NONSTANDARD MODELS

Thomas Wieting Reed College, 2014

Filters

01° Let X be any set. By a *filter* on X, we mean a nonempty family \mathcal{F} of subsets of X which meets the following conditions:

(1) $\emptyset \notin \mathcal{F}$ (2) $F \in \mathcal{F}, \ G \in \mathcal{F} \Longrightarrow F \cap G \in \mathcal{F}$ (3) $F \in \mathcal{F}, \ F \subseteq H \Longrightarrow H \in \mathcal{F}$

where F, G, and H are any subsets of X.

 02° It may happen that a nonempty family \mathcal{F}_o of subsets of X meets conditions (1) and (2) but (perhaps) not (3). In such a case, we introduce the family \mathcal{F} consisting of all subsets G of X such that there is some F in \mathcal{F} for which $F \subseteq G$. Obviously, \mathcal{F} is a filter on X, as it meets not only conditions (1) and (2) but also (3). We say that \mathcal{F}_o generates \mathcal{F} .

 03° For instance, we may select a member ξ of X, then take \mathcal{F}_o to be the family consisting of the singleton $\{\xi\}$. In such a case, we refer to the filter generated by \mathcal{F}_o as the *principal* filter on X defined by ξ . We denote it by \mathcal{P}_{ξ} .

04° Let \mathcal{F} be a filter on X. Let A and B be subsets of X such that $A \cup B \in \mathcal{F}$. We contend that if $B \notin \mathcal{F}$ then there is a filter \mathcal{G} on X such that:

$$\mathcal{F} \cup \{A\} \subseteq \mathcal{G}$$

To prove the contention, we argue as follows. Let us form the family \mathcal{G}_o of subsets of X of the form $F \cap A$, where F runs through \mathcal{F} . Obviously, \mathcal{G}_o meets condition (2). Moreover, if there were some F in \mathcal{F} for which $F \cap A = \emptyset$ then $F \cap (A \cup B) = F \cap B$, so that B would be in \mathcal{F} , a contradiction. Consequently, \mathcal{G}_o meets condition (1). Now we need only take \mathcal{G} to be the filter generated by \mathcal{G}_o .

Maximal Filters

 05° Let **F** be the family of all filters on X. Let us supply \mathcal{F} with a partial ordering, as follows:

$$\mathcal{F}' \preceq \mathcal{F}'' \quad \Longleftrightarrow \quad \mathcal{F}' \subseteq \mathcal{F}''$$

where \mathcal{F}' and \mathcal{F}'' are any filters on X. With respect to the partial ordering on **F** just defined, we plan to study the *maximal* filters. These are the filters \mathcal{U} on X such that, for any filter \mathcal{F} on X, if $\mathcal{U} \subseteq \mathcal{F}$ then $\mathcal{U} = \mathcal{F}$. Very often, one refers to such filters as *ultrafilters*.

 06° Obviously, the principal filters on X are maximal with respect to the foregoing partial ordering. We inquire whether there are any others.

 07° Let \mathcal{U} be an ultrafilter on X. With reference to article 04° , we find that, for any subsets A and B of X, if $A \cup B \in \mathcal{U}$ then $A \in \mathcal{U}$ or $B \in \mathcal{U}$. We infer that \mathcal{U} meets the *partition* condition, which is to say that, for any finite partition:

$$A_1, A_2, \ldots, A_n$$

of X there is precisely one index $j \ (1 \le j \le n)$ such that $A_j \in \mathcal{U}$.

 08° In fact, the foregoing condition characterizes ultrafilters. To see that it is so, let us introduce a filter \mathcal{F} on X which meets the partition condition and let us suppose that \mathcal{F} is not maximal. Accordingly, we may introduce a filter \mathcal{G} on X and a subset A of X such that $\mathcal{F} \subseteq \mathcal{G}, A \notin \mathcal{F}$, and $A \in \mathcal{G}$. Now the subset A and its complement B in X form a finite partition of X while $A \notin \mathcal{F}$ and $B \notin \mathcal{F}$. Consequently, the supposition is untenable. Hence, \mathcal{F} is maximal.

09° By the foregoing discussion, we infer that, for any ultrafilter \mathcal{U} on X, if there is a finite subset F of X such that $F \in \mathcal{U}$ then \mathcal{U} is principal.

Existence of Maximal Filters

 10° From this point forward, let us assume that X is infinite.

