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Abstract. In this paper, we use a geometric viewpoint to prove several of the
fundamental theorems on the convergence of Markov chains. In particular, we

determine the long-term behavior of Markov chains geometrically both when

they are irreducible and aperiodic and when they are not. By viewing the
transition matrix of a Markov chain as a linear transformation from the stan-

dard simplex to itself, we simplify the traditional, matrix-based descriptions
and proofs of the long-term behavior of Markov chains.

In this paper, we prove several of the fundamental theorems on the convergence
of Markov chains from a geometric point of view. While these theorems are well
known and understood, this point of view seems not to be. Most of the key ideas in
this paper are contained in Pullman’s 1965 article The Geometry of Markov Chains
[1], but that article seems not to be widely known or cited, and it has some errors
and omissions. Most of them are relatively minor, but some of them occur in key
parts of the exposition, which detracts from the article’s readability. Also, some of
Pullman’s original arguments can be simplified and extended.

Our contention is that the statements and proofs of these standard theorems
on the convergence of Markov chains can be made considerably more accessible by
reframing them in geometric terms. We hope that this paper will serve to clarify,
elaborate on, extend, and make more widely known the geometric point of view of
Markov chain convergence laid out by Pullman.

Most of the results that we use in this paper are not standard, but in a few
cases we include small standard theorems from areas outside of probability theory
to keep this paper as self-contained as possible.

1. The main results in traditional terminology

To describe the results that we will prove in this paper, we first recall some
standard terminology. Suppose that we have a Markov chain with states e1, . . . , en

and an n × n transition matrix T whose (i, j)-th entry gives the probability of
transitioning from ej to ei.

1 As the Markov chain transitions from state to state,
we refer to each step in which it is in a state as a stage, starting with Stage 0.

Definition 1. A convex combination is a linear combination whose coefficients
are nonnegative and sum to 1. A distribution is a convex combination of states. A
Markov chain’s distribution in Stage 0 is its initial distribution. If a distribution
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involves only a subset of states (the coefficients of the other states being 0), we say
that the distribution is within those states.

We usually interpret a distribution of states as a probability distribution, in the
sense that the coefficient of each state gives its probability.

In order to describe the main results, we need some more terminology from
Markov chain theory as well.

Definition 2. A state ei leads to a state ej, written ei → ej, if there is a nonzero
transition probability from ei to ej in some positive number of stages. Two states
ei and ej communicate if ei → ej and ej → ei. A state ei is ergodic if it has
the property that if ei → ej, then ej → ei. A state is transient if it is not ergodic.
A Markov chain is irreducible if each state communicates with all the states.

Directly from this definition, we can check that communicating is an equivalence
relation among ergodic states, which means that it divides the ergodic states into
equivalence classes.

Definition 3. Among the ergodic states, the equivalence classes of communication
are called ergodic classes.

Ergodic classes are sometimes referred to in the literature as a communication
classes.

One of the main theorems that we will prove in this paper is the following.

Theorem 1. For any initial distribution x and any transient state ei:

lim
k→∞

Prob(ei in Stage k | initial distribution x) = 0.

In other words, transient states are aptly named. They “die out” in the long
run, in the sense that the probability of being in one approaches 0 as the number
of stages that have been run tends to infinity.

What happens to ergodic states in the long run is more difficult to describe
without using geometric terminology, but before we prove the main results about
this geometrically, we at least state them here in more traditional terms. For this,
the following definition will be useful.

Definition 4. A positive integer q is a return time for a state ei if there is a
nonzero probability of being in state ei in q stages given that the current state is
ei. The period of a state ei is the greatest common divisor of its return times. If
ei has no return times, then its period is infinity. A Markov chain is aperiodic if
the period of each of its states is 1.

We will prove the following theorem about the periods of ergodic states.

Theorem 2. If ei is ergodic, then it has a finite period and all states in its ergodic
class have the same period.

We will also prove the following theorem describing the long-term behavior of
ergodic states.

Theorem 3. Each ergodic class whose states have period r can be divided into r
ergodic subclasses S1, S2, . . . , Sr with the property that if the Markov chain’s dis-
tribution in Stage k is within Sj, then the Markov chain’s distribution in Stage k + 1
is within Sj+1 (with the convention that when j = r this index is 1 instead of r+1).
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Also, if x is an initial distribution within Sj, then

lim
k→∞

(distribution in Stage kr given initial distribution x)

exists, is within Sj, and is independent of the initial distribution within Sj.

That is, transitioning the Markov chain cycles through the ergodic subclasses
repeatedly, so that the distribution will be within any given ergodic subclass every
r stages. And no matter what the initial distribution within an ergodic subclass is,
the sequence of distributions in multiples of r stages converges to the same limiting
distribution within that ergodic subclass.

The terminology ergodic subclass is not standard, but the author is not aware of
any standard terminology to replace it with.

One more term is useful to describe the results that we will prove.

Definition 5. A distribution v such that Tv = v is called a stationary distri-
bution.

With this, we can now state the other two main results that we will prove. In
the statement of this theorem, recall that T is the transition matrix of the Markov
chain.

Theorem 4. If a Markov chain is irreducible and aperiodic, then it has a unique
stationary distribution v. Furthermore, for any initial distribution x:

lim
k→∞

T kx = v.

Theorem 5. If T k has all nonzero coefficients for some positive integer k, then it
has a unique stationary distribution v. Also, for any initial distribution x:

lim
k→∞

T kx = v.

The paper’s main results are awkward even to state without using geometric
language, but we have done so here so that the reader can connect the geometric
point of view that we will use with the more common terminology. We now begin
to develop this geometric view.

2. A geometric approach

In brief, our approach to restating and proving the main results is to replace a
Markov chain’s matrix T of transition probabilities with the linear transformation
T : Rn → Rn that it represents and to recognize the set of distributions in this
context as the standard (n − 1)-simplex ∆ ⊂ Rn. Roughly speaking, the question

then becomes: what does T k(∆) look like as k → ∞, and how does T act on the
“limit” of these sets? We now elaborate on this.

Suppose that we have a Markov chain whose states are e1, . . . , en. Let T be the
n × n matrix whose i, j-th entry is the probability that the chain will transition
from ej to ei. Accordingly, the entries of T are all nonnegative, and the entries in
each column sum to 1. These two conditions mean that T is a (column)-stochastic
matrix.

As mentioned in an earlier footnote, the matrix T is the transpose of what
is traditionally called the transition matrix of the Markov chain. But analyzing
the properties of T acting on the left is equivalent to analyzing the properties of
the traditional transition matrix acting on the right, with only minor changes of
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language. Rather than having to make these minor changes of language many
times throughout this paper, we will simply work with T instead of the traditional
transition matrix.

