NONSTANDARD MODELS

Thomas Wieting
Reed College, 2014

Filters
01° Let X be any set. By a filter on X, we mean a nonempty family \mathcal{F} of subsets of X which meets the following conditions:
(1) $\emptyset \notin \mathcal{F}$
(2) $F \in \mathcal{F}, G \in \mathcal{F} \Longrightarrow F \cap G \in \mathcal{F}$
(3) $F \in \mathcal{F}, F \subseteq H \Longrightarrow H \in \mathcal{F}$
where F, G, and H are any subsets of X.
02° It may happen that a nonempty family \mathcal{F}_{o} of subsets of X meets conditions (1) and (2) but (perhaps) not (3). In such a case, we introduce the family \mathcal{F} consisting of all subsets G of X such that there is some F in \mathcal{F} for which $F \subseteq G$. Obviously, \mathcal{F} is a filter on X, as it meets not only conditions (1) and (2) but also (3). We say that \mathcal{F}_{o} generates \mathcal{F}.
03° For instance, we may select a member ξ of X, then take \mathcal{F}_{o} to be the family consisting of the singleton $\{\xi\}$. In such a case, we refer to the filter generated by \mathcal{F}_{o} as the principal filter on X defined by ξ. We denote it by \mathcal{P}_{ξ}.
04° Let \mathcal{F} be a filter on X. Let A and B be subsets of X such that $A \cup B \in \mathcal{F}$. We contend that if $B \notin \mathcal{F}$ then there is a filter \mathcal{G} on X such that:

$$
\mathcal{F} \cup\{A\} \subseteq \mathcal{G}
$$

To prove the contention, we argue as follows. Let us form the family \mathcal{G}_{o} of subsets of X of the form $F \cap A$, where F runs through \mathcal{F}. Obviously, \mathcal{G}_{o} meets condition (2). Moreover, if there were some F in \mathcal{F} for which $F \cap A=\emptyset$ then $F \cap(A \cup B)=F \cap B$, so that B would be in \mathcal{F}, a contradiction. Consequently, \mathcal{G}_{o} meets condition (1). Now we need only take \mathcal{G} to be the filter generated by \mathcal{G}_{o}.

Maximal Filters

05° Let \mathbf{F} be the family of all filters on X. Let us supply \mathcal{F} with a partial ordering, as follows:

$$
\mathcal{F}^{\prime} \preceq \mathcal{F}^{\prime \prime} \quad \Longleftrightarrow \quad \mathcal{F}^{\prime} \subseteq \mathcal{F}^{\prime \prime}
$$

where \mathcal{F}^{\prime} and $\mathcal{F}^{\prime \prime}$ are any filters on X. With respect to the partial ordering on \mathbf{F} just defined, we plan to study the maximal filters. These are the filters \mathcal{U} on X such that, for any filter \mathcal{F} on X, if $\mathcal{U} \subseteq \mathcal{F}$ then $\mathcal{U}=\mathcal{F}$. Very often, one refers to such filters as ultrafilters.
06° Obviously, the principal filters on X are maximal with respect to the foregoing partial ordering. We inquire whether there are any others.
07° Let \mathcal{U} be an ultrafilter on X. With reference to article 04°, we find that, for any subsets A and B of X, if $A \cup B \in \mathcal{U}$ then $A \in \mathcal{U}$ or $B \in \mathcal{U}$. We infer that \mathcal{U} meets the partition condition, which is to say that, for any finite partition:

$$
A_{1}, A_{2}, \ldots, A_{n}
$$

of X there is precisely one index $j(1 \leq j \leq n)$ such that $A_{j} \in \mathcal{U}$.
08° In fact, the foregoing condition characterizes ultrafilters. To see that it is so, let us introduce a filter \mathcal{F} on X which meets the partition condition and let us suppose that \mathcal{F} is not maximal. Accordingly, we may introduce a filter \mathcal{G} on X and a subset A of X such that $\mathcal{F} \subseteq \mathcal{G}, A \notin \mathcal{F}$, and $A \in \mathcal{G}$. Now the subset A and its complement B in X form a finite partition of X while $A \notin \mathcal{F}$ and $B \notin \mathcal{F}$. Consequently, the supposition is untenable. Hence, \mathcal{F} is maximal.
09° By the foregoing discussion, we infer that, for any ultrafilter \mathcal{U} on X, if there is a finite subset F of X such that $F \in \mathcal{U}$ then \mathcal{U} is principal.

Existence of Maximal Filters

10° From this point forward, let us assume that X is infinite.
11° Let \mathcal{E} be the filter on X consisting of all subsets E for which the complement F of E in X is finite. In turn, let \mathbf{F}_{o} be the family of all filters \mathcal{F} on X such that $\mathcal{E} \subseteq \mathcal{F}$.

