
AN INVITATION TO MATHEMATICAL LOGIC

Thomas Wieting

Reed College, 2012

CHAPTER 1 LOGICS AND TREES

CHAPTER 2 PREDICATE LOGICS: SYNTAX

CHAPTER 3 PREDICATE LOGICS: SEMANTICS

CHAPTER 4 RECURSIVE MAPPINGS

CHAPTER 5 ARITHMETIC

CHAPTER 6 TARSKI, GÖDEL, AND CHURCH

CHAPTER 7 SET THEORY

PREFACE

01◦ This text may serve in a course on Mathematical Logic at the upper
division undergraduate level. We suggest the subtitle:

From Zero to Tarski, Gödel, and Church

For the exposition, we have adopted a relentlessly formal style, relieved, at
appropriate places, by unusually detailed arguments.

Organization

02◦ At the outset, we define the concepts of Language and Logic. For precise
description of the Sentences and Deductions which figure in the foregoing
concepts, we introduce the concept of Tree. Looking ahead, we introduce the
process of Gödel Numbering.

03◦ In the central chapters of the text, we describe the syntax and semantics
for predicate logics and we prove four fundamental theorems: the Deduction
Principle, the Interpretation Theorem, the Completeness Theorem, and the
Compactness Theorem. These theorems form the foundation of Mathematical
Logic.

04◦ Anticipating what follows, we present a tutorial on Recursive Mappings.

05◦ For our basic example of a predicate logic, we define the Predicate Logic
for Arithmetic. We develop enough of this important topic to support our
subsequent presentation of the theorems of Tarski, Gödel, and Church. We
also define the Predicate Logic for Set Theory.

06◦ Relative to the Standard Interpretation for Arithmetic, for which the
underlying universe N is composed of the familiar natural numbers, we de-
scribe the basic families of syntactically and semantically definable subsets of
Nr (where r is any positive integer). We apply Gödel numbering, by which
one identifies the sentences of Arithmetic with corresponding natural numbers
and through which one may define sentences which “refer to themselves.” We
state and prove three fundamental theorems: the Diagonal Theorem and the
Deduction Theorem, which assert that, relative to Gödel numbering, the Di-
agonal Mapping and the Deduction Mapping are recursive, and, in turn, the
Representation Theorem, which entails that the graphs of these mappings,
as subsets of N2, are syntactically, hence semantically definable. The Fixed
Point Theorem follows smoothly from these theorems. We apply all these
results to prove the basic theorems of Tarski, Gödel, and Church.

07◦ The articles which compose the text are marked by numbers, modified
by superscripts: j◦ and k•. The latter take the form of problems. In many
cases, they are critical to the text.

Apologies

08◦ We reject the common phrase well formed formula, that is, wff . We
prefer the term sentence. In place of the common term sentence, which com-
monly means closed wff , we prefer the phrase closed sentence. In time, our
preferences will seem natural.

09◦ We prefer a sharp boundary between the domains of syntax and seman-
tics (commonly called grammar and meaning, respectively). In the domain of
syntax, one builds abstract structures from finitely many symbols and from
finite sequences of such symbols: first, preambles, then predicate logics, the
latter governed by strict grammatical rules. In the domain of semantics, one
applies the flexible constructs of (naive) set theory to design interpretations
of the preambles and, in turn, to establish meaning and to assess truth for
the sentences in the corresponding predicate logics. We reject the common
tendency to blur the boundary between these two domains.

10◦ The concept of interpretation provides a link between the domains of
syntax and semantics. As noted, we will prove the fundamental Interpretation
Theorem. To that end, we will follow (a generalization of) the path designed
by Leon Henkin. We we will also develop the architecture of interpretations,
notably, direct products, quotients, and ultra products.

CHAPTER 1

LOGICS AND TREES

In this chapter, we introduce the concepts of language and logic, which un-
derlie the description of predicate logics. We also introduce the concept of
tree, which proves useful, first, for the analysis of the structure of sentences
and, second, for the analysis of the structure of deductions. Often, visual in-
spection of an appropriate tree serves to simplify and clarify, even to displace
formal argument by induction.

1.1 LOGICS

Symbol Sets

01◦ Let us develop the general concept of a logic. We begin by introducing
a finite set S containing at least two members. We refer to S as a symbol set
and to the various members of S as symbols . In turn, let S∗ be the (countably
infinite) set consisting of all finite strings σ of the form:

σ = σ1σ2 · · · σn

where n is any nonnegative integer and where, for each index j (1 ≤ j ≤ n),
σj lies in S. We refer to n as the length of σ and denote it by |σ|. There is
just one string for which n = 0: the empty string. We denote it by ǫ.

Concatenation of Strings

02◦ For any strings σ′ and σ′′ in S∗:

σ′ = σ′

1σ
′

2 · · · σ′

n′ , σ′′ = σ′′

1σ
′′

2 · · · σ′′

n′′

we form the concatenation of σ′ and σ′′, as follows:

σ′σ′′ = σ′

1σ
′

2 · · · σ′

n′σ′′

1σ
′′

2 · · · σ′′

n′′

Obviously, this operation on S∗ is associative. It is not commutative. More-
over, the empty string ǫ serves as the neutral element for it.