If we think of the states e1, . . . , en as the standard basis vectors in Rn, then
distributions are convex combinations of these basis vectors.2 This leads us to the
following definitions.

Definition 6. The convex hull of a non-empty set of points x1, . . . ,xk ∈ Rn is
the set of convex combinations of the points in the set:

Hull(x1, . . . ,xk) = {α1x1 + · · ·+ αkxk | α1, . . . , αk ≥ 0 and

k∑
i=1

αi = 1}.

A set is convex if it contains the convex hulls of all its nonempty subsets. The
standard (n − 1)-simplex ∆ is the convex hull of the standard basis vectors
e1, . . . , en ∈ Rn. An element of ∆ is called a distribution.

Notice that this definition of a distribution coincides with the traditional defini-
tion given in the previous section. The language here is simply more geometric.

Now if a Markov chain has a distribution x ∈ ∆ in Stage k, then the Markov
chain has distribution Tx in Stage k + 1. The property that the matrix T has
nonnegative entries and columns that sum to 1 is equivalent to the property that
T (∆) ⊂ ∆. This may seem obvious, but it is worth emphasizing because it is the
key to switching from a matrix point of view to a geometric one.

In this paper, we will turn our attention from the matrix T to the linear trans-
formation T : Rn → Rn that it represents with respect to the standard basis:

T (x) = Tx.

It is immediate that T (∆) ⊂ ∆ for the linear transformation defined this way. This
leads us to the following defintion.

Definition 7. A linear transformation T : Rn → Rn is stochastic if

T (∆) ⊂ ∆.

Note that by restricting the domain of T to ∆, we can think of a stochastic linear
transformation as a linear operator on ∆, which would be an equivalent definition.

So far, we have shifted from the traditional perspective on Markov chains to
a more geometric point of view. We would now like to understand the effect of
applying a stochastic linear transformation to distributions repeatedly ad infinitum.

For this, we need to understand some things about convex polytopes.

3. Convex polytopes

We first give a basic background on convex polytopes, including the necessary
definitions and terminology. We will then prove some results about convex poly-
topes that we will use later in describing the convergence of Markov chains.

2We could instead work in an abstract vector space whose vectors are defined to be linear

combinations of the states e1, . . . , en, but this doesn’t add anything to the picture, so we use the
obvious isomorphism of this abstract vector space with Rn to allow us to work directly in Rn.
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3.1. Basic background. Some additional terminology will help to describe certain
types of sets of distributions.

Definition 8. A set P ⊂ Rn is called a (bounded) convex polytope if it is the
convex hull of a nonempty finite set of points. A point v ∈ P is called a vertex
if it is not in the convex hull of any nonempty subset of P that doesn’t include v.
We denote the set of vertices of P by V(P ). A convex polytope Q ⊂ P is called a
convex subpolytope if V(Q) ⊂ V(P ).

From these definitions, it follows readily that any convex polytope is the convex
hull of its vertices.

Note that for any set P ⊂ Rn and any linear transformation T : Rn → Rn,

Hull(T (P )) = T (Hull(P )).

In particular, this means that if P is a convex polytope, then so is T (P ).
Also note that V(∆) is precisely the set of states for the Markov chain, so we

can now give a precise geometric definition of a state.

Definition 9. A state is an element of V(∆) = {e1, . . . , en}.

This is equivalent to the traditional definition of a state but is more geometric.
To talk about relationships among distributions, the following terminology is

also useful.

Definition 10. A finite set of points in Rn is affinely independent if the only
linear combination of them with coefficients summing to 0 that equals the zero vector
is the trivial linear combination (with all coefficients equal to 0). A convex polytope
is called a simplex if its vertices form an affinely independent set.

Note that the standard (n− 1)-simplex is appropriately named, since it actually
is a simplex by this definition.

A particularly important concept for our investigations here is the following.
While this definition holds in arbitrary polytopes, we will use it in ∆ throughout
this paper, so we restrict our definition to such cases.

Definition 11. The carrier of a subset of ∆ is the smallest convex subpolytope of
∆ containing that subset. We denote the carrier of a single-point set {x} ⊂ ∆ by
C(x) and, more generally, the carrier of a set P by C(P ).

The main reason that carriers are so important here has to do with their in-
terpretation in terms of Markov chains. To understand this, first note that the
vertices of carriers are states, being vertices of ∆. More specifically, if P ⊂ ∆, then
V(C(P )) are the possible states for the Markov chain when its distribution is in P .
Similarly, if the current distribution of a Markov chain is x, then the Markov chain
has nonzero probability of being in any state in V(C(x)), and it has probability 0
of being in any state not in V(C(x)). In other words:

x =
∑

k | ek∈V(C(x))

αkek with all αk > 0 and
∑
k

αk = 1.

Note that each αk in the above expression is nonzero. This means that x is in the
interior of C(x) unless x is itself a state (which would mean that C(x) = {x}).
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In ∆, we can simplify the question of whether or not a state ei is in C(P )
by exploiting the fact that the vertices e1, . . . , en of ∆ form an orthonormal set.
Because of this, if we write a point x ∈ ∆ relative to these vertices as

x =

n∑
k=1

αkek,

then if the current distribution of a Markov chain is x, the probabilities of the
various states are given by:

Prob(ek) = αk = x · ek

for k = 1, 2, . . . , n.
For P ⊂ ∆, this means that ei ∈ C(P ) if and only if there exists a point p ∈ P

such that p · ei 6= 0. Although the orthonormality of the states isn’t necessary for
our results since there are other ways to express αk, we will use this approach at
times to simplify the exposition, as in the proof of the next proposition.

3.2. Some useful propositions and lemmas. We now have all of the necessary
concepts from the theory of convex polytopes, so we now proceed to prove some
propositions and lemmas that will be useful in proving the main results about
Markov chains.

Proposition 1. Let P ⊂ ∆ be a convex polytope (but not necessarily a convex
subpolytope) with vertices V(P ) = {v1, . . . ,vm}. Then

V(C(P )) =

m⋃
k=1

V(C(vk)).

Proof. Since carriers are subpolytopes, all of the vertices in the above equation are
states, so we can write them as ei for some i.

We claim that
⋃m

k=1 V(C(vk)) ⊂ V(C(P )). For this, suppose that

ei ∈
m⋃

k=1

V(C(vk)),

which means that ei ∈ C(vj) for some j. Since vj ∈ P , then C(vj) ⊂ C(P ), so
ei ∈ C(P ), and being a vertex of ∆, it must also be a vertex of the subpolytope
C(P ). This implies that ei ∈ V(C(P )), which proves the claim.

