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1◦ Let a be any positive integer (2 ≤ a) and let A be the finite set:

A = {1, 2, 3, . . . , a}

Let P be a probability vector:

P = (P1, P2, P3, . . . , Pa)

where:
0 ≤ Pj (1 ≤ j ≤ a)

and:
a∑

j=1

Pj = 1

Let Π be a stochastic matrix:

Π =




Π11 · · · Π1a
...

...
Πa1 · · · Πaa




where:
0 ≤ Πjk (1 ≤ j ≤ a, 1 ≤ k ≤ a)

and:
a∑

k=1

Πjk = 1 (1 ≤ j ≤ a)

We assume that:

(1) PΠ = P

that is, that:
a∑

j=1

PjΠjk = Pk (1 ≤ k ≤ a)

2◦ Now let X be the set of all sequences:

x = (x0, x1, x2, . . . , xn, . . .)
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with entries in A:
1 ≤ xn ≤ a (0 ≤ n)

For any nonnegative integer r and for any finite sequence:

w = (w0, w1, w2, . . . , wr)

with entries in A, let Cw be the cylinder in X comprised of all sequences x
for which:

x0 = w0, x1 = w1, . . . , xr = wr

We specify a probability measure µ on X by defining the values of µ on the
cylinders in X , as follows:

µ(Cw) := Pw0Πw0w1Πw1w2 · · · Πwr−1wr

One can readily extend µ to the various borel subsets of X . Finally, let T be
the mapping carrying X to itself, defined as follows:

T ((x0, x1, x2, . . . , xn, . . .)) := (x1, x2, x3, . . . , xn+1, . . .) (x ∈ X)

By relation (1), we find that µ is invariant under T :

(2) T∗(µ) = µ

that is, that:
µ(T−1(Cw)) = µ(Cw)

where Cw is any cylinder in X . At this point, we have assembled the initial
ingredients A, P , and Π to produce a dynamical system:

(X, µ, T )

One refers to this system as a markov system.

3◦ Let j be a member of A for which Pj = 0. One can easily show that:

µ(
∞⋃

�=0

T−�(Cj)) = 0

Hence, one may excise j from A without loss of significance. Hereafter, we
will assume that:

(3) 0 < Pj (1 ≤ j ≤ a)
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4◦ Let us say that the stochastic matrix Π is irreducible iff, for any members
j and k of A, there is some positive integer � such that:

(4) 0 < Π�
jk

We plan to prove that the markov system (X, µ, T ) is ergodic iff the stochastic
matrix Π is irreducible.

5◦ Let Cw be a cylinder in X , where:

w = (w0, w1, w2, . . . , wr)

Let 1w be the characteristic function for Cw . Applying the Ergodic Theorem,
we introduce the limit function:

1̂w

as follows:

1̂w(x) := lim
n→∞

1
n

n−1∑
m=0

1w(T m(x)) (x ∈ X)

One knows that:

(5)
∫

X

1̂w(x)µ(dx) =
∫

X

1w(x)µ(dx) = µ(Cw)

If (X, µ, T ) is ergodic then in fact:

(6) 1̂w(x) = µ(Cw) (x ∈ X)

In turn, let Cu and Cv be cylinders in X , where:

u = (u0, u1, u2, . . . , up)

and:
v = (v0, v1, v2, . . . , vq)

Clearly:

1u(x)1̂v(x) = lim
n→∞

1
n

n−1∑
m=0

1u(x)1v(T m(x)) (x ∈ X)

Applying the Dominated Convergence Theorem, we obtain:

(7)
∫

X

1u(x)1̂v(x)µ(dx) = lim
n→∞

1
n

n−1∑
m=0

µ(Cu ∩ T−m(Cv))
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Now one can readily verify that (X, µ, T ) is ergodic iff, for any cylinders Cu

and Cv in X :

(8) µ(Cu)µ(Cv) = lim
n→∞

1
n

n−1∑
m=0

µ(Cu ∩ T−m(Cv))

6◦ Let j and k be any members of A. Taking Cu and Cv to be Cj and Ck,
we may apply relation (7) to obtain:

∫
X

1j(x)1̂k(x)µ(dx) = lim
n→∞

1
n

n−1∑
m=0

PjΠm
jk

so that:

(9) P−1
j

∫
X

1j(x)1̂k(x)µ(dx) = lim
n→∞

1
n

n−1∑
m=0

Πm
jk

Now we may define the stochastic matrix Q as follows:

(10) Qjk := lim
n→∞

1
n

n−1∑
m=0

Πm
jk (1 ≤ j ≤ a, 1 ≤ k ≤ a)

that is:

Q := lim
n→∞

1
n

n−1∑
m=0

Πm

Clearly, ΠQ = Q = QΠ, QQ = Q, and PQ = P .