2 1 LOGICS AND TREES

Segments of Strings

03◦ In terms of the operation of concatenation on S∗, we can express various
basic concepts smoothly. For instance, let σ′ and σ′′ be any strings in S∗. We
say that σ′ is a segment of σ′′ iff there are strings ρ and τ in S∗ such that:

σ′′ = ρσ′τ

Substitution in Strings

04◦ In turn, let ρ′, ρ′′, σ′, and σ′′ be any strings in S∗. It may happen that
there are strings τ and υ in S∗ such that:

ρ′′ = τ ρ′υ and σ′′ = τ σ′υ

Of course, ρ′ would be a segment of ρ′′ and σ′ would be a segment of σ′′. In
such a case, we say that σ′′ is defined by substitution of σ′ for ρ′ in ρ′′.

The Lexicographic Order Relation

05◦ Let us supply S with a linear order relation:

a′ < a′′

where a′ and a′′ are any symbols in S. In turn, let us supply S∗ with the
corresponding lexicographic order relation. To that end, let σ′ and σ′′ be any
strings in S∗. We write:

σ′ ≺ σ′′

iff one or the other of the following two conditions holds:

(O1) |σ′| < |σ′′|
(O2) |σ′| = |σ′′| and there are strings ρ, τ ′, and τ ′′ in S∗ and symbols

a′ and a′′ in S such that:

σ′ = ρa′τ ′, σ′′ = ρa′′τ ′′, and a′ < a′′

The latter condition expresses the conventional ordering of words in a lexicon.

06◦ One can easily verify that the lexicographic order relation on S∗ is linear.
In fact, the order structure so defined is isomorphic to that of the natural
numbers N. That is, there is a bijective mapping Γ carrying S∗ to N such
that, for any strings σ′ and σ′′ in S∗:

σ′ ≺ σ′′ ⇐⇒ Γ(σ′) < Γ(σ′′)

1.1 LOGICS 3

07• Produce such a mapping Γ, as follows. Let b be the number of members
of S. By assumption, 2 ≤ b. Let the symbols be identified with the positive
integers:

1, 2, 3, . . . , b

in natural order. Let Γ be the mapping carrying S∗ to N, defined as follows:

Γ(σ) =

n
∑

j=1

σjb
n−j

where σ = σ1σ2 · · · σn is any string in S∗. We intend that Γ(ǫ) = 0. Show
that Γ is bijective and that Γ is an order isomorphism, as just defined.

08◦ We refer to Γ as the Gödel Mapping. For each σ in S∗, we refer to Γ(σ)
as the Gödel Number for σ.

09• Describe the inverse of Γ, by the following procedure. Clearly, Γ−1(0) =
ǫ. Let ℓ be any positive integer. Let q0 and r0 be the nonnegative integers
provided by the Euclidean Algorithm:

ℓ = q0b+ r0 and 0 ≤ r0 < b

Let:

(ℓ0, s0) =

{

(q0 − 1, b) if r0 = 0
(q0, r0) if 0 < r1

In turn, let q1 and r1 be the nonnegative integers provided by the Euclidean
Algorithm:

ℓ0 = q1b+ r1 and 0 ≤ r1 < b

Let:

(ℓ1, s1) =

{

(q1 − 1, b) if r1 = 0
(q1, r1) if 0 < r1

Continue the computation until ℓn = 0. Show that:

Γ−1(ℓ) = σ1σ2 · · · σn where σj = sn−j (1 ≤ j ≤ n)

Note that the mappings Γ and Γ−1 are, in any reasonable sense, computable.

10• For an illustration of problems 07• and 09•, consider the simple case in
which b = 2. The first fifteen values of Γ stand as follows:

ǫ 1 2 11 12 21 22 111 112 121 122 211 212 221 222

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4 1 LOGICS AND TREES

What nonnegative integer corresponds to 1222112? What string corresponds
to 612?

Languages and Logics

11◦ By a language, we mean any nonempty subset L of S∗. We refer to S as
the symbol set underlying L. We refer to the strings in L as sentences . By a
logic, we mean any ordered pair:

Λ = (L,A)

where L is a language and where A is a nonempty subset of L. We refer to
the sentences in A as axioms .

12◦ Rather cryptically, we augment the logic Λ with certain rules of deduc-
tion. For the sense of such rules, we appeal for now to common experience. In
context of the various predicate logics, we will describe the rules of deduction
carefully.

Theories

13◦ Let Λ = (L,A) be any logic and let H be any subset of L. We refer to
the sentences in H as hypotheses . By applying the rules of deduction, we may
proceed to derive various sentences in L from the sentences in A ∪H. Let:

ΘΛ(H)

be the subset of L consisting of all sentences in L which can be so derived.
We refer to the sentences in ΘΛ(H) as theorems and to the set ΘΛ(H) itself
as the theory of H.

S∗

A H

L

ΘΛ(H)

Figure 1: Logic

1.2 TREES 5

1.2 TREES

Trees

01◦ By a graph, we mean an ordered pair:

G = (N ,B)

where N is any nonempty finite set and where B is any subset of N ×N . We
refer to the members of N and B as nodes and branches , respectively. For
each branch:

B = (N ′, N ′′)

in B, we refer to N ′ as the initial node and to N ′′ as the terminal node of B.
We require that N ′ 6= N ′′.

02◦ It may happen that a node R in N is an initial node but not a terminal
node. We refer to such a node as a root . In turn, it may happen that a node
L in N is a terminal node but not an initial node. We refer to such a node
as a leaf .

03◦ By a path in G, we mean a finite sequence:

N0, N1, N2, . . . , Nk

of nodes in N such that, for each index j (0 ≤ j < k), Bj = (Nj , Nj+1) is
a branch in B. We say that the path joins the node N0 to the node Nk. Of
course, k is the length of the path.

