c_1 S_1 + c_2 S_2) \Longrightarrow (S = S_1) \lor (S = S_2)$$

We refer to the extreme points in S as *pure* states.

Reconstruction of S, O, and Π from Q

 38° For any S in S, we introduce the mapping:

$$\bar{S}: \mathcal{Q} \longrightarrow [0,1]$$

as follows:

$$S(Q) = \Pi(S, Q)(\{1\})$$

where Q is any question in Q. Obviously, $\overline{S}(0) = 0$ and $\overline{S}(1) = 1$ Moreover, for each Q in Q:

$$\bar{S}(Q') = 1 - \bar{S}(Q)$$

..... Finally, we contend that, for each countable subset:

$$Q_1, Q_2, Q_3, Q_4, \ldots$$

of \mathcal{Q} , if the elements are mutually compatible and mutually disjoint then:

$$\bar{S}(\vee_j Q_j) = \sum_j \bar{S}(Q_j)$$

.....

39° Under these conditions, we refer to \bar{S} as a normalized *measure* on Q.

40° One can easily check that, for any S_1 and S_2 in S, if $\bar{S}_1 = \bar{S}_2$ then $S_1 = S_2$,

41° For any A in \mathcal{A} , we introduce the mapping:

$$\bar{A}: \mathcal{E} \longrightarrow \mathcal{Q}$$

as follows:

$$\bar{A}(E) = ch_E(A)$$

where E is any (borel) set in \mathcal{E} . We contend that, for each countable subset:

$$E_1, E_2, E_3, E_4, \ldots$$

of \mathcal{E} , if the sets are mutually disjoint then the elements:

 $\bar{A}(E_1), \bar{A}(E_2), \bar{A}(E_3), \bar{A}(E_4), \ldots$

in ${\mathcal Q}$ are mutually compatible and mutually disjoint.

42° Under these conditions, we refer to \bar{A} as a *question-valued measure* defined on \mathcal{E} .

43° One can easily check that, for any A_1 and A_2 in \mathcal{A} , if $\bar{A}_1 = \bar{A}_2$ then $A_1 = A_2$.

44° Relate \overline{A}_1 , \overline{A}_2 , $\overline{A_1 + A_2}$, and $\overline{A_1 A_2}$.

45° Obviously, for any S in S and for any A in \mathcal{O} , the following relation is both meaningful and true:

$$\Pi(S,A) = \bar{S} \cdot \bar{A}$$

because, for any (borel) set E in \mathcal{E} :

$$\bar{S} \cdot \bar{A})(E) = \bar{S}((\bar{A})(E)) = \bar{S}(ch_E(A)) = \Pi(S, ch_E(A))(\{1\}) = \Pi(S, A)(ch_E^{-1}(\{1\})) = \Pi(S, A)(E)$$

46° At this point, we might say that the basic structure for a physical theory **T** is the underlying logic Q and that the structures S, O, and Π can be reconstructed from Q.

 $47^\circ\,$ States are positive linear functionals on the "bounded" observables.

Homomorphisms of Physical Theories

 48°

 49°

 50°

Classical Physical Theories

 51° For a classical physical theory:

$$\mathbf{T} = (\mathcal{S}, \mathcal{O}, \Pi)$$

we begin with a standard borel space \mathbf{X} . The logic \mathcal{Q} of questions is the boolean ring composed of all borel subsets Q of \mathbf{X} . The states in \mathcal{S} are the probability measures S defined on \mathcal{Q} ; the observables in \mathcal{O} are the real valued borel functions A defined on \mathbf{X} ; and:

$$\Pi(S,A) = \bar{S} \cdot \bar{A}$$

To be clear, let us note that $\overline{S} = S$ and that, for any E in \mathcal{E} :

$$\bar{A}(E) = A^{-1}(E)$$
 and $\Pi(S, A)(E) = S(A^{-1}(E))$

so that:

$$\Pi(S,A) = A_*(S)$$

 52° The pure states in S are the probability measures of the form:

$$\Delta_x$$

where x is any point in **X**. By definition:

$$\Delta_x(Q) = \begin{cases} 0 & \text{if } x \notin Q \\ 1 & \text{if } x \in Q \end{cases} \qquad (Q \in \mathcal{Q})$$

Clearly, for any A in \mathcal{A} , the mean m of $\Pi(\Delta_x, A)$ is A(x):

$$m = \int_{\mathbf{R}} a \,\Pi(\Delta_x, A)(da) = \int_{\mathbf{R}} a \,\Delta_{A(x)}(da) = A(x)$$

and the standard deviation s is 0:

$$s^{2} = \int_{\mathbf{R}} (a-m)^{2} \Pi(\Delta_{x}, A)(da) = \int_{\mathbf{R}} (a-m)^{2} \Delta_{A(x)}(da) = 0$$

