MARKOV PROCESSES

Thomas Wieting
Reed College, 2006
1° Let a be any positive integer $(2 \leq a)$ and let A be the finite set:

$$
A=\{1,2,3, \ldots, a\}
$$

Let P be a probability vector:

$$
P=\left(P_{1}, P_{2}, P_{3}, \ldots, P_{a}\right)
$$

where:

$$
0 \leq P_{j} \quad(1 \leq j \leq a)
$$

and:

$$
\sum_{j=1}^{a} P_{j}=1
$$

Let Π be a stochastic matrix:

$$
\Pi=\left(\begin{array}{ccc}
\Pi_{11} & \cdots & \Pi_{1 a} \\
\vdots & & \vdots \\
\Pi_{a 1} & \cdots & \Pi_{a a}
\end{array}\right)
$$

where:

$$
0 \leq \Pi_{j k} \quad(1 \leq j \leq a, 1 \leq k \leq a)
$$

and:

$$
\sum_{k=1}^{a} \Pi_{j k}=1 \quad(1 \leq j \leq a)
$$

We assume that:

$$
\begin{equation*}
P \Pi=P \tag{1}
\end{equation*}
$$

that is, that:

$$
\sum_{j=1}^{a} P_{j} \Pi_{j k}=P_{k} \quad(1 \leq k \leq a)
$$

2° Now let X be the set of all sequences:

$$
x=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)
$$

with entries in A :

$$
1 \leq x_{n} \leq a \quad(0 \leq n)
$$

For any nonnegative integer r and for any finite sequence:

$$
w=\left(w_{0}, w_{1}, w_{2}, \ldots, w_{r}\right)
$$

with entries in A, let C_{w} be the cylinder in X comprised of all sequences x for which:

$$
x_{0}=w_{0}, x_{1}=w_{1}, \ldots, x_{r}=w_{r}
$$

We specify a probability measure μ on X by defining the values of μ on the cylinders in X, as follows:

$$
\mu\left(C_{w}\right):=P_{w_{0}} \Pi_{w_{0} w_{1}} \Pi_{w_{1} w_{2}} \cdots \Pi_{w_{r-1} w_{r}}
$$

One can readily extend μ to the various borel subsets of X. Finally, let T be the mapping carrying X to itself, defined as follows:

$$
T\left(\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)\right):=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n+1}, \ldots\right) \quad(x \in X)
$$

By relation (1), we find that μ is invariant under T :

$$
\begin{equation*}
T_{*}(\mu)=\mu \tag{2}
\end{equation*}
$$

that is, that:

$$
\mu\left(T^{-1}\left(C_{w}\right)\right)=\mu\left(C_{w}\right)
$$

where C_{w} is any cylinder in X. At this point, we have assembled the initial ingredients A, P, and Π to produce a dynamical system:

$$
(X, \mu, T)
$$

One refers to this system as a markov system.
$3^{\circ} \quad$ Let j be a member of A for which $P_{j}=0$. One can easily show that:

$$
\mu\left(\bigcup_{\ell=0}^{\infty} T^{-\ell}\left(C_{j}\right)\right)=0
$$

Hence, one may excise j from A without loss of significance. Hereafter, we will assume that:

$$
\begin{equation*}
0<P_{j} \quad(1 \leq j \leq a) \tag{3}
\end{equation*}
$$

4° Let us say that the stochastic matrix Π is irreducible iff, for any members j and k of A, there is some positive integer ℓ such that:

$$
\begin{equation*}
0<\Pi_{j k}^{\ell} \tag{4}
\end{equation*}
$$

We plan to prove that the markov system (X, μ, T) is ergodic iff the stochastic matrix Π is irreducible.
5° Let C_{w} be a cylinder in X, where:

$$
w=\left(w_{0}, w_{1}, w_{2}, \ldots, w_{r}\right)
$$

Let 1_{w} be the characteristic function for C_{w}. Applying the Ergodic Theorem, we introduce the limit function:

$$
\hat{1}_{w}
$$

as follows:

$$
\hat{1}_{w}(x):=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=0}^{n-1} 1_{w}\left(T^{m}(x)\right) \quad(x \in X)
$$

One knows that:

$$
\begin{equation*}
\int_{X} \hat{1}_{w}(x) \mu(d x)=\int_{X} 1_{w}(x) \mu(d x)=\mu\left(C_{w}\right) \tag{5}
\end{equation*}
$$

If (X, μ, T) is ergodic then in fact:

$$
\begin{equation*}
\hat{1}_{w}(x)=\mu\left(C_{w}\right) \quad(x \in X) \tag{6}
\end{equation*}
$$