04◦ We say that the graph G = (N ,B) is a tree iff it meets the following
conditions:

(G1) there is precisely one root R in N
(G2) for each node N in N , if N 6= R then there is precisely one path

in G which joins R to N

05◦ Let G = (N ,B) be a tree. Let N ′ and N ′′ be any nodes in N . It may
happen that there is a path in G, necessarily unique, which joins N ′ to N ′′. In
such a case, we say that N ′ is an ancestor of N ′′ and that N ′′ is a descendant
of N ′. It may happen that the length of the path is 1. In such a special case,
we say that N ′ is an immediate ancestor of N ′′ and that N ′′ is an immediate
descendant of N ′.

06◦ Let N be a node in N , other than a leaf. We require that the set of
immediate descendants of N be linearly ordered. In our diagrams of trees, we
will display such sets of nodes in order, from left to right.

6 1 LOGICS AND TREES

07◦ We define the valence v(N) of N to be the number of its immediate
descendants.

Active Trees

08◦ Let N be a node in N . We say that N is an active node iff 2 ≤ v(N) and
the first of the immediate descendants of N , let it be L, is a leaf. In such a
context, we refer to L as a primary leaf, the primary leaf for the active node
N . We refer to G itself as an active tree iff every node in N other than a leaf
is an active node.

09◦ Let L be a leaf in N . We refer to L as a secondary leaf iff it is not a
primary leaf.

Labeled Trees

10◦ In practice, we commonly place labels on the various nodes of a tree and
we refer to the tree as a labeled tree. To be precise, we introduce a symbol set
S and a mapping λ carrying N to S∗. For each node N in N , we interpret
λ(N) to be the corresponding label. Informally, we say that the labels occupy
the nodes.

11◦ In the following diagram of a tree, we have placed the label r on the root
of the tree, the label a on the active nodes, the labels p and s, respectively,
on the primary and secondary leaves, and the label x on the rest. One should
note that the root lies below while the leaves lie above. See article 42◦.

r

a x a

p s s p x s

s

Figure 2: Labeled Tree

1.2 TREES 7

Relations among Trees

12◦ Let G = (N ,B) be any tree. Let N be any node in N other than the root
R. Let N∗ be the set of descendants of N . Let N◦ = N∗ ∪{N}, N• = N\N∗,
B◦ = B ∩ (N◦ ×N◦), and B• = B ∩ (N• × N•). Clearly, both G◦ = (N◦,B◦)
and G• = (N•,B•) are trees. We refer to G◦ as the subtree of G defined by
the node N and we refer to G• as the subtree of G residual to G◦. Obviously,
the common node N is the root of G◦ and it is one of the leaves of G• as well.
Conversely, we may say that the tree G arises by grafting the root of G◦ to
the specified leaf N of G•.

13◦ The following figure illustrates these matters. The label n occupies the
distinguished node N , while the labels ◦ and • mark the remaining nodes of
G◦ and G•, respectively.

•

• •

n • • • •

◦ ◦ •

◦

Figure 3: Graft

14◦ Again let G = (N ,B) be any tree. Let R be the root of G and let N1,
N2, . . . , and Nk be the immediate descendants of R, in order. Let G1, G2,
. . . , and Gk be the subtrees of G defined by the nodes N1, N2, . . . , and Nk,
respectively. In this special context, we say that G arises by concatenation of
the trees G1, G2, . . . , and Gk, in order.

8 1 LOGICS AND TREES

15◦ Figure 4 illustrates the concatenation of two trees. The label r occupies
the root R of G. The labels ◦ and • mark the nodes of the subtrees G1 and
G2, respectively.

r

◦ •

◦ ◦ • • •

◦ ◦ •

◦

Figure 4: Concatenation

16◦ Of course, the foregoing trees may themselves be labeled. For the case
in which G arises by concatenation of the trees G1, G2, . . . , and Gk (in order),
we would presume that the root R of G possesses or in some manner acquires
a label of its own. For the case in which G arises by grafting the root R◦ of
G◦ to a specified leaf N of G•, we would require that the label on R◦ displace
the label on N .

Tree Forms

17◦ Remarkably, we can represent (labeled) trees in terms of strings of sym-
bols, based upon appropriate symbol sets. By applying the corresponding
Gödel Mapping, we can, in turn, convert (labeled) trees to nonnegative inte-
gers. This maneuver figures in the proofs of the theorems of Tarski, Gödel,
and Church.

18◦ Let us introduce two distinguished symbols: the left angle bracket 〈 and
the right angle bracket 〉. We obtain the (rather primitive) symbol set:

P = {〈 , 〉}

Now let Υ be the smallest subset of P ∗ which meets the conditions:

1.2 TREES 9

(Υ1) 〈 〉 ∈ Υ

(Υ2) for any positive integer k and for any strings υ1, υ2, . . . , and υk
in Υ, the string 〈υ1υ2 . . . υk〉 is in Υ

We mean to say that Υ is the intersection of all the various subsets of P ∗

which meet the conditions (Υ1) and (Υ2).