12• Show that \mathcal{E} is not maximal.
13° By a chain in \mathbf{F}_{o}, we mean a subfamily \mathbf{C} of \mathbf{F}_{o} such that, for any filters \mathcal{F}^{\prime} and $\mathcal{F}^{\prime \prime}$ in $\mathbf{C}, \mathcal{F}^{\prime} \preceq \mathcal{F}^{\prime \prime}$ or $\mathcal{F}^{\prime \prime} \preceq \mathcal{F}^{\prime}$. We may say that \mathbf{C} is linearly ordered. For such a family \mathbf{C}, we find that:

$$
\mathcal{G}=\bigcup \mathbf{C}
$$

is a filter in \mathbf{F}_{o} and \mathcal{G} is an upper bound for \mathbf{C}, in the sense that, for each filter \mathcal{F} in $\mathbf{C}, \mathcal{F} \subseteq \mathcal{G}$.
14° By the foregoing observation, we conclude that every chain in \mathbf{F}_{o} is bounded. Now the Lemma of Zorn implies that there exist filters \mathcal{U} in \mathbf{F}_{o} which are maximal. Obviously, such filters are maximal in \mathbf{F} as well. And they are not principal.

NonStandard Arithmetic
15° Let \mathbf{N} be the standard set of natural numbers, supplied as usual with the operations of addition and multiplication and the relation of order:

$$
k+\ell, \quad k \ell, \quad k<\ell
$$

where k and ℓ are any natural numbers. Of course, \mathbf{N} serves as the universe underlying the standard interpretation \mathbf{I} of the preamble Π_{a} for the predicate logic:

$$
\Lambda_{a}=\left(\mathcal{L}_{a}, \mathcal{A}_{a}\right)
$$

for Arithmetic. Under this interpretation, the conventional hypotheses \mathcal{H}_{a} are true. We plan to design many other such interpretations, using ultrafilters on N.
16° Let \mathcal{U} be an ultrafilter on \mathbf{N}. We presume that \mathcal{U} is not principal. Let \mathbf{M} be the family of all mappings carrying \mathbf{N} to \mathbf{N}. We supply \mathbf{M} with a relation, as follows:

$$
f \equiv g \quad \Longleftrightarrow \quad\{k \in \mathbf{N}: f(k)=g(k)\} \in \mathcal{U}
$$

where f and g are any mappings in \mathbf{M}. Clearly, the relation is reflexive and symmetric. We contend that it is transitive as well. To shown that it is so, we introduce mappings f, g, and h in \mathbf{M} for which $f \equiv g$ and $g \equiv h$ and we note that:

$$
\{k \in \mathbf{N}: f(k)=g(k)\} \cap\{k \in \mathbf{N}: g(k)=h(k)\} \subseteq\{k \in \mathbf{N}: f(k)=h(k)\}
$$

Hence, $f \equiv h$. We conclude that the relation is transitive, hence that it is an equivalence relation.
17° For convenience of expression, we introduce the following abbreviation:

$$
\{f=g\}=\{k \in \mathbf{N}: f(k)=g(k)\}
$$

In retrospect, we find that:

$$
f \equiv g \quad \Longleftrightarrow \quad\{f=g\} \in \mathcal{U}
$$

18° Let $\overline{\mathbf{N}}$ be the set of all equivalence classes in \mathbf{M} following the foregoing relation. For each f in \mathbf{M}, let $[f]$ denote the equivalence class containing f :

$$
\mathbf{M} \Longrightarrow \overline{\mathbf{N}}: \quad f \Longrightarrow[f]
$$

We declare $\overline{\mathbf{N}}$ to be the underlying universe for an interpretation $\overline{\mathbf{I}}$ of Π_{a} and, to that end, we define operations of addition and multiplication and a relation of order on $\overline{\mathbf{N}}$, as follows.
19° For the operations on $\overline{\mathbf{N}}$, we present the following expressions:

$$
[f]+[g]=[f+g], \quad[f][g]=[f g]
$$

where f and g are mappings in \mathbf{M}. To show that the suggested definitions of the operations are proper, let us introduce mappings f_{1} and f_{2} in $[f]$ and mappings g_{1} and g_{2} in $[g]$. We note that:

$$
\left\{f_{1}=f_{2}\right\} \cap\left\{g_{1}=g_{2}\right\} \subseteq\left\{f_{1}+g_{1}=f_{2}+g_{2}\right\}
$$

and:

$$
\left\{f_{1}=f_{2}\right\} \cap\left\{g_{1}=g_{2}\right\} \subseteq\left\{f_{1} g_{1}=f_{2} g_{2}\right\}
$$

We infer that:

$$
\left[f_{1}+g_{1}\right]=\left[f_{2}+g_{2}\right] \quad \text { and } \quad\left[f_{1} g_{2}\right]=\left[f_{2} g_{2}\right]
$$