In turn, let C_{u} and C_{v} be cylinders in X, where:

$$
u=\left(u_{0}, u_{1}, u_{2}, \ldots, u_{p}\right)
$$

and:

$$
v=\left(v_{0}, v_{1}, v_{2}, \ldots, v_{q}\right)
$$

Clearly:

$$
1_{u}(x) \hat{1}_{v}(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=0}^{n-1} 1_{u}(x) 1_{v}\left(T^{m}(x)\right) \quad(x \in X)
$$

Applying the Dominated Convergence Theorem, we obtain:

$$
\begin{equation*}
\int_{X} 1_{u}(x) \hat{1}_{v}(x) \mu(d x)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=0}^{n-1} \mu\left(C_{u} \cap T^{-m}\left(C_{v}\right)\right) \tag{7}
\end{equation*}
$$

Now one can readily verify that (X, μ, T) is ergodic iff, for any cylinders C_{u} and C_{v} in X :

$$
\begin{equation*}
\mu\left(C_{u}\right) \mu\left(C_{v}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=0}^{n-1} \mu\left(C_{u} \cap T^{-m}\left(C_{v}\right)\right) \tag{8}
\end{equation*}
$$

6° Let j and k be any members of A. Taking C_{u} and C_{v} to be C_{j} and C_{k}, we may apply relation (7) to obtain:

$$
\int_{X} 1_{j}(x) \hat{1}_{k}(x) \mu(d x)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=0}^{n-1} P_{j} \Pi_{j k}^{m}
$$

so that:

$$
\begin{equation*}
P_{j}^{-1} \int_{X} 1_{j}(x) \hat{1}_{k}(x) \mu(d x)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=0}^{n-1} \Pi_{j k}^{m} \tag{9}
\end{equation*}
$$

Now we may define the stochastic matrix Q as follows:

$$
\begin{equation*}
Q_{j k}:=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=0}^{n-1} \Pi_{j k}^{m} \quad(1 \leq j \leq a, 1 \leq k \leq a) \tag{10}
\end{equation*}
$$

that is:

$$
Q:=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=0}^{n-1} \Pi^{m}
$$

Clearly, $\Pi Q=Q=Q \Pi, Q Q=Q$, and $P Q=P$.
7° If (X, μ, T) is ergodic then $\hat{1}_{k}$ is constant with constant value $\mu\left(C_{k}\right)=P_{k}$. Hence, by relation (9):

$$
P_{k}=Q_{j k} \quad(1 \leq j \leq a, 1 \leq k \leq a)
$$

so all the rows of Q coincide with P. Conversely, if all the rows of Q coincide with P then, for any cylinders C_{u} and C_{v} in X :

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} & \sum_{m=0}^{n-1} \mu\left(C_{u} \cap T^{-m}\left(C_{v}\right)\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=p+1}^{n-1} \mu\left(C_{u} \cap T^{-m}\left(C_{v}\right)\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=p+1}^{n-1} P_{u_{0}} \Pi_{u_{0} u_{1}} \cdots \Pi_{u_{p-1} u_{p}} \Pi_{u_{p} v_{0}}^{m-p} \Pi_{v_{0} v_{1}} \cdots \Pi_{v_{q-1} v_{q}} \\
& =P_{u_{0}} \Pi_{u_{0} u_{1}} \cdots \Pi_{u_{p-1} u_{p}} P_{v_{0}} \Pi_{v_{0} v_{1}} \cdots \Pi_{v_{q-1} v_{q}} \\
& =\mu\left(C_{u}\right) \mu\left(C_{v}\right)
\end{aligned}
$$

Hence, by relation (8), (X, μ, T) is ergodic. We conclude that (X, μ, T) is ergodic iff all the rows of Q coincide with P.
8° Let us assume that all the entries in Q are positive. Since $Q Q=Q$, it is plain that all the columns of Q must be constant. Indeed, for each column K of Q, if the smallest entry g in K is strictly less than the largest entry h then, for each row L in $Q, g<L K<h$, which contradicts the fact that $Q K=K$. Since $P Q=P$, it follows in turn that all the rows of Q coincide with P. We conclude that all the rows of Q coincide with P iff all the entries in Q are positive.
$9^{\circ} \quad$ Let us assume that all the entries in Q are positive. By relation (10) (that is, by the definition of Q), it is plain that Π is irreducible. Let us assume that Π is irreducible. Let j and k be any members of A. There must be some member j^{\prime} of A such that $0<Q_{j j^{\prime}}$. There must then be some positive integer ℓ such that $0<\Pi_{j^{\prime} k}^{\ell}$. Hence, $0<\left(Q \Pi^{\ell}\right)_{j k}$. However, $Q \Pi^{\ell}=Q$. We conclude that all the entries in Q are positive iff Π is irreducible.
10° Finally, we conclude that (X, μ, T) is ergodic iff Π is irreducible. Moreover, in such a case, all the rows of Q coincide with P.
11° One says that (X, μ, T) is (strongly) mixing iff, for any cylinders C_{u} and C_{v} in X :

$$
\mu\left(C_{u}\right) \mu\left(C_{v}\right)=\lim _{n \rightarrow \infty} \mu\left(C_{u} \cap T^{-n}\left(C_{v}\right)\right)
$$