Quantum Physical Theories

 53° For a quantum physical theory:

$$\mathbf{T} = (\mathcal{S}, \mathcal{O}, \Pi)$$

we begin with a separable complex hilbert space **H**. For any ψ_1 and ψ_2 in **H**, we represent the inner product of ψ_1 and ψ_2 as follows:

$$\langle\!\langle \psi_1, \psi_2 \rangle\!\rangle$$

The logic Q of questions is the partial boolean ring composed of all self adjoint projection operators Q on **H**. Such operators are coextensive with closed linear subspaces \tilde{Q} of **H**:

$$Q = ran(Q)$$

The states in S are the normalized nonnegative self adjoint operators of trace class on **H**. One refers to such an operator as a *density operator* on **H**. By the Theorem of A. M. Gleason, density operators S are coextensive with normalized *measures* \bar{S} on Q:

$$\bar{S}(Q) = tr(SQ)$$

where Q is any question in Q. The observables in \mathcal{O} are the (not necessarily bounded but in any case densely defined) self adjoint operators A on \mathbf{H} . By the Theorem of M. H. Stone, such observables are coextensive with *projection*valued measures \bar{A} on \mathcal{E} :

$$\langle\!\langle A(\psi_1),\psi_2\rangle\!\rangle = \int_{\mathbf{R}} a\langle\!\langle \bar{A}(da)(\psi_1),\psi_2\rangle\!\rangle$$

where ψ_1 and ψ_2 are any vectors in **H** and where $\psi_1 \in dom(A)$. Finally:

$$\Pi(S,A) := \bar{S} \cdot \bar{A}$$

so that, for any E in \mathcal{E} :

$$\Pi(S,A)(E) = tr(S\overline{A}(E))$$

54° For each unit vector φ in **H**, one forms the self adjoint projection operator R_{φ} as follows:

$$R_{\varphi}(\psi) = \langle\!\langle \psi, \varphi \rangle\!\rangle \varphi$$

where ψ is any vector in **H**. Obviously:

$$ran(R_{\varphi}) = \mathbf{C}\varphi$$

so that $ran(R_{\varphi})$ is 1-dimensional. As noted, one can identify such operators with their ranges:

$$R_{\varphi} = ran(R_{\varphi})$$

Now one can regard R_{φ} either as a state or as a question:

$$S_{\varphi} = R_{\varphi} = Q_{\varphi}$$

Under the first view, on obtains precisely the pure states in S. Under the second view, one interprets Q_{φ} to be the question whether the physical system is in the pure state S_{φ} . Let us explain this interpretation. For any unit vectors φ_1 and φ_2 in **H**:

$$\Pi(S_{\varphi_1}, Q_{\varphi_2})(\{1\}) = tr(S_{\varphi_1}Q_{\varphi_2})$$
$$= \langle \langle (S_{\varphi_1}Q_{\varphi_2})(\varphi_2), \varphi_2 \rangle \rangle$$
$$= \langle \langle \langle \varphi_2, \varphi_1 \rangle \varphi_1, \varphi_2 \rangle \rangle$$
$$= |\langle \langle \varphi_1, \varphi_2 \rangle |^2$$

Of course, $\Pi(S_{\varphi_1}, Q_{\varphi_2})(\{1\})$ is the probability that preparation of the physical system in the pure state S_{φ_1} and "measurement" of the question Q_{φ_2} will yield the answer "yes." Clearly:

$$\begin{split} \Pi(S_{\varphi_1}, Q_{\varphi_2})(\{1\}) &= 1 \quad \text{iff} \quad |\langle\!\langle \varphi_1, \varphi_2 \rangle\!\rangle|^2 = 1 \\ &\text{iff} \quad (\exists z \in \mathbf{C})[|z = 1| \land (\varphi_2 = z\varphi_1)]) \\ &\text{iff} \quad S_{\varphi_1} = Q_{\varphi_2} \end{split}$$

These observations "justify" the foregoing interpretation of Q_{φ} . One refers to the numbers:

$$|\langle\!\langle \varphi_1, \varphi_2 \rangle\!\rangle|^2$$

as *transition probabilities*. Such numbers are the fundamental measurable quantities for a quantum theory.

55° For each S in S, one can introduce a countable family:

$$\varphi_1, \varphi_2, \varphi_3, \varphi_4, \ldots$$

of mutually orthogonal unit vectors in **H** and a corresponding family:

$$w_1, w_2, w_3, w_4, \ldots$$

of nonnegative real numbers such that:

$$\sum_{j} w_j = 1 \quad \text{and} \quad S = \sum_{j} w_j S_{\varphi_j}$$

We intend that the foregoing series converge strongly. For any A in \mathcal{O} and E in \mathcal{E} : $\Pi(S, A)(E) = tr(S\overline{A}(E))$

$$I(S, A)(E) = tr(SA(E))$$
$$= \sum_{j} w_{j} tr(S_{\varphi_{j}} \bar{A}(E))$$
$$= \sum_{j} w_{j} \langle\!\langle \bar{A}(E)(\varphi_{j}), \varphi_{j} \rangle\!\rangle$$

and:

$$\Pi(S,A)(E) = \sum_{j} w_{j} \Pi(S_{j},A)(E)$$

Consequently, as the notation suggests, ${\cal S}$ is a countable convex sum of pure states.