19◦ Let Υ◦ be the subset of P ∗ consisting of all strings ω of the form:

ω = 〈ω1ω2 · · · ωk〉

where k is any nonnegative integer and where ω1, ω2, · · · , and ωk are any
strings in Υ. Of course, if k = 0 then ω = 〈 〉. By inspection, we find that Υ◦

is a subset of Υ and that Υ◦ satisfies the conditions (Υ1) and (Υ2). It follows
that Υ◦ = Υ. Hence, for each string ω in Υ, there are a nonnegative integer
k and strings ω1, ω2, · · · , and ωk in Υ such that:

(Ω) ω = 〈ω1ω2 · · · ωk〉

20◦ By induction, we find that the numbers of occurrences of 〈 and 〉 in ω
are equal.

21• Show that the form for ω displayed in relation (Ω) is unique. To that
end, show that, for any strings ω′ and ω′′ in Υ and for any string α in P ∗, if
ω′′ = ω′α then α = ǫ, so that ω′ = ω′′.

22◦ Now we contend that every tree defines a string in Υ and that every
string in Υ defines a tree. The correspondence is (essentially) bijective. We
are led to refer to the strings in Υ as tree forms .

23◦ Let us proceed to prove our contention. By relation (Ω) in article 19◦,
we see that tree forms are produced inductively from 〈 〉 by concatenation.
By article 14◦, we know that trees are produced inductively from roots by
concatenation. Of course, we may identify the tree form 〈 〉 with a tree having
a single node, namely, the root. These observations prove our contention.

24◦ For an illustration, let us retrieve the tree G displayed in Figure 2 (but
erase the labels) and let us introduce the tree form ω, defined as follows:

ω = 〈〈〈 〉〈 〉〉〈〈 〉〉〈〈 〉〈〈 〉〉〈 〉〉〉

We claim that G defines ω and that ω (essentially) defines G. For the first
claim, we place the label 〈 〉 on each of the leaves of G, then proceed along the

10 1 LOGICS AND TREES

branches by concatenation to the label ω on the root. The following diagram
shows the result.

〈〈〈 〉〈 〉〉〈〈 〉〉〈〈 〉〈〈 〉〉〈 〉〉〉

〈〈 〉〈 〉〉 〈〈 〉〉 〈〈 〉〈〈 〉〉〈 〉〉

〈 〉 〈 〉 〈 〉 〈 〉 〈〈 〉〉 〈 〉

〈 〉

Figure 5: Tree/Form

For the second claim, we run the procedure in reverse. We place the label
ω on the putative root, then apply the foregoing relation (Ω) repeatedly to
generate the diagram. By article 21•, we know that the process will yield an
(essentially) unique result.

25• Explain the relation between the following incidence matrix M and the
foregoing tree G and tree form ω.

M :

01 02 03 04 05 06 07 08 09 10 11

01 0 1 1 1 0 0 0 0 0 0 0
02 0 0 0 0 1 1 0 0 0 0 0
03 0 0 0 0 0 0 1 0 0 0 0
04 0 0 0 0 0 0 0 1 1 1 0
05 0 0 0 0 0 0 0 0 0 0 0
06 0 0 0 0 0 0 0 0 0 0 0
07 0 0 0 0 0 0 0 0 0 0 0
08 0 0 0 0 0 0 0 0 0 0 0
09 0 0 0 0 0 0 0 0 0 0 1
10 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0

1.2 TREES 11

Counters

26◦ The strings:

ω′ = 〈〈〈 〉〈 〉〉〈〈 〉〉〈〈 〉〈〈 〉〉〈 〉〉〉, ω′′ = 〈〈〈 〉〈 〉〉〈〈 〉〈〈〈 〉〈〈 〉〉〈 〉〉〉

both lie in P ∗. The first is a tree form but the second is not. We require an
algorithm for deciding whether or not a given string ω in P ∗ is a tree form
and, moreover, for computing the properties of the corresponding tree: for
instance, the valences of the nodes.

27◦ Let m be an even positive integer. Let us introduce the symbol set:

Q = {−m, . . . ,−1, 0, 1, . . . ,m}

Let Q∗

m be the subset of Q∗ consisting of all strings κ which have length m
and which meet the conditions:

(1) |κ1| = 1

(2) for each index j (0 < j ≤ m), |κj − κj−1| = 1

28◦ In turn, let P ∗

m be the subset of P ∗ consisting of all strings ω having
length m. For each string ω in P ∗

m, let κ be the string in Q∗

m defined as
follows:

(•) if ω1 = 〈 then κ1 = 1 while if ω1 = 〉 then κ1 = −1
(•) for each index j (1 < j ≤ m), if ωj = 〈 then κj = κj−1 + 1 while if

ωj = 〉 then κj = κj−1 − 1

Clearly, for each index j (1 ≤ j ≤ m), κj is the difference between the numbers
of occurrences of 〈 and 〉 among the first j symbols in ω. We refer to κ as the
counter for ω.

29◦ By the foregoing discussion, we may introduce the mapping Cm carrying
P ∗

m to Q∗

m:
Cm(ω) = κ

where ω is any string in P ∗

m. By elementary considerations, we find that Cm

is bijective.

30• For the string:

ω = 〈 〉〈 〉〈 〉〈 〉〈 〉〉〈〈 〉〈 〉〈 〉〈 〉〈 〉

in P ∗

22, calculate κ = C22(ω) in Q
∗

22.

12 1 LOGICS AND TREES

31◦ Let Km be the subset of Q∗

m consisting of all strings κ which meet not
only the conditions (1) and (2) but also the conditions:

(3) for each index j (1 ≤ j < m), 0 < κj

(4) κm = 0

Of course, conditions (1) and (3) entail that κ1 = 1.