We also claim that V(C(P )) ⊂
⋃m

k=1 V(C(vk)). To show this, suppose that
ei ∈ V(C(P )) ⊂ C(P ). By the discussion preceding this proposition, this means
that there exists a point p ∈ P such that p · ei 6= 0. Since P is a convex polytope,
it is the convex hull of its vertices, so

p =

m∑
k=1

βkvk

for some β1, . . . , βm ∈ R. Since p · ei 6= 0, then
m∑

k=1

βkvk · ei 6= 0,

which means that vj ·ei 6= 0 for some j, so again by the above discussion ei ∈ C(vj).
Since ei is a vertex of ∆, it must also be a vertex of the subpolytope C(vj). So
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ei ∈ V(C(vj)) for some j, which means that ei ⊂
⋃m

k=1 V(C(vk)), which proves the
second claim and completes the proof of the proposition. �

One of our tasks will be to show that a particular convex polytope is a simplex.
For this, the following lemma will be useful.

Lemma 1. Let P ⊂ ∆ be a convex polytope (but not necessarily a subpolytope)
with vertices

V(P ) = {v1, . . . ,vm}.
If C(vi) ∩ C(vj) = ∅ whenever i 6= j, then P is a simplex.

Proof. Consider an affine combination of the vertices that equals the zero vector:

n∑
j=1

αjvj = 0, where

n∑
j=1

αj = 0.

From each carrier C(vj), choose a single state eij ∈ C(vj). Then for each k =
1, . . . ,m, taking the dot product of both sides of the above equation with eik gives:

n∑
j=1

αjvj · eik = 0.

Since the states e1, . . . , en form an orthogonal set, then points in disjoint carriers
are orthogonal. By assumption the carriers of distinct vertices are disjoint here, so
since eik ∈ C(vk), then vj · eik equals 0 when j 6= k and is nonzero when j = k.
This means that

αkvk · eik = 0,

so αk = 0. This holds for all k = 1, . . . ,m, so the vertices of P are affinely
independent, so P is a simplex. �

We will have repeated occasion to use the following lemma in our geometric
investigations.

Lemma 2. Let T be a stochastic linear transformation. Then for any subset P ⊂
∆,

T (C(P )) ⊂ C(T (P )).

Proof. We claim that if ei ∈ C(P ), then T (ei) ∈ C(T (P )). To prove this, suppose
that ei ∈ C(P ), which means that there exists a point p ∈ P , such that

p =

n∑
j=1

pjej ∈ P with pi > 0.

Now for any ek 6∈ C(T (P )), we have T (p) · ek = 0, since T (p) ∈ T (P ). But this
means that

0 = T (p) · ek =

n∑
j=1

pjT (ej) · ek.

Since T is stochastic, then T (ej) · ek ≥ 0 for all j = 1, . . . , n. Since pi > 0 also, the
fact that this sum equals 0 tells us that T (ei) · ek = 0, so ek 6∈ C(T (ei)).

This means that if we expand T (ei) relative to the states e1, . . . , en, the only
possibly nonzero coefficients are of states that are in C(T (P )). By the definition of
the carrier, this proves that claim that T (ei) ⊂ C(T (P )).
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To complete the proof of the lemma, suppose that the vertices of C(P ) are
ej1 , . . . , ejm . Then

T (C(P )) = T (Hull(ej1 , . . . , ejm)) = Hull(T (ej1), . . . ,T (ejm)).

By the above claim, T (ej1), . . . ,T (ejm) ∈ C(T (P )). But C(T (P )) is convex, so

Hull(T (ej1), . . . ,T (ejm)) ⊂ C(T (P )),

which proves the lemma. �
Some results about nested sequences of convex polytopes will be useful. For any

nested sequence of convex polytopes P0 ⊃ P1 ⊃ P2 ⊃ . . . , we use the standard
notation that

⋂∞
k=0 Pk is the set of all points that are in Pk for all k ∈ N. (We use

N in this paper to denote the set of nonnegative integers and Z+ to denote the set
of positive integers.)

Lemma 3. Let P0, P1, P2, . . . be convex polytopes with P0 ⊃ P1 ⊃ P2 ⊃ . . . , and
let p0,p1,p2, . . . be a sequence with pk ∈ Pk for all k ∈ N. If {pk1

,pk2
,pk3

, . . .} is
a subsequence that converges to p, then

p ∈
∞⋂
k=0

Pk.

Proof. Since each Pk is a convex polytope, it is compact. The intersection of
compact sets is compact and so contains all its limit points. �

Corollary 1. Let P0, P1, P2, . . . be convex polytopes with P0 ⊃ P1 ⊃ P2 ⊃ . . . .
Then

⋂∞
k=0 Pk is nonempty.

Proof. For each k ∈ N, choose a point pk ∈ Pk. Since each Pk is compact, then so
is
⋂∞

k=0 Pk, which means that the sequence {p0,p1,p2, . . .} contains a convergent
subsequence. By Lemma 3, the limit of this subsequence is in

⋂∞
k=0 Pk. �

Lemma 4. Let P0 be a convex polytope, and let P0, P1, P2, . . . be convex polytopes
with P0 ⊃ P1 ⊃ P2 ⊃ . . . . Also let

P =

∞⋂
k=0

Pk.

Suppose that U is an open set containing P . Then there exists a k0 ∈ N such that
Pk ⊂ U for all k ≥ k0.

Proof. We prove this by contradiction. Suppose that for every k, there exists a point
pk ∈ Pk that is not in U . Since {p0,p1,p2, . . . } ⊂ P0 and P0 is compact, then this
sequence must have a convergent subsequence. Also, this sequence (including the
convergent subsequence) is contained in the complement of U , which is closed. So
the limit of the convergent subsequence must be in the complement of U . However,
by Lemma 3, this subsequence converges to a point in P , which is a contradiction
because P ⊂ U .

Therefore Pk0
⊂ U for some k0 ∈ N. Since P0 ⊃ P1 ⊃ . . . , this proves the

lemma. �

Lemma 5. Let P0 be a convex polytope, and let P0, P1, P2, . . . be convex polytopes
with P0 ⊃ P1 ⊃ P2 ⊃ . . . and such that

∞⋂
k=0

Pk = {p}.
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If {p0,p1,p2, . . . } is a sequence with pk ∈ Pk for all k, then

lim
k→∞

pk = p.

Proof. For any ε > 0, let U be an open ball of radius ε/2 centered at p. By
Lemma 4, there exists a k0 ∈ N, such that Pk ⊂ U for all integers k ≥ k0. This
means that {pk0

,pk0+1,pk0+2, . . .} ⊂ Pk0
⊂ U , so

|pi − pj | < ε whenever i, j ≥ k0,

which means that this sequence is Cauchy. Since P0 is a convex polytope, it is
compact and hence complete, so the sequence converges. By Lemma 3, its limit is
in
⋂∞

k=0 Pk = {p}, which proves the lemma. �
With these concepts and lemmas, we can now proceed with our exploration of

the geometry of Markov chains.