56° For each unit vector φ in **H**:

$$\varphi \in dom(A) \quad \text{iff} \quad \int_{\mathbf{R}} a^2 \langle\!\langle \bar{A}(da)(\varphi), \varphi \rangle\!\rangle < \infty$$

For the corresponding pure state S_{φ} , one can compute the mean m and the standard deviation s for $\Pi(S_{\varphi}, A)$ as follows:

$$m = \int_{\mathbf{R}} a \Pi(S_{\varphi}, A)(da)$$
$$= \int_{\mathbf{R}} a \langle\!\langle \bar{A}(da)(\varphi), \varphi \rangle\!\rangle$$
$$= \langle\!\langle A(\varphi), \varphi \rangle\!\rangle$$

and:

$$s^{2} = \int_{\mathbf{R}} (a-m)^{2} \Pi(S_{\varphi}, A)(da)$$
$$= \int_{\mathbf{R}} (a-m)^{2} \langle\!\langle \bar{A}(da)(\varphi), \varphi \rangle\!\rangle$$
$$= \langle\!\langle (A-mI)^{2}(\varphi), \varphi \rangle\!\rangle$$

where I is the identity operator on **H**. In general, $s \neq 0$. However, if φ is an eigenvector for A:

$$A(\varphi) = a\varphi$$

then m = a and s = 0.

The Uncertainty Principle

57° Let us describe a special feature of the quantum physical theory $(\mathcal{S}, \mathcal{O}, \Pi)$. Let φ be a unit vector in **H** and let A_1 and A_2 be self adjoint operators on **H** which meet the following condition:

$$\varphi \in dom(A_1) \cap dom(A_2) \cap dom(A_1A_2) \cap dom(A_2A_1)$$

Let m_1 and m_2 be the means for $\Pi(S_{\varphi}, A_1)$ and $\Pi(S_{\varphi}, A_2)$ and let \hat{A}_1 and \hat{A}_2 be the self adjoint operators on **H**, defined as follows:

$$\hat{A}_1 = A_1 - m_1 I, \quad \hat{A}_2 = A_2 - m_2 I$$

Let s_1 and s_2 be the standard deviations for $\Pi(S_{\varphi}, A_1)$ and $\Pi(S_{\varphi}, A_2)$. For each real number a:

$$\begin{split} 0 &\leq \langle\!\!\langle \left(\hat{A}_1 + a\frac{1}{i}\hat{A}_2\right)(\varphi), \left(\hat{A}_1 + a\frac{1}{i}\hat{A}_2\right)(\varphi) \,\rangle\!\!\rangle \\ &= \langle\!\!\langle \hat{A}_1^2(\varphi), \varphi \,\rangle\!\!\rangle + a\langle\!\!\langle \frac{1}{i}(\hat{A}_1\hat{A}_2 - \hat{A}_2\hat{A}_1)(\varphi), \varphi \,\rangle\!\!\rangle + a^2\langle\!\!\langle \hat{A}_2^2(\varphi), \varphi \,\rangle\!\!\rangle \\ &= s_1^2 + a\xi + a^2s_2^2 \end{split}$$

where:

$$\xi := \left\langle \left\langle \frac{1}{i} (\hat{A}_1 \hat{A}_2 - \hat{A}_2 \hat{A}_1)(\varphi), \varphi \right\rangle \right\rangle$$

which is a real number. It follows that:

$$\frac{1}{4}\xi^2 \le s_1^2 s_2^2$$

The relation just derived yields the Uncertainty Principle of Heisenberg. For instance, if:

$$\frac{1}{i}(\hat{A}_1\hat{A}_2 - \hat{A}_2\hat{A}_1)(\varphi) = \varphi$$

(so that $\xi = 1$) then:

$$\frac{1}{2} \le s_1 s_2$$

Hence, the statistics of measurement for $\Pi(S_{\varphi}, A_1)$ and $\Pi(S_{\varphi}, A_2)$ will show a striking property: the more accurate the empirical estimate of m_1 , the less accurate the empirical estimate of m_2 ; and conversely.

Von Neumann, Bell

58° Let \mathbf{T}' be a quantum physical theory. Can we design a classical physical theory \mathbf{T}'' and an injective homomorphism H carrying \mathbf{T}' to \mathbf{T}'' ?

Dynamics

 $59^\circ\,$ At this point, one might draw an analogy between our description of a physical theory:

$$\mathbf{T} = (\mathcal{S}, \mathcal{O}, \Pi)$$

and the composition of a play, for which there is stage and cast but no plot. To complete the description, we must now add to S, O, and Π the several features of *dynamics*.