32◦ In turn, let Υm be the subset of Υ consisting of all tree forms having
length m. We contend that Cm carries Υm bijectively to Km. Having proved
the contention, we would infer that, for any string ω in P ∗

m, ω is a tree form
iff the corresponding counter κ = Cm(ω) meets the conditions (1), (2), (3),
and (4).

33◦ Let us prove the contention. We will argue by induction on m. However,
for notational clarity, we will proceed in terms of a characteristic example.
Once again, let ω be the tree form:

ω = 〈〈〈 〉〈 〉〉〈〈 〉〉〈〈 〉〈〈 〉〉〈 〉〉〉

Obviously, |ω| = 22. Let G stand for the tree defined by ω and let κ be the
counter for ω. Referring to relation (Ω) in article 19◦ and also to Figure 5,
we “inflate” ω to expose the three immediate descendants of the root in G:

ω = 〈 〈〈 〉〈 〉〉 〈〈 〉〉 〈〈 〉〈〈 〉〉〈 〉〉 〉 = 〈 ω̄1 ω̄2 ω̄3 〉

In turn, we compute κ:

κ = 1 2 3 2 3 2 1 2 3 2 1 2 3 2 3 4 3 2 3 2 1 0

and inflate it as well:

κ = 1 2 3 2 3 2 1 2 3 2 1 2 3 2 3 4 3 2 3 2 1 0

The spaces follow the occurrences of 1. Let us display the three middle seg-
ments of κ, reduced by 1:

1 2 1 2 1 0 1 2 1 0 1 2 1 2 3 2 1 2 1 0

These strings κ̄1, κ̄2, and κ̄3 are the counters for ω̄1, ω̄2, and ω̄3, respectively.
Clearly, just as ω̄1, ω̄2, and ω̄3 define ω, so also κ̄1, κ̄2, and κ̄3 define κ.

34◦ Let us assume that, for every even positive integer ℓ, if ℓ < m then Cℓ

is bijective. By the pattern explicitly developed in the foregoing example, we
infer that Cm is bijective. Our contention follows by induction.

1.2 TREES 13

35◦ For further discussion, let us display the graph of κ:

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 6: Graph of κ

Let j be any index (1 ≤ j < 22). We find that ωj = 〈 iff j = 1 or κj−κj−1 = 1.
For such a value of j, let k be the smallest index such that j < k ≤ 22 and
κj − κk = 1. By this prescription, we obtain eleven ordered pairs (j, k) of
indices. These ordered pairs are identifiable with the eleven nodes in G. One
may say that the particular occurrence ωj of 〈 locates the corresponding node
as a segment of ω. The valence of the node equals the number of indices ̄
such that j < ̄ < k and κj = κ̄.

36◦ In Figure 6, we have identified these ordered pairs (j, k) of indices with
“hooks.” In themselves, the hooks display the structure of G.

37◦ By the foregoing results, we obtain the required algorithm. In fact, for
any string ω in P ∗, ω is a tree form iff the corresponding counter κ = Cm(ω)
meets the conditions (1), (2), (3), and (4), where m = |ω|. Moreover, by our
discussion of the graph of κ, it is plain that κ yields by simple computation
the basic structure of G.

Labeled Tree Forms

38◦ In the following chapter, we will encounter two kinds of labeled trees:
syntactic trees and deductive trees. We require a generalization of the relation
between trees and tree forms which captures the relation between labeled trees
and labeled tree forms.

39◦ We can describe the generalization most effectively by means of a simple
example. Let us once again retrieve the tree G displayed in Figure 2, with
fresh labels:

14 1 LOGICS AND TREES

rrr

aaa yz aaa

p uvw bc p yz uvw

bc

Figure 7: Labeled Tree

and let ω be the tree form corresponding to G (with labels excised):

ω = 〈〈〈 〉〈 〉〉〈〈 〉〉〈〈 〉〈〈 〉〉〈 〉〉〉

We propose the string:

ω̄ = rrr〈aaa〈p〈 〉uvw〈 〉〉yz〈bc〈 〉〉aaa〈p〈 〉yz〈bc〈 〉〉uvw〈 〉〉〉

as the labeled tree form corresponding to the labeled tree G. For each node
N in G, we have substituted the label on N for the empty string ǫ just to the
left of the particular occurrence of 〈 in ω which locates N .

40◦ The formal generalization proceeds without difficulty.

41◦ Both syntactic and deductive trees have the property that the labels
on their leaves determine the labels on the other nodes, including the root.
However, the details are intricate. We will discuss these matters when they
inexorably arise.

Christopher Smart, c1760 (adapted)

42◦ “For the trees are great blessings. For the trees are great blessings. For
the trees have their angels, even the words of God’s creation. For the tree
glorifies God and the root parries the Adversary. For there is a language of
trees. For the trees are, peculiarly, the poetry of Life.”

1.2 TREES 15

43• Memorize the Greek alphabet:

α alpha A
β beta B
γ gamma Γ
δ delta ∆
ǫ epsilon E
ζ zeta Z
η eta H
θ theta Θ
ι iota I
κ kappa K
λ lambda Λ
µ mu M
ν nu N
ξ xi Ξ
o omicron O
π pi Π
ρ rho P
σ sigma Σ
τ tau T
υ upsilon Υ
φ phi Φ
χ chi X
ψ psi Ψ
ω omega Ω

16 1 LOGICS AND TREES

CHAPTER 2

PREDICATE LOGICS: SYNTAX

Let us describe the various predicate logics. In this chapter, we concentrate
upon matters of syntax , that is, of grammar. The basic theorem is the De-
duction Principle. In the following chapter, we concentrate upon matters of
semantics , that is, of meaning. The basic theorem is the Interpretation The-
orem, from which the Completeness Theorem and the Compactness Theorem
follow easily.