4. Description of the limit set

Throughout this section, we let T : Rn → Rn be a stochastic linear transfor-
mation, keeping in mind its interpretation in terms of Markov chains. The main
geometric object to investigate in order to understand the convergence of Markov
chains is the following, which we will use so much in this paper that we give it a
name.

Definition 12. Let T : Rn → Rn be a stochastic linear transformation. Its limit
set L is defined as:

L =

∞⋂
k=0

T k(∆).

By Corollary 1, L is nonempty.
The main results in this section are:

(1) L is a simplex.
(2) T permutes the vertices of L.
(3) T moves the carrier of each vertex of L around among other carriers in

the orbit of the vertex cyclically, collapsing each carrier to a point in the
process.

(4) The fixed point set of T is the convex hull of the barycenters of the orbits
of the vertices of L.

We now prove these through a series of propositions and corollaries.

Proposition 2. L is a convex polytope.

Proof. Since T is a linear transformation, then for each k ∈ N, the set T k(∆) is
the convex hull of

Ek = {T k(e1),T k(e2), . . . ,T k(en)},
so it is a convex polytope.

To show that L is a convex polytope, we find a set whose convex hull is L. The
process for this is as follows. Let I1 denote the sequence of nonnegative integers:

I1 := {0, 1, 2, 3, . . .}.

The subscript in I1 refers to the fact that I1 will be the sequence-indexing set in
the first step of the process.
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For each i ∈ I1, choose a point from Ei. This gives a sequence S1 of points in ∆,
indexed on I1. Since ∆ is compact, there is a subsequence S′1 indexed on I2 ⊂ I1
that converges to some point s1 ∈ ∆. By Lemma 3, s1 ∈ L. We will soon show
that s1 is part of a finite set whose convex hull is L, but first we move to the next
step in the process of finding that set.

If possible, for each i ∈ I2 choose a point from Ei that is not in S′1. If this is
not possible, then the process is finished and we will show that we have found a
finite set whose convex hull is L. If it is possible, then it gives a sequence S2 in ∆
indexed on I2, which must have a subsequence S′2 indexed on I3 ⊂ I2 that converges
to some point s2 ∈ L.

The process continues: if possible, for each i ∈ Ik choose a point from Ei that is
not in S′j for any j < k. If this is not possible, then the process is finished and we
will show that we have found a finite set whose convex hull is L. If it is possible,
then it gives a sequence Sk in ∆ indexed on Ik, which must have a subsequence
S′k indexed on Ik+1 ⊂ Ik that converges to some point sk ∈ L, and we have found
what we will show is another point in a finite set whose convex hull is L.

Repeat this process until it is no longer possible. The process will certainly stop
after at most n steps because each Ek consists of only n points.3

We note for future reference that if k > k0, then the number of elements in Ek

is less than or equal to the number of elements in Ek0
. This is simply because if

T k0(ei) = T k0(ej), then T k(ei) = T k(ej) for all k > k0. In other words, once two
points in the set have been mapped to the same point, they cannot be separated
by further iterations of T . Consequently, when all of the points in Ek0 have been
included in convergent subsequences in the above process (so that the process ends),
then all of the points in Ek for all k > k0 have also been included in convergent
subsequences.

We now show that the convex hull of the points s1, s2, . . . , sq found by the above
process is L. Let

H = Hull(s1, s2, . . . , sq).

Since L is the intersection of convex sets, it is itself convex. This means that since
s1, s2, . . . , sq ∈ L, then H ⊂ L, meaning that if x ∈ H, then x ∈ L.

To complete the proof that the convex hull of s1, . . . , sq is L, we now show that
if x 6∈ H, then x 6∈ L. For this, suppose x ∈ ∆ but x 6∈ H. Since H is a convex
polytope, it is closed, so there is a minimum distance Dist(x, H) > 0 between x and
all points in H. Now suppose that in the above process for finding s1, . . . , sq, the
set Ek ran out of points. (This must be true for some k.) Then as discussed above,
for all j > k every point in Ej is in a sequence converging to some si ∈ L. This
means that for any ε > 0, there exists a k0 such that for all k > k0 the distance
from every point in Ek to H is less than ε. (We can choose k0 to be the largest
index required among the t sequences converging to s1, . . . , sq.) But if every point
in Ek has distance to H that is less that ε, then the distance from every point in
the convex hull of Ek (which is T k(∆)) to H is also less than ε.

Applying this to ε = Dist(x, H), we find that whenever k is suitably large, the

distance from any point in T k(∆) to H is strictly less than Dist(x, H). Conse-

quently x 6∈ T k(∆), so x 6∈ L.

3A statement of the necessity of this finiteness was omitted from Pullman’s paper [P], but he
includes it correctly in an analogous setting in a later paper.
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We have now shown that x ∈ L if and only if x ∈ H, so L = H. Since H is a
convex polytope, this completes the proof that L is a convex polytope. �

Since the limit set L is a convex polytope, it is the convex hull of its vertices,
so from now on we will focus on its vertices v1, . . . ,vm rather than on the points
s1, . . . , sq that we found in the proof of this proposition. Since we will use these
vertices so often, we introduce some notation for them.

Definition 13. We use m to denote the number of vertices in L, which we will
denote by

V(L) = {v1, . . . ,vm}.

We now investigate the effect of applying T to L.

Proposition 3. T (L) = L.

Proof. If x ∈ L, then x ∈ T k(∆) for all k ≥ 0, which means that T (x) ∈ T k+1(∆) ⊂
T k(∆) for all k ≥ 0, so T (x) ∈ L. Therefore T (L) ⊂ L, so to complete the proof
of the proposition, we need only show that L ⊂ T (L).

For this, again let x ∈ L. Then

x ∈ T k(∆) = T (T k−1(∆)) for all k ≥ 1.

This means that for each k ≥ 1, there exists a point pk ∈ T k−1(∆) ⊂ ∆ such that
T (pk) = x. Since ∆ is compact, the sequence {p1,p2,p3, . . .} has a subsequence
that converges to a point p ∈ ∆. By Lemma 3, p ∈ L. Because T is a linear
transformation, it is continuous, so

T (p) = T ( lim
k→∞

pk) = lim
k→∞

T (pk) = lim
k→∞

x = x.

This shows that any point x ∈ L can be written as T (p) for some p ∈ L, so
L ⊂ T (L), which completes the proof. �

Proposition 4. T permutes V(L).

Proof. Denote the span of V(L) in Rn by

W := Span(v1, . . . ,vm),

from which it is immediate that L = Hull(v1, . . . ,vm) ⊂W .
Proposition 3 implies that T (vi) ∈ L ⊂ W for all i, so T (W ) ⊂ W . By the

same proposition, for each i there exists an xi ∈ L ⊂ W such that vi = T (xi), so
W ⊂ T (W ). Putting these together, we have that T (W ) = W .