Therefore, the operations are properly defined.
20° For the relation on $\overline{\mathbf{N}}$, we write:

$$
[f]<[g] \Longleftrightarrow\{k \in \mathbf{N}: f(k)<g(k)\} \in \mathcal{U}
$$

where f and g are any mappings in \mathbf{M}. To show that the suggested definition of the relation is proper, let us introduce mappings f_{1} and f_{2} in $[f]$ and mappings g_{1} and g_{2} in $[g]$. For convenience of expression, we introduce the following abbreviation:

$$
\{f<g\}=\{k \in \mathbf{N}: f(k)<g(k)\}
$$

We note that:

$$
\begin{aligned}
& \left\{f_{1}=f_{2}\right\} \cap\left\{g_{1}=g_{2}\right\} \cap\left\{f_{1}<g_{1}\right\} \subseteq\left\{f_{2}<g_{2}\right\} \\
& \left\{f_{1}=f_{2}\right\} \cap\left\{g_{1}=g_{2}\right\} \cap\left\{f_{2}<g_{2}\right\} \subseteq\left\{f_{1}<g_{1}\right\}
\end{aligned}
$$

We infer that:

$$
\left[f_{1}\right]<\left[g_{1}\right] \Longleftrightarrow\left[f_{2}\right]<\left[g_{2}\right]
$$

Therefore, the relation is properly defined.
21° At this point, the operations and the relation on $\overline{\mathbf{N}}$ are secure. We must show that hypotheses for Arithmetic are true.
22° Let us prepare the way by observing that the standard universe \mathbf{N} is reflected in the nonstandard universe $\overline{\mathbf{N}}$. We mean to say that there is a natural injective mapping ι carrying \mathbf{N} to $\overline{\mathbf{N}}$, which preserves the operations of addition and multiplication and the relation of order. It is defined as follows:

$$
\iota(\ell)=[\bar{\ell}]
$$

where ℓ is any natural number and where $\bar{\ell}$ is the mapping in \mathbf{M} which assigns to each natural number k the value ℓ. Obviously:

$$
\iota\left(\ell^{\prime}+\ell^{\prime \prime}\right)=\iota\left(\ell^{\prime}\right)+\iota\left(\ell^{\prime \prime}\right), \quad \iota\left(\ell^{\prime} \ell^{\prime \prime}\right)=\iota\left(\ell^{\prime}\right) \iota\left(\ell^{\prime \prime}\right), \ell^{\prime}<\ell^{\prime \prime} \Longrightarrow \iota\left(\ell^{\prime}\right)<\iota\left(\ell^{\prime \prime}\right)
$$

where ℓ^{\prime} and $\ell^{\prime \prime}$ are any natural numbers.

Hypotheses for Arithmetic

23° The hypotheses \mathcal{H}_{a} stand as follows:

$$
\begin{aligned}
& \forall((\zeta+\eta)\equiv(\eta+\zeta)) \\
& \forall((\zeta \times \eta)\equiv(\eta \times \zeta)) \\
& \forall(((\zeta+\eta)+\theta)\equiv(\zeta+(\eta+\theta))) \\
& \forall(((\zeta \times \eta) \times \theta)\equiv(\zeta \times(\eta \times \theta))) \\
& \forall((\zeta \times(\eta+\theta))\equiv((\zeta \times \eta)+(\zeta \times \theta))) \\
& \forall((\zeta+\overline{0})\equiv \zeta) \\
& \forall((\zeta \times \overline{1})\equiv \zeta) \\
& \forall(((\zeta+\theta)\equiv(\eta+\theta)) \longrightarrow(\zeta \equiv \eta)) \\
& \forall(((\zeta \times \eta) \equiv \overline{0})\longrightarrow((\zeta \equiv \overline{0}) \vee(\eta \equiv \overline{0}))) \\
& \forall(\zeta \nless \zeta) \\
& \forall(\zeta<\eta) \wedge(\eta<\theta)\longrightarrow \zeta<\theta) \\
& \forall(\zeta \not \equiv \eta\longrightarrow(\zeta<\eta) \vee(\eta<\zeta)) \\
& \forall((\zeta<\eta)\longrightarrow(\zeta+\theta)<(\eta+\theta)) \\
& \forall((\zeta<\eta) \wedge(\overline{0}<\theta)\longrightarrow(\zeta \times \theta)<(\eta \times \theta))
\end{aligned}
$$

For now, we have set aside the hypothesis of Mathematical Induction.
24°......

Mathematical Induction

25° Now let us entertain the hypothesis of Mathematical Induction:

$$
\forall((\alpha(\overline{0} \mid \zeta) \wedge((\forall \zeta)(\alpha \longrightarrow \alpha((\zeta+\overline{1}) \mid \zeta)))) \longrightarrow((\forall \zeta) \alpha))
$$

26°......

The Theorem of Loś
27° Let us consider the relation between semantically definable subsets of \mathbf{N}^{q} and semantically definable subsets of $\overline{\mathbf{N}}^{q}$.
28° \qquad

NonStandard Ordered Fields
29°......
30° \qquad
NonStandard Set Theory
31°......
32°......

NonStandard Models in General
33°.....
34°.....