2.1 LANGUAGES

Symbols

01◦ Let Σ be the symbol set consisting of the ten symbols:

(,), ¬, −→, ∀, c, x, f, r, |

We proceed to describe the languages L, as subsets of Σ∗, which figure in the
predicate logics. To begin, we form the constant strings :

(c|), (c||), (c|||), (c||||), . . .

the variable strings :

(x|), (x||), (x|||), (x||||), . . .

the function strings :

(|f |), (|f ||), (|f |||), (|f ||||), . . . ; (||f |), (||f ||), (||f |||), (||f ||||), . . . ; . . .

and the predicate (or relation) strings :

(|r|), (|r||), (|r|||), (|r||||), . . . ; (||r|), (||r||), (||r|||), (||r||||), . . . ; . . .

Let V be the subset of Σ∗ consisting of all the variable strings.

18 2 PREDICATE LOGICS: SYNTAX

02◦ Respecting common practice, we will refer to the foregoing strings as
symbols. For any function symbol φ and for any predicate symbol ρ, we refer
to the number of strokes | to the left of f and r, respectively, as the valence
of the symbol. We denote the valences by v(φ) and v(ρ), respectively.

03◦ For convenience, we abbreviate the foregoing symbols in the manner
suggested by the following examples:

c4 for (c||||), x7 for (x|||||||), f2
5 for (||f |||||), r34 for (|||r||||)

Of course, v(f2
5) = 2 and v(r34) = 3.

04◦ For the predicate symbol (||r|), we reserve the following special abbrevi-
ation:

≡ for r21 for (||r|)
Clearly, v(≡) = 2. We refer to ≡ as the equality symbol.

Preambles

05◦ Let C be any subset of the set of all constant symbols, let F be any
subset of the set of all function symbols, and let P be any subset of the set
of all predicate symbols in Σ∗, constrained only by the requirement that the
equality symbol ≡ be a member of P . Let us refer to the ordered triple:

Π = (C,F ,P)
as a preamble. For clarity, we might sometimes denote the components of a
preamble Π by CΠ, FΠ, and PΠ, respectively.

06◦ Let us describe the terms, the atomic sentences, and the sentences which
compose the predicate language LΠ defined by the preamble Π.

Terms

07◦ Let TΠ be the smallest subset of Σ∗ which meets the conditions:

(T1) C ⊆ TΠ
(T2) V ⊆ TΠ
(T3) for any positive integer k and for any function symbol φ in F , if

k is the valence of φ then, for any strings τ1, τ2, . . . , and τk in TΠ, the string
(φτ1τ2 . . . τk) is in TΠ

We mean to say that TΠ is the intersection of all the various subsets of Σ∗

which meet conditions (T1), (T2), and (T3). We refer to the strings in TΠ
as terms and, in particular, to the constant symbols in C and the variable
symbols in V as atomic terms.

2.1 LANGUAGES 19

Atomic Sentences

08◦ Now we may form the various atomic sentences :

λ = (ρτ1τ2 · · · τℓ)

where ρ is any predicate symbol in P , where τ1, τ2, . . . , and τℓ are any terms
in TΠ, and where ℓ is the valence of ρ.

09◦ For the atomic sentence (≡ τ1τ2), we adopt the following familiar con-
vention:

(τ1 ≡ τ2) for (≡τ1τ2)

Sentences

10◦ Finally, let LΠ be the smallest subset of Σ∗ which meets the conditions:

(L1) for any atomic sentence λ in Σ∗, λ lies in LΠ
(L2) for any string α in Σ∗, if α lies in LΠ then ((¬)α) lies in LΠ
(L3) for any strings β and γ in Σ∗, if β and γ lie in LΠ then ((−→)βγ)

lies in LΠ
(L4) for any string δ in Σ∗ and for any variable symbol ζ in V , if δ lies

in LΠ then ((∀ζ)δ) lies in LΠ

We mean to say that LΠ is the intersection of all the various subsets of Σ∗

which meet conditions (L1), (L2), (L3), and (L4).

11◦ We refer to the strings in LΠ as sentences . For any sentences α, β, γ,
and δ in LΠ and for any variable symbol ζ in V , we refer to ((¬)α) as the
negation of α, to ((−→)βγ) as the implication of β and γ, and to ((∀ζ)δ)
as the generalization of δ over ζ. We refer to the string (¬) as the negation
symbol, to the string (−→) as the implication symbol, and to a string of the
form (∀ζ) as a universal quantifier .

12◦ The foregoing baroque deployment of the parentheses (and) will prove
useful in our study of syntactic and deductive trees for the predicate logics.
However, when convenient, we will use the following familiar substitutes:

¬α or (¬α) for ((¬)α), (∀ζ)δ for ((∀ζ)δ),

β −→ γ or (β −→ γ) for ((−→)βγ)

20 2 PREDICATE LOGICS: SYNTAX

Predicate Languages: Π =⇒ LΠ

13◦ Let Π be any preamble. We refer to LΠ as the predicate language defined
by Π.