This means that if we let T |W denote the linear transformation T with its domain
restricted by W , then T |W : W → W is invertible (since it is onto and therefore
one-to-one by the rank-nullity theorem). Also, by Proposition 3 we know that
T (L) = L, so restricting the domain of T |W to L ⊂W we find that T |L : L→ L is
also invertible.

Now if T (vi) = x ∈ L, then T |L
−1(x) = vi. If x is not a vertex of L, then x lies

in the interior of a line segment of points contained in L, which means that T |L
−1

of that line segment is a line segment in L containing vi in its interior, which would
contradict the fact that vi is a vertex. Therefore x must be a vertex of L.

This tells us that T (V(L)) ⊂ V(L). Since T is invertible on all of W including
V(L), we have that T |V(L) : V(L) → V(L) is invertible, meaning that T permutes
V(L). �
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Because T permutes V(L), the general theory of permutations and group ac-
tions gives us additional information. For one thing, if v ∈ V(L), then the sequence
v,T (v),T 2(v), . . . has only finitely many distinct terms, which are permuted cycli-
cally by T with some finite order r. This order r has the properties that it is the
smallest positive integer satisfying T r(v) = v, and that T q(v) = v if and only if q
is a multiple of r. The considerations lead us to the following definition.

Definition 14. Let v ∈ V(L). Then the orbit of v (under T ) is defined as:

O(v) = {T k(v) | k ∈ N}.
The number of distinct points in O(v) is called the order of v, denoted by Order(v).

Since T permutes the vertices of L, the order of any vertex of L is finite, and
vertices in the same orbit have the same order since T permutes each orbit cyclically.
Also, the set of vertices of L is partitioned into orbits: each vertex lies in exactly
one orbit. This description of how T affects the vertices of L will be important
throughout this paper.

We can now complete the proof that L is not just a convex polytope, but a
simplex. By Lemma 1, to show that it is a simplex we need only show that the
carriers of its vertices are disjoint. This is a corollary of the next proposition, which
is also interesting in its own right.

Proposition 5. If v ∈ V(L), then

C(v) ∩ L = {v}.

Proof. Since v ∈ V(L), then v ∈ L. Also, v ∈ C(v) by the definition of a carrier,
so v ∈ C(v) ∩ L.

Now if C(v) = {v}, then the proposition follows trivially, so assume that C(v) 6=
{v}. In this case, v ∈ Interior(C(v)) as discussed in the previous section.

Suppose that x ∈ C(v) ∩ L. In order to arrive at a contradiction, assume that
x 6= v. In this case, v and x determine a line, which can be parametrized as

(1− t)v + tx,

where t ∈ R. Since C(v) is convex, we know that (1−t)v+tx ∈ C(v) when t ∈ [0, 1].
However, since v ∈ Interior(C(v)), this line segment can be extended in C(v) past
v. We now use this to find a line segment in L containing v not as an endpoint.

Since x ∈ L then for each k ∈ N there exists a point xk ∈ ∆ such that

T k(xk) = x.

Also, since each xk ∈ ∆ and ∆ is compact, then

M := sup
k
|xk − v|

exists.4 Since v ∈ Interior(C(v)), then for suitably small δ > 0, a ball of radius δ
about v is contained in C(v). This means that

(1− t)v + txk ∈ C(v) if |t| ≤ δ

|xk − v|
.

4The role played by the existence of this supremum is a subtlety that seems to have been

overlooked in [P], but it is crucial to the argument. For example, if T were a linear operator on

Rn with eigenvalues all less than 1 instead of a linear operator on ∆, then this part of the proof
would fail. For this proposition, it is important that T (∆) ⊂ ∆.
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Applying T k, it follows that

T k((1− t)v + txk) = (1− t)v + tx ∈ T k(C(v)) if |t| ≤ δ

|xk − v|
.

But δ/|xk − v| ≥ δ/M , so if |t| ≤ δ/M , then |t| ≤ δ/|xk − v|. This means that

(1− t)v + tx ∈ T k(C(v)) if |t| ≤ δ

M
.

This condition is independent of k, so it holds for all k, meaning that

(1− t)v + tx ∈
∞⋂
k=0

T k(C(v)) if |t| ≤ δ

M
.

But this gives us a line segment in L containing v not as an endpoint, which is a
contradiction since v is a vertex of L. Therefore x = v, meaning that L ∩ C(v) =
{v}. �

The first corollary to this proposition, roughly speaking, asserts that T maps
the carriers of the vertices in an orbit cyclically, gradually collapsing each one to a
point in the process.

Corollary 2. Let v ∈ V(L) with Order(v) = r, and let q ∈ N. Then
∞⋂
k=0

T q+kr(C(v)) = T q(v).

Proof. First we prove the result when q = 0. For this, note that by Lemma 2,

T r(C(v)) ⊂ C(T r(v)) = C(v),

since T r(v) = v by assumption. This means that T kr(C(v)) ⊂ C(v) for all k, so
∞⋂
k=0

T kr(C(v)) ⊂ C(v).

But we also know that:
∞⋂
k=0

T kr(C(v)) ⊂
∞⋂
k=0

T kr(∆) ⊂
∞⋂
k=0

T k(∆) = L.

Putting these two together, Proposition 5 tells us that
∞⋂
k=0

T kr(C(v)) ⊂ C(v) ∩ L = {v}.

This proves containment in one direction. For the other direction, note that
T r(v) = v, so v ∈ T kr(v) ⊂ T kr(C(v)) for all k.

Putting both directions together, we have that
∞⋂
k=0

T kr(C(v)) = {v},

which proves the result when q = 0.
Applying T q to both sides of this equation completes the proof of the full propo-

sition:
∞⋂
k=0

T q+kr(C(v)) = T q

( ∞⋂
k=0

T kr(C(v))

)
= {T q(v)}. �
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The following additional corollary to this proposition establishes that the carriers
of the vertices of L are disjoint.

Corollary 3. If vi,vj ∈ V(L) and i 6= j, then C(vi) ∩ C(vj) = ∅.

Proof. Suppose that x ∈ C(vi) ∩ C(vj). Let ri, rj be the orders of vi,vj under the
permutation T , and let r be the least common multiple of ri and rj . Since r is a
multiple of both ri and rj , then

C(vi) ⊃ T r(C(vi)) ⊃ T 2r(C(vi)) ⊃ . . . ,
and similarly for vj .

Now T kr(x) ∈ C(vi) for all k, and by Corollary 2:
∞⋂
k=0

T kr(C(vi)) = {vi},

so Lemma 5 tells us that

lim
k→∞

T kr(x) = vi.

By the same argument, replacing vi with vj throughout:

lim
k→∞

T kr(x) = vj .