11° Let \mathcal{E} be the filter on X consisting of all subsets E for which the complement F of E in X is finite. In turn, let \mathbf{F}_o be the family of all filters \mathcal{F} on X such that $\mathcal{E} \subseteq \mathcal{F}$.

12[•] Show that \mathcal{E} is not maximal.

13° By a *chain* in \mathbf{F}_o , we mean a subfamily \mathbf{C} of \mathbf{F}_o such that, for any filters \mathcal{F}' and \mathcal{F}'' in $\mathbf{C}, \mathcal{F}' \preceq \mathcal{F}''$ or $\mathcal{F}'' \preceq \mathcal{F}'$. We may say that \mathbf{C} is *linearly* ordered. For such a family \mathbf{C} , we find that:

$$\mathcal{G} = \bigcup \mathbf{C}$$

is a filter in \mathbf{F}_o and \mathcal{G} is an upper bound for \mathbf{C} , in the sense that, for each filter \mathcal{F} in \mathbf{C} , $\mathcal{F} \subseteq \mathcal{G}$.

14° By the foregoing observation, we conclude that every chain in \mathbf{F}_o is bounded. Now the Lemma of Zorn implies that there exist filters \mathcal{U} in \mathbf{F}_o which are maximal. Obviously, such filters are maximal in \mathbf{F} as well. And they are not principal.

NonStandard Arithmetic

 15° Let **N** be the standard set of natural numbers, supplied as usual with the operations of addition and multiplication and the relation of order:

$$k + \ell, k \ell, k < \ell$$

where k and ℓ are any natural numbers. Of course, **N** serves as the universe underlying the standard interpretation **I** of the preamble Π_a for the predicate logic:

$$\Lambda_a = (\mathcal{L}_a, \mathcal{A}_a)$$

for Arithmetic. Under this interpretation, the conventional hypotheses \mathcal{H}_a are true. We plan to design many other such interpretations, using ultrafilters on **N**.

16° Let \mathcal{U} be an ultrafilter on **N**. We presume that \mathcal{U} is not principal. Let **M** be the family of all mappings carrying **N** to **N**. We supply **M** with a relation, as follows:

$$f \equiv g \iff \{k \in \mathbf{N} : f(k) = g(k)\} \in \mathcal{U}$$

where f and g are any mappings in **M**. Clearly, the relation is reflexive and symmetric. We contend that it is transitive as well. To shown that it is so, we introduce mappings f, g, and h in **M** for which $f \equiv g$ and $g \equiv h$ and we note that:

$$\{k \in \mathbf{N} : f(k) = g(k)\} \cap \{k \in \mathbf{N} : g(k) = h(k)\} \subseteq \{k \in \mathbf{N} : f(k) = h(k)\}$$

Hence, $f \equiv h$. We conclude that the relation is transitive, hence that it is an equivalence relation.

 17° For convenience of expression, we introduce the following abbreviation:

$$\{f = g\} = \{k \in \mathbf{N} : f(k) = g(k)\}\$$

In retrospect, we find that:

$$f \equiv g \iff \{f = g\} \in \mathcal{U}$$

18° Let $\overline{\mathbf{N}}$ be the set of all equivalence classes in \mathbf{M} following the foregoing relation. For each f in \mathbf{M} , let [f] denote the equivalence class containing f:

$$\mathbf{M} \implies \bar{\mathbf{N}} : f \implies [f]$$

We declare $\bar{\mathbf{N}}$ to be the underlying universe for an interpretation $\bar{\mathbf{I}}$ of Π_a and, to that end, we define operations of addition and multiplication and a relation of order on $\bar{\mathbf{N}}$, as follows.

19° For the operations on $\bar{\mathbf{N}}$, we present the following expressions:

$$[f] + [g] = [f + g], \quad [f] [g] = [fg]$$

where f and g are mappings in **M**. To show that the suggested definitions of the operations are proper, let us introduce mappings f_1 and f_2 in [f] and mappings g_1 and g_2 in [g]. We note that:

$$\{f_1 = f_2\} \cap \{g_1 = g_2\} \subseteq \{f_1 + g_1 = f_2 + g_2\}$$

and:

$$\{f_1 = f_2\} \cap \{g_1 = g_2\} \subseteq \{f_1 \, g_1 = f_2 \, g_2\}$$

We infer that:

$$[f_1 + g_1] = [f_2 + g_2]$$
 and $[f_1 g_2] = [f_2 g_2]$

Therefore, the operations are properly defined.