Syntactic Trees: Terms

14◦ Let us describe a procedure for defining all terms in TΠ explicitly. (Of
course, we say nothing about the atomic terms.) To that end, let G = (N ,B)
be an active tree. We place labels on the nodes of the tree, as follows. Let
L be any leaf in N and let N be its immediate ancestor. If L is the primary
leaf for N then we place a function symbol φ on L, subject to the conditions
that φ lies in F and v(N) = v(φ)+ 1. (If no such function symbol is available
then we terminate the procedure.) If L is not the primary leaf for N then
we place on L a constant symbol in C or a variable symbol in V , arbitrarily.
In this way, we place labels on all the leaves of the tree. We place labels
on the remaining nodes of the tree in accord with the following recursive
instruction. Let N be any node in N , other than a leaf. The label on N shall
be (φτ1τ2 · · · τk), where φ, τ1, τ2, . . . , and τk are the labels, in order, on
the immediate descendants of N . Of course, k = v(φ). By this procedure, we
determine a term, namely, the term τ which occupies the root of G. We refer
to G, now labeled, as the syntactic tree for the term τ .

15◦ Let us display an example:

(φζ η (ψηχ))

φ ζ η (ψηχ)

ψ η χ

Figure 8: Term

We see a constant symbol χ, variable symbols ζ and η, and function symbols
φ and ψ. Of course, v(φ) = 3 and v(ψ) = 2.

16◦ Obviously, the syntactic trees for terms can be assembled, by grafts and
concatenations, from basic labeled trees of two types. For the first type, the
tree would be trivial, having one node (the root). The label on the root would
be either a constant symbol or a variable symbol. For the second type, the

2.1 LANGUAGES 21

tree would have a root and an array of (at least two) immediate descendants.
The label on the primary leaf would be a function symbol and the labels on
the secondary leaves would be constant symbols and variables symbols, in
any combination. One should note that the assembly proceeds in manner
essentially unique.

17◦ Let T̄Π be the subset of TΠ consisting of the atomic terms together with
all the terms produced by the foregoing procedure. One can easily show that
T̄Π meets the conditions (T1), (T2), and (T3) which define TΠ. Consequently,
T̄Π = TΠ.

18◦ For a given term τ , it may happen that no variable symbols figure in its
definition. In such a case, we refer to τ as a closed term. We denote by T 0

Π

the subset of TΠ consisting of all such terms.

Syntactic Trees: Atomic Sentences

19◦ The syntactic trees for atomic sentences require no elaboration. They
derive from basic labeled trees of just one type, for instance:

(ρστ υ)

ρ σ τ υ

Figure 9: Atomic Sentence

Of course, ρ is a predicate symbol for which v(ρ) = 3, while σ, τ , and υ are
terms.

Syntactic Trees: Sentences

20◦ Finally, let us describe a procedure for defining all sentences in LΠ ex-
plicitly. To that end, let G = (N ,B) be an active tree, subject to the condition
that, for each node N in N , v(N) equals 0, 2, or 3. We place labels on the
nodes of the tree, as follows. Let L be any leaf in N and let N be its imme-
diate ancestor. If L is the primary leaf for N and if v(N) = 2 then we place
either the negation symbol (¬) or one of the universal quantifiers (∀ζ) on L.
If L is the primary leaf for N and if v(N) = 3 then we place the implication
symbol (−→) on L. If L is not the primary leaf for N then we place an atomic
sentence λ on L, arbitrarily. In this way, we place labels on all the leaves of
the tree. We place labels on the remaining nodes of the tree in accord with the

22 2 PREDICATE LOGICS: SYNTAX

following recursive instructions. Let N be any node in N , other than a leaf. If
v(N) = 2 and if the negation symbol (¬) occupies the primary leaf for N then
the label on N shall be ((¬)β), where (¬) and β are the labels, in order, on
the two immediate descendants of N . If v(N) = 2 and if a universal quantifier
(∀ζ) occupies the primary leaf for N then the label on N shall be ((∀ζ)β),
where (∀ζ) and β are the labels, in order, on the two immediate descendants
of N . If v(N) = 3 then the label on N shall be ((−→)β1β2), where (−→),
β1, and β2 are the labels, in order, on the three immediate descendants of N .
Obviously, the foregoing procedure determines a sentence in LΠ, namely, the
sentence α which occupies the root of G. We refer to G as the syntactic tree
for α and to the various atomic sentences which occupy the secondary leaves
in N as the atomic subsentences of α.

21◦ In Figure 10, we display an example. Of course, η is a variable symbol
while λ, µ, and ν are atomic sentences.

(((∀η)λ) −→ (µ −→ ((¬)ν)))

(−→) ((∀η)λ)

(∀η) λ

(µ −→ ((¬)ν))

(−→) µ ((¬)ν)

(¬) ν

Figure 10: Sentence

The awkward disposition of nodes and branches will serve a purpose in the
next following figure.

22◦ Obviously, the syntactic trees for sentences can be assembled, by grafts
and concatenations, from basic labeled trees of three types. The types are
defined by the operators (¬), (−→), and (∀ζ) of negation, implication, and
generalization.

23◦ Let L̄Π be the subset of LΠ consisting of all sentences produced by the
foregoing procedure. By elementary argument, one can show that L̄Π meets
the conditions (L1), (L2), (L3), and (L4) which figure in the definition of LΠ.
Consequently, L̄Π = LΠ.

2.1 LANGUAGES 23

Unfoldings

24◦ Let α be a sentence in LΠ and let G = (N ,B) be the syntactic tree for
α. We proceed to unfold G, in two stages, as follows.