Therefore vi = vj , meaning that i = j, which is a contradiction. Therefore C(vi)∩
C(vj) = ∅. �

This has a couple of interesting corollaries.

Corollary 4. Each state in V(C(L)) is in the carrier of exactly one vertex in V(L).

Proof. By Proposition 1, we know that each state is in the carrier of some vertex
in V(L), and Corollary 3 tells us that each state is in the carrier of at most one
vertex in V(L), which proves this corollary. �

We will use the relationship in this corollary so often that we give it a name and
introduce some notation for it.

Definition 15. For any state ei ∈ V(C(L)), the unique vertex v ∈ V(L) such that
ei ∈ C(v) is called the limit vertex of ei, denoted by v(ei).

Some other concepts that we will use in describing the long-term behavior of
Markov chains geometrically are the following.

Definition 16. Let ei ∈ V(C(L)). The limit vertex class of ei is defined as the
set:

{ej ∈ V(C(L)) | v(ej) = v(ei)}.
The orbit class of ei is defined as the set:

{ej ∈ V(C(L)) | v(ej) ∈ O(v(ei))}.

In other words, two states in the carrier of L are in the same limit vertex class
if their limit vertices are the same. They are in the same orbit class if their limit
vertices are in the same orbit. From these definitions, it is immediate that V(C(L))
is partitioned into orbit classes, each of which is in turn partitioned into limit vertex
classes. We will use these definitions and concepts later in the paper.

But first we turn our attention to another of the main results in this section,
which is implied by Corollary 3.



THE GEOMETRY OF MARKOV CHAIN LIMIT THEOREMS 15

Corollary 5. L is a simplex.

Proof. This follows from Corollary 3 and Lemma 1. �
Also before we examine the limiting behavior of Markov chains, we describe the

structure of the fixed point set of T , which is the set of distributions x ∈ ∆ satisfying
T (x) = x. In traditional terms, fixed points of T are stationary distributions of
the Markov chain that T represents.

Proposition 6. The fixed point set of T is equal to the convex hull of the barycen-
ters of the orbits of the vertices of L.

Proof. Let x be the barycenter of the orbit of a vertex v ∈ V(L) with Order(v) = r,
so:

x =
1

r

r−1∑
k=0

T k(v).

Since T r(v) = T 0(v) = v, then

T (x) =
1

r

r∑
k=1

T k(v) =
1

r

r−1∑
k=0

T k(v) = x,

so T fixes the barycenters of the orbits of the vertices of L. By linearity, T also fixes
their convex hull, so the convex hull of the barycenters of the orbits is contained in
the fixed point set of T .

Now suppose x ∈ ∆ is an arbitrary point with T (x) = x. Since T (x) = x,
then x ∈ L, so x can be written as a convex combination of the vertices of L.
Suppose that we choose one vertex vij ∈ V(L) from each of the t orbits, and that
Order(vij ) = rij . Writing x as a convex combination of the vertices, we have:

x =

t∑
j=1

rij−1∑
k=0

αj,kT
k(vij ),

where each αjk ≥ 0 and
∑

j,k αj,k = 1. Since T (x) = x, we have:

t∑
j=1

rij−1∑
k=0

αj,kT
k(vij ) = x

= T (x)

=

t∑
j=1

rij−1∑
k=0

αj,kT
k+1(vij )

=

t∑
j=1

rij−1∑
k=0

αj,k−1T
k(vij ),

with the convention that αj,−1 denotes αj,rij−1.

Since L is a simplex, then its vertices are affinely independent, so we can set
corresponding coefficients in the above sums equal to each other:

αj,k−1 = αj,k for all k = 0, 1, . . . , rij − 1.
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Since αj,k is independent of k, we can denote it simply by αj for all k. This means
that

x =

t∑
j=1

rijαj

( 1

rij

rij−1∑
k=0

T k(vij )
)
,

which is a convex combination of the barycenters of the orbits of the vertices, so
the fixed point set of T is contained in the convex hull of the barycenters of the
orbits of the vertices, which proves the proposition. �

5. Ergodic states and periods

In this section we will show:

(1) How to characterize ergodic (and therefore transient) states geometrically.
(2) That transient states “die out”.
(3) What happens to ergodic states in the limit as the number of stages that

the Markov chain is run tends to infinity.

First we translate from the traditional characterization of ergodic states to a
more geometric one. In geometric terms, ei → ej means that

ej ∈
∞⋃
k=1

C(T k(ei)),

or equivalently that there exists a k ∈ Z+, such that ej ∈ C(T k(ei)). (And of
course, ej is in a carrier if and only if it is a vertex of that carrier, since it is a
vertex of ∆.) With this in mind, we prove the following proposition.

Proposition 7. For any state ei ∈ V(∆), there exists some state ej ∈ C(L) such
that ei → ej.

Proof. From a geometric point of view, ei → ej if and only if ej ∈
⋃∞

k=1 C(T
k(ei)).

To show this, we first claim that if ej ∈ C(
⋃∞

k=1 T
k(ei)), then ej ∈

⋃∞
k=1 C(T

k(ei)).

To prove this claim, suppose that ej ∈ C(
⋃∞

k=1 T
k(ei)). By definition, there is some

x ∈
⋃∞

k=1 T
k(ei) for which

x = αej + terms involving other states

with α > 0. But since x ∈
⋃∞

k=1 T
k(ei), then by definition x = T q(ei) for some

q ∈ Z+. This means that

T q(ei) = αej + terms involving other states,

which means that ej ∈ C(T k(ei)), so ej ∈
⋃∞

k=1 C(T
k(ei)), as claimed.

For brevity of notation, define

C = C(
∞⋃
k=1

T k(ei)).

By the above claim, to prove the proposition we need only show that there is some
ej ∈ C(L) such that ej ∈ C. Lemma 2 tells us that

T (C) ⊂ C(
∞⋃
k=1

T k+1(ei)) ⊂ C,
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so C ⊃ T (C) ⊃ T 2(C) ⊃ . . . , which means that
⋂∞

k=0 T
k(C) is nonempty by

Corollary 1, and by its construction, it is a subset of C. Also, since C ⊂ ∆, we
have that

∞⋂
k=0

T k(C) ⊂
∞⋂
k=0

T k(∆) = L.

So C ∩ L contains
⋂∞

k=0 T
k(C), which means that C and L are not disjoint.

Since C and L have at least one point in common, their carriers have at least
one state ej ∈ ∆ in common:

ej ∈ C(C) ∩ C(L).

But C is itself already a carrier, so C(C) = C. This means that ej ∈ C(L) and
ej ∈ C, which proves the proposition. �

We now prove another useful lemma.

Lemma 6. Let v ∈ V(L), and let q ∈ N. Then there is a k0 ∈ N for which

C(T kr+q(x)) = C(T q(v)) for all x ∈ C(v)

for all k > k0.