7◦ If (X, µ, T ) is ergodic then 1̂k is constant with constant value µ(Ck) = Pk.
Hence, by relation (9):

Pk = Qjk (1 ≤ j ≤ a, 1 ≤ k ≤ a)

so all the rows of Q coincide with P . Conversely, if all the rows of Q coincide
with P then, for any cylinders Cu and Cv in X :

lim
n→∞

1
n

n−1∑
m=0

µ(Cu ∩ T−m(Cv))

= lim
n→∞

1
n

n−1∑
m=p+1

µ(Cu ∩ T−m(Cv))

= lim
n→∞

1
n

n−1∑
m=p+1

Pu0Πu0u1 · · ·Πup−1upΠm−p
upv0

Πv0v1 · · ·Πvq−1vq

= Pu0Πu0u1 · · ·Πup−1upPv0Πv0v1 · · ·Πvq−1vq

= µ(Cu)µ(Cv)
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Hence, by relation (8), (X, µ, T ) is ergodic. We conclude that (X, µ, T ) is
ergodic iff all the rows of Q coincide with P .

8◦ Let us assume that all the entries in Q are positive. Since QQ = Q, it is
plain that all the columns of Q must be constant. Indeed, for each column K
of Q, if the smallest entry g in K is strictly less than the largest entry h then,
for each row L in Q, g < LK < h, which contradicts the fact that QK = K.
Since PQ = P , it follows in turn that all the rows of Q coincide with P . We
conclude that all the rows of Q coincide with P iff all the entries in Q are
positive.

9◦ Let us assume that all the entries in Q are positive. By relation (10) (that
is, by the definition of Q), it is plain that Π is irreducible. Let us assume that
Π is irreducible. Let j and k be any members of A. There must be some
member j′ of A such that 0 < Qjj′ . There must then be some positive integer
� such that 0 < Π�

j′k. Hence, 0 < (QΠ�)jk. However, QΠ� = Q. We conclude
that all the entries in Q are positive iff Π is irreducible.

10◦ Finally, we conclude that (X, µ, T ) is ergodic iff Π is irreducible. More-
over, in such a case, all the rows of Q coincide with P .

11◦ One says that (X, µ, T ) is (strongly) mixing iff, for any cylinders Cu and
Cv in X :

µ(Cu)µ(Cv) = lim
n→∞µ(Cu ∩ T−n(Cv))

Clearly, if (X, µ, T ) is (strongly) mixing then it is ergodic. One says that Π
is primitive iff there is a positive integer � such that all the entries in Π� are
positive. Clearly, if Π is primitive then it is irreducible. Show that (X, µ, T )
is (strongly) mixing iff Π is primitive. Moreover, show that, in such a case:

Q = lim
n→∞Πn

From the relation just stated, it follows that, for any probability vector L:

lim
n→∞ LΠn = P

12◦ Let us compute the entropy of the markov system (X, µ, T ). We make no
assumptions about A, P , and Π other than those expressed in 1◦. To connect
with the theory of entropy, let us introduce the following markov process ,
based on (X, µ):

F0, F1, F2, . . . , F�, . . .

5



where:
F0(x) := x0 (x ∈ X)

and:
Fn(x) := F0(T n(x)) (x ∈ X, 0 ≤ n)

By the conventional definitions of entropy and of conditional entropy, we have:

η(F0 × F1 × F2 × · · · × Fn−1)
= η(F0) + η(F1|F0) + η(F2|F0 × F1) + · · · + η(Fn−1|F0 × F1 × · · · × Fn−2)

where n is any positive integer. However:

η(F3|F0 × F1 × F2)

= −
a∑

j=1

a∑
k=1

a∑
�=1

µ(F0 = j, F1 = k, F2 = �)

·
a∑

m=1

µ(F0 = j, F1 = k, F2 = �, F3 = m)
µ(F0 = j, F1 = k, F2 = �)

log
µ(F0 = j, F1 = k, F2 = �, F3 = m)

µ(F0 = j, F1 = k, F2 = �)

= −
a∑

j=1

a∑
k=1

a∑
�=1

PjΠjkΠk� ·
a∑

m=1

PjΠjkΠk�Π�m

PjΠjkΠk�
log

PjΠjkΠk�Π�m)
PjΠjkΠk�

= −
a∑

�=1

P�

a∑
m=1

Π�mlog Π�m

In general:

η(Fn−1|F0 × F1 × · · · × Fn−2) = −
a∑

�=1

P�

a∑
m=1

Π�mlog Π�m

Hence:

η(F0 × F1 × F2 × · · · × Fn−1) = η(F0) − (n − 1)
a∑

�=1

P�

a∑
m=1

Π�mlog Π�m

Now it is plain that:

lim
n→∞

1
n

η(F0 × F1 × F2 × · · · × Fn−1) = −
a∑

�=1

P�

a∑
m=1

Π�mlog Π�m

which (by definition) is the entropy of the markov process.
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