 20° For the relation on $\bar{\mathbf{N}}$, we write:

$$[f] < [g] \iff \{k \in \mathbf{N} : f(k) < g(k)\} \in \mathcal{U}$$

where f and g are any mappings in **M**. To show that the suggested definition of the relation is proper, let us introduce mappings f_1 and f_2 in [f] and mappings g_1 and g_2 in [g]. For convenience of expression, we introduce the following abbreviation:

$$\{f < g\} = \{k \in \mathbf{N} : f(k) < g(k)\}$$

We note that:

$$\{f_1 = f_2\} \cap \{g_1 = g_2\} \cap \{f_1 < g_1\} \subseteq \{f_2 < g_2\} \\ \{f_1 = f_2\} \cap \{g_1 = g_2\} \cap \{f_2 < g_2\} \subseteq \{f_1 < g_1\}$$

We infer that:

$$[f_1] < [g_1] \iff [f_2] < [g_2]$$

Therefore, the relation is properly defined.

21° At this point, the operations and the relation on $\overline{\mathbf{N}}$ are secure. We must show that hypotheses for Arithmetic are true.

22° Let us prepare the way by observing that the standard universe \mathbf{N} is reflected in the nonstandard universe $\mathbf{\bar{N}}$. We mean to say that there is a natural injective mapping ι carrying \mathbf{N} to $\mathbf{\bar{N}}$, which preserves the operations of addition and multiplication and the relation of order. It is defined as follows:

$$\iota(\ell) = [\bar{\ell}]$$

where ℓ is any natural number and where $\overline{\ell}$ is the mapping in **M** which assigns to each natural number k the value ℓ . Obviously:

$$\iota(\ell'+\ell'')=\iota(\ell')+\iota(\ell''),\ \iota(\ell'\ell'')=\iota(\ell')\iota(\ell''),\ \ell'<\ell''\implies \iota(\ell')<\iota(\ell'')$$

where ℓ' and ℓ'' are any natural numbers.

Hypotheses for Arithmetic

 23° The hypotheses \mathcal{H}_a stand as follows:

$$\forall ((\zeta + \eta) \equiv (\eta + \zeta)) \forall ((\zeta \times \eta) \equiv (\eta \times \zeta)) \forall (((\zeta + \eta) + \theta) \equiv (\zeta + (\eta + \theta))) \forall (((\zeta \times \eta) \times \theta) \equiv (\zeta \times (\eta \times \theta))) \forall (((\zeta \times (\eta + \theta)) \equiv ((\zeta \times \eta) + (\zeta \times \theta))) \forall (((\zeta + \bar{0}) \equiv \zeta) \forall (((\zeta + \bar{0}) \equiv \zeta) \forall (((\zeta + \theta) \equiv (\eta + \theta)) \longrightarrow (\zeta \equiv \eta)) \forall (((\zeta \times \eta) \equiv \bar{0}) \longrightarrow ((\zeta \equiv \bar{0}) \lor (\eta \equiv \bar{0}))) \forall (((\zeta < \eta) \wedge (\eta < \theta) \longrightarrow \zeta < \theta)$$

$$\forall (\zeta \neq \eta \longrightarrow (\zeta < \eta) \lor (\eta < \zeta))$$
$$\forall ((\zeta < \eta) \longrightarrow (\zeta + \theta) < (\eta + \theta))$$

$$\forall \left(\left(\zeta < \eta \right) \land \left(\bar{0} < \theta \right) \longrightarrow \left(\zeta \times \theta \right) < \left(\eta \times \theta \right) \right)$$

For now, we have set aside the hypothesis of Mathematical Induction.

 24°

Mathematical Induction

 $25^\circ~$ Now let us entertain the hypothesis of Mathematical Induction:

$$\forall \left((\alpha(\bar{0}|\zeta) \land ((\forall \zeta)(\alpha \longrightarrow \alpha((\zeta + \bar{1})|\zeta))) \longrightarrow ((\forall \zeta)\alpha) \right)$$

 26°

The Theorem of Loś

27° Let us consider the relation between semantically definable subsets of \mathbf{N}^q and semantically definable subsets of $\bar{\mathbf{N}}^q$.

 28°

NonStandard Ordered Fields

29°

 30°

NonStandard Set Theory

 31°

32°

NonStandard Models in General

 33°

 34°