Clearly, if (X, μ, T) is (strongly) mixing then it is ergodic. One says that Π is primitive iff there is a positive integer ℓ such that all the entries in Π^{ℓ} are positive. Clearly, if Π is primitive then it is irreducible. Show that (X, μ, T) is (strongly) mixing iff Π is primitive. Moreover, show that, in such a case:

$$
Q=\lim _{n \rightarrow \infty} \Pi^{n}
$$

From the relation just stated, it follows that, for any probability vector L :

$$
\lim _{n \rightarrow \infty} L \Pi^{n}=P
$$

12° Let us compute the entropy of the markov system (X, μ, T). We make no assumptions about A, P, and Π other than those expressed in 1°. To connect with the theory of entropy, let us introduce the following markov process, based on (X, μ) :

$$
F_{0}, F_{1}, F_{2}, \ldots, F_{\ell}, \ldots
$$

where:

$$
F_{0}(x):=x_{0} \quad(x \in X)
$$

and:

$$
F_{n}(x):=F_{0}\left(T^{n}(x)\right) \quad(x \in X, 0 \leq n)
$$

By the conventional definitions of entropy and of conditional entropy, we have:

$$
\begin{aligned}
& \eta\left(F_{0} \times F_{1} \times F_{2} \times \cdots \times F_{n-1}\right) \\
& \quad=\eta\left(F_{0}\right)+\eta\left(F_{1} \mid F_{0}\right)+\eta\left(F_{2} \mid F_{0} \times F_{1}\right)+\cdots+\eta\left(F_{n-1} \mid F_{0} \times F_{1} \times \cdots \times F_{n-2}\right)
\end{aligned}
$$

where n is any positive integer. However:

$$
\begin{aligned}
& \eta\left(F_{3} \mid F_{0} \times F_{1} \times F_{2}\right) \\
& =-\sum_{j=1}^{a} \sum_{k=1}^{a} \sum_{\ell=1}^{a} \mu\left(F_{0}=j, F_{1}=k, F_{2}=\ell\right) \\
& \cdot \sum_{m=1}^{a} \frac{\mu\left(F_{0}=j, F_{1}=k, F_{2}=\ell, F_{3}=m\right)}{\mu\left(F_{0}=j, F_{1}=k, F_{2}=\ell\right)} \log \frac{\mu\left(F_{0}=j, F_{1}=k, F_{2}=\ell, F_{3}=m\right)}{\mu\left(F_{0}=j, F_{1}=k, F_{2}=\ell\right)} \\
& =-\sum_{j=1}^{a} \sum_{k=1}^{a} \sum_{\ell=1}^{a} P_{j} \Pi_{j k} \Pi_{k \ell} \cdot \sum_{m=1}^{a} \frac{P_{j} \Pi_{j k} \Pi_{k \ell} \Pi_{\ell m}}{P_{j} \Pi_{j k} \Pi_{k \ell}} \log \frac{\left.P_{j} \Pi_{j k} \Pi_{k \ell} \Pi_{\ell m}\right)}{P_{j} \Pi_{j k} \Pi_{k \ell}} \\
& =-\sum_{\ell=1}^{a} P_{\ell} \sum_{m=1}^{a} \Pi_{\ell m} \log \Pi_{\ell m}
\end{aligned}
$$

In general:

$$
\eta\left(F_{n-1} \mid F_{0} \times F_{1} \times \cdots \times F_{n-2}\right)=-\sum_{\ell=1}^{a} P_{\ell} \sum_{m=1}^{a} \Pi_{\ell m} \log \Pi_{\ell m}
$$

Hence:

$$
\eta\left(F_{0} \times F_{1} \times F_{2} \times \cdots \times F_{n-1}\right)=\eta\left(F_{0}\right)-(n-1) \sum_{\ell=1}^{a} P_{\ell} \sum_{m=1}^{a} \Pi_{\ell m} \log \Pi_{\ell m}
$$

Now it is plain that:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \eta\left(F_{0} \times F_{1} \times F_{2} \times \cdots \times F_{n-1}\right)=-\sum_{\ell=1}^{a} P_{\ell} \sum_{m=1}^{a} \Pi_{\ell m} \log \Pi_{\ell m}
$$

which (by definition) is the entropy of the markov process.