Proof. For any k ∈ N, we know that

C(T kr+q(C(v))) ⊂ C(C(T kr+q(v))) = C(T q(v)),

which means that for any x ∈ C(v)

C(T kr+q(x)) ⊂ C(T q(v))

for any k ∈ N. We now prove that equality holds for suitably large k. If C(T q(v))
is a single point, then the lemma holds trivially, so assume that C(T q(v)) contains
more than one point. In this case, T q(v) ∈ Interior(C(T q(v))).

By Corollary 2, we know that

∞⋂
k=0

T kr+q(C(v)) = T q(v),

Since Interior(C(T q(v))) is an open set in C(T q(v)) containing this intersection, by

Lemma 4 there exists a k0 ∈ N such that T kr+q(C(v)) ⊂ Interior(C(T q(v))) for all
k > k0. But this means that for any x ∈ C(v),

T kr+q(x) ⊂ Interior(C(T q(v)))

for all k > k0. If x ∈ Interior(C(T q(v))) then x is in C(T q(v)) but not in any
proper subpolytope of C(T q(v)), so

C(T kr+q(x)) = C(T q(v))

for all k > k0, which proves the lemma. �
We are now getting closer to a geometric characterization of ergodicity.

Proposition 8. Let ei ∈ C(L) and ej ∈ V(∆). Then ei → ej if and only if ej is
in the orbit class of ei.
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Proof. For brevity, let v = v(ei). To prove the forward implication, suppose that
ei → ej , meaning that ej ∈ C(T q(ei)) for some q ∈ Z+. By Lemma 2, we have:

ej ∈ C(T q(ei)) ⊂ C(T q(C(v))) ⊂ C(C(T q(v))) = C(T q(v)).

This means that v(ej) = T q(v), so ej is in the orbit class of ei, which proves the
forward implication in the proposition.

For the other direction, suppose instead that ej is in the orbit class of ei, which
means that ej ∈ C(T q(v)) for some q ∈ N. If the order of ei is r, then by Lemma 6,
there is a k0 ∈ N such that

C(T kr+q(ei)) = C(T q(v))

for all integers k > k0. Since ej ∈ C(T q(v)), this means that ej ∈ C(T kr+q(ei)) for
some k, so ei → ej . �

We now give a geometric characterization of ergodicity in the following corollary.

Corollary 6. A state ei ∈ V(∆) is ergodic if and only if ei ∈ C(L).

Proof. Since ei ∈ V(∆), then ei ∈ C(L) if and only if ei ∈ V(C(L)). But by
Corollary 4, we know that ei ∈ V(C(L)) if and only if ei ∈ C(v) for some vertex
v ∈ V(L).

To show that this condition is satisfied, suppose that ei is not in the carrier
of any vertex of L. Then by Proposition 7, there is some v ∈ V(L) such that
ej ∈ C(v) and ei → ej . But since ei is not in the carrier of any vertex of L, then
ei 6∈ C(T q(v)) for any q ∈ Z+. By Proposition 8, it follows that ej 6→ ei. Since
ei → ej but ej 6→ ei, then ei is not ergodic.

For the other direction, suppose instead that there is some v ∈ V(L) for which
ei ∈ C(v). If ei → ej , then by Proposition 8, ej ∈ C(T q(v)) for some q ∈ Z+.
If r is the order of v, then choose a q′ ∈ Z+ such that r divides q + q′, so that

T q+q′(v) = v. This means that ei ∈ C(v) = C(T q′(T q(v))), so by Proposition 8
(in the other direction), ej → ei. Therefore ei is ergodic. �

We are now almost ready to describe ergodic classes and subclasses geometrically,
but first we do the same for the period of an ergodic state.

Theorem 6. For any ergodic state ei ∈ V(L), the period of ei equals the order of
v(ei).

Proof. Denote the period of ei by p and the order of v(ei) by r. Also, for brevity,
let v = v(ei).

First we show that p divides r. By Lemma 6 (with q = 0), there is a k0 ∈ N for
which

C(T kr(v)) = C(v)

for all k > k0. Since ei ∈ C(v), then whenever k > k0, we have that ei ∈ C(T kr(v)),
meaning that kr is a return time, so p divides kr. If we choose k to be a suitably
large prime number, it follows that p divides r.

We claim that r divides p as well. For this, note that if q is a return time,

ei ∈ C(T q(ei)) ⊂ C(T q(C(v))).

By Lemma 2,

C(T q(C(v))) ⊂ C(C(T q(v))) = C(T q(v)).

So ei ∈ C(T q(v)) for any return time q.
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By Corollary 3, the carriers of the vertices of L are disjoint, so ei ∈ C(T q(v)) if
and only if T q(v) = v. By the definition of the order, this happens if and only if
r divides q. This tells us that if q is a return time, then r divides q, meaning that
r is a common divisor of the return times of v. By the definition of the greatest
common divisor (or rather by one of its basic properties), this means that r divides
p, the greatest common divisor of the return times.

Since both p and r are positive integers, and since p divides r and r divides p,
then r = p. �

Another lemma is useful before we describe ergodic classes and subclasses geo-
metrically.

Lemma 7. Let ei ∈ V(∆) be ergodic with period r, and let x ∈ ∆ be a distribution
that is within the limit vertex class of ei. Also let q ∈ N. Then

lim
k→∞

T kr+q(x) = T q(v(ei)).

Proof. For brevity, let v = v(ei). By Theorem 6, the order of v equals r. Since x
is within the limit vertex class of ei, then x ∈ C(v). By Corollary 2, we know that
for any q ∈ N

∞⋂
k=0

T kr+q(C(v)) = T q(v).

By Lemma 5, this means that

lim
k→∞

T kr+q(x) = T q(v)

for all x ∈ C(v), which proves the lemma. �

Corollary 7. Let ei, ej ∈ V(∆) be ergodic states. Then ei and ej are in the same
ergodic subclass if and only if they are in the same limit vertex class. Also, ei and
ej are in the same ergodic class if and only if they are in the same orbit class.

Proof. By Corollary 6, since ei and ej are ergodic states, they are in C(L). To
identify the orbit classes as the ergodic classes, suppose that ei and ej are in
the same ergodic class. This is true if and only if ei → ej . By Proposition 8,
ei → ej if and only if ej ∈ T q(v(ei)) for some q ∈ Z+, which holds if and only if

ej ∈
⋃r−1

q=0 C(T
q(v(ei))). This condition is equivalent to ej ∈ C(T k(v(ei))) for some

k, which is the same as the condition that v(ei) and v(ej) are in the same orbit.
This is equivalent to ei and ej being in the same orbit class.

To see that the limit vertex classes satisfy the defining properties of ergodic
subclasses, first note that orbit classes (which we have shown are the same as
ergodic classes) are partitioned into limit vertex classes. Also, T acts cyclically on
the vertices in a limit vertex class and T (C(v(ei))) ⊂ C(T (v(ei))) by Lemma 2, so
T maps distributions within a given limit vertex class to distributions within the
next limit vertex class in the orbit. The remaining defining convergence property
for ergodic subclasses follows from Lemma 7. �

Now that we have characterized ergodic classes and subclasses geometrically, we
can prove another main result.

Theorem 7. If ei, ej ∈ V(∆) are ergodic states in the same ergodic class, then
they have the same period.
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Proof. Since ei is ergodic, then ei ∈ C(v(ei)). Since ej is in the same ergodic class,
then it is in the C(T q(v(ei))) for some q ∈ N. Since v(ei) and T q(v(ei)) are in the
same orbit under T , they have the same order. By Theorem 6, ei and ej have the
same period. �

6. From intersections to sequences

So far, we have given many results in terms of intersections of sets, but of greater
interest in the theory of Markov chains are the limits of distributions under repe-
dated iterations of T . We now examine the implications of the main results so far
for such limits.

By the definitions of ergodic and transient states, the vertices of ∆ are divided
into ergodic and transient states. This means that any distribution x ∈ ∆ can
be written uniquely as a (nonnegative) linear combination of ergodic states plus a
(nonnegative) linear combination of transient states:

x = xerg + xtrans,

where xerg and xtrans are the orthogonal projections onto the spans (in Rn) of the
ergodic and transient states.

Theorem 8. Let T : Rn → Rn be a stochastic linear transformation, and let
x ∈ ∆. Then

lim
k→∞

|T k(x)trans| = 0.

Proof. For any ε > 0, let U be the open set defined by

U = {p ∈ Rn | Dist(p, L) < ε}.

Since L ⊂ U , then by Lemma 4, there exists a k0 ∈ Z+, such that T k(∆) ⊂ U for

all integers k > k0. And if T k(∆) ⊂ U , then in particular T k(x) ∈ U .
However, Dist(p, L) is just |ptrans|, since ptrans is the orthogonal projection onto

the subspace spanned by the transient states, which is the orthogonal complement
of the subspace spanned by the ergodic states. So if T k(x) ⊂ U for all k > k0, then

|T k(x)trans| < ε for all k > k0, which proves the theorem. �
This leads us to another of the main results for the paper.

Theorem 9. If ei ∈ V(∆) is transient and x ∈ ∆, then

lim
k→∞

T k(x) · ei = 0.

In traditional language, this states that

lim
k→∞

Prob(ei in Stage k | initial distribution x) = 0.

Proof. If we write T k(xtrans) as

T k(xtrans) = αiei +
∑

other transient ej

αjej ,

then by the generalized Pythagorean theorem and using the nonnegativity of the
terms involved,

|T k(xtrans)|2 = α2
i +

∣∣∣∣ ∑
other transient ej

αjej

∣∣∣∣2 ≥ α2
i = (T k(x) · ei)

2,
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so 0 ≤ T k(x) · ei ≤ |T k(xtrans)|. By Theorem 8, the largest term goes to zero as
k → ∞, so by the sandwich theorem for limits, so does the middle term, which
proves the theorem. �

The following theorem tells us exactly which point in L an initial distribution
within ergodic states will converge to, proceeding by suitable-sized jumps.

Theorem 10. Let v1, . . . ,vm be the vertices of L. Suppose that the set of periods
for the states is {r1, . . . , rm}, and let r be the least common multiple of r1, . . . , rm.
Let x ∈ ∆ be an initial distribution that is within ergodic states, meaning that we
can expand x uniquely as a convex combination of ergodic states:

x =
∑

ej∈C(L)

αjej ,

where α1, . . . , αn are nonnegative real numbers that sum to 1. Then for any q ∈ N:

lim
k→∞

T kr+q(x) =
∑

ej∈C(L)

αjT
q(v(ej)).

Proof. Simply use that T is a linear transformation and apply Theorem 7 to each
term. �

Other than the fact that they die out in the long run (or equivalently get arbitrar-
ily close to L), not much can be said about the convergence of initial distributions
that involve transient states. As many basic examples show, such initial distribu-
tions don’t necessarily converge at all.

There are two particularly useful types of Markov chains that are guaranteed to
converge to a unique stationary distribution. We prove this now for each type from
a geometric point of view.

Theorem 11. If a Markov chain is irreducible and aperiodic, then there exists
a unique distribution v ∈ ∆ such that T (v) = v. This distribution also has the
property that

lim
k→∞

T k(x) = v

for all x ∈ ∆.

Proof. Since the Markov chain is irreducible, then there can be no transient states
because ergodic states don’t communicate with transient states. So all states are
ergodic, which means that C(L) = ∆.

Also, since the Markov chain is irreducible, all states must comminuicate. By
Proposition 8, this means that all states belong to the same orbit class, so v(ei) are
in the same orbit for all i. But since the Markov chain is aperiodic, the order of
this orbit must be 1 by Theorem 6. Putting these together, we see that the vertices
of L are partitioned into a single orbit with exactly 1 element, so L has only one
vertex, so L is a single point v.

Since T (L) = L, it follows that T (v) = v. Also, any other fixed point of T
would necessarily be contained in L (by the definition of L and by other results),
so T has a unique fixed point in ∆.

Also, since v(ej) = v for all j and T q(v) = v for all q ∈ N, applying Theorem 10
completes the proof of the theorem. �

Theorem 12. If the k-th power of the transition matrix of a Markov chain has all
nonzero entries for some positive integer k, then exists a unique distribution v ∈ ∆
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such that T (v) = v. This distribution also has the property that

lim
k→∞

T k(x) = v

for all x ∈ ∆.

Proof. If the k-th power of the transition matrix of a Markov chain has all nonzero
entries for some positive integer k, geometrically this tells us that T k(∆) ⊂ Interior(∆).

This means that any vertex v ∈ L ⊂ T k(∆) is in Interior(∆), so C(v) = ∆. Since
the carriers of the vertices of L are disjoint by Proposition 3, then L has only a
single vertex and so is a single point. Applying Theorem 10 as in the proof of
Theorem 11 completes the proof. �

7. Conclusion

In this paper we have shown that by viewing them in geometric terms, the main
convergence theorems for Markov chains can not only be stated and described
more easily, but they can also be proved without invoking any major theorems and
without using techniques beyond basic linear algebra, point set topology, and a
little bit of abstract algebra. Also, although we have not done so in this paper,
pictures of the ways that Markov chains converge can also be drawn. Of course,
this is only literally true for Markov chains with three or fewer states, but many of
the most salient features can be seen by using these as schematic diagrams for the
behavior of Markov chains with more states.
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