(◦) We form the tree Ḡ = (N̄ , B̄) by grafting to each secondary leaf L
in N the syntactic tree for the atomic sentence λ which occupies L.

(•) We form the tree Ĝ = (N̂ , B̂) by grafting to each secondary leaf L̄
in N̄ the syntactic tree for the term υ which occupies L̄.

In both steps, one ought to adjust the labels on the nodes in accord with the
instructions in articles 14◦ and 20◦. However, the effect of such labor would,
in general, be a tree of baffling complexity, difficult to display.

25◦ We refer to Ĝ as the unfolded syntactic tree for α. To be clear, we refer
to G as the basic syntactic tree for α.

26◦ The following figure shows the unfolded syntactic tree for the sentence
depicted in Figure 10.

(((∀η)λ) −→ (µ −→ ((¬)ν)))

(−→) ((∀η)λ)

(∀η) λ

≡ ζ η

(µ −→ ((¬)ν))

(−→) µ

ρ υ

φ η

((¬)ν)

(¬) ν

≡ θ η

Figure 11: Unfolding

We intend that ζ, η, and θ be variable symbols, that φ be a function symbol,
and that ρ be a relation symbol. Now, λ, µ, and ν are the atomic sentences
(ζ ≡ η), (ρυ), and (θ ≡ η), respectively, while υ is the term (φη).

24 2 PREDICATE LOGICS: SYNTAX

Subterms of Terms

27◦ Let τ and υ be any terms in TΠ. Let us emphasize that τ might be an
atomic term in TΠ, that is, a constant symbol χ in C or a variable symbol ζ
in V . We say that τ is a subterm of υ iff τ is a segment of υ. We also say that
τ occurs in υ. One can easily show that τ is a subterm of υ iff τ occupies one
of the nodes, let it be N , of the syntactic tree for υ. Of course, such a node
would not be a primary leaf. Clearly, the syntactic tree for τ is the subtree of
the syntactic tree for υ defined by N . See Figure 8.

Subsentences of Sentences

28◦ Let α and β be any sentences in LΠ. We say that β is a subsentence of α
iff β is a segment of α. We also say that β occurs in α. One can easily show
that β is a subsentence of α iff β occupies one of the nodes, let it be N , of
the basic syntactic tree for α. Of course, such a node would not be a primary
leaf. In any case, the basic syntactic tree for β would be the subtree of the
basic syntactic tree for α defined by N . Of course, β would be an atomic
subsentence of α iff N is one of the secondary leaves of the basic syntactic
tree for α. See Figure 10.

Subterms of Sentences

29◦ Let τ be any term in TΠ and let α be any sentence in LΠ. Let us
emphasize that τ might be an atomic term in TΠ. We say that τ is a subterm
of α iff there is an atomic subsentence λ of α such that τ is a segment of λ.
We also say that τ occurs in α. One can easily show that τ is a subterm of
α iff τ occupies one of the nodes, let it be N , of the unfolded syntactic tree
for α. Of course, such a node would not be a primary leaf. In any case, the
syntactic tree for τ is the subtree of the unfolded syntactic tree for α defined
by N . See Figure 11.

Bound and Free Occurrences of Variable Symbols in Sentences

30◦ Let ζ be any variable symbol in V and let α be any sentence in LΠ. Let
us assume that ζ occurs in α and let us focus attention upon one particular
occurrence. Let λ be the atomic subsentence of α such that ζ occurs (at least
once) in λ. Let L be the particular secondary leaf in the basic syntactic tree
for α occupied by λ and let R be the root of the tree (occupied by α itself).
Of course, there is a unique path:

R = N0, N1, N2, . . . , Nℓ = L

2.1 LANGUAGES 25

in the tree joining R to L. Let:

α = γ0, γ1, γ2, . . . , γℓ = λ

be the subsentences of α which occupy the corresponding nodes in the path.
We say that the particular occurrence of ζ in α is bound iff there is at least
one index q (0 ≤ q < ℓ) such that:

γq = ((∀ζ)γq+1)

Clearly, each occurrence of ζ in α corresponds to the appearance of ζ as a label
on one of the secondary leaves in the unfolded syntactic tree for α. Briefly,
we may say that a particular occurrence of ζ in α is bound iff, in course of
descending through the unfolded syntactic tree for α from the root R on which
α lies to the particular secondary leaf L̂ on which ζ lies, we encounter, at least
once, an application of the universal quantifier (∀ζ).

31◦ In turn, we say that the particular occurrence of ζ in α is free iff it is not
bound.

32◦ In Figure 11, we find that one of the occurrences of η is bound while the
other two are free. The lone occurrences of ζ and θ are free.

Closed/Open

33◦ Let α be any sentence in LΠ. Let Vα be the subset of V consisting of all
variable symbols ζ such that ζ occurs at least once freely in α. Of course, Vα
is finite. For the case in which Vα = ∅, we refer to α as a closed sentence. For
the case in which Vα 6= ∅, we refer to α as an open sentence.

34◦ Let k be any nonnegative integer. We denote by LkΠ the subset of LΠ
consisting of all sentences α in LΠ such that:

|Vα| = k

which is to say that Vα contains precisely k variable symbols. Of course, L0Π
consists of all sentences α in LΠ such that α is closed.

35◦ Obviously:

LΠ =

∞
⋃

k=0

LkΠ

36◦ Let α be any sentence in LΠ. Let k = |Vα|. Let us make a list, in natural
order, of the variable symbols in Vα:

xj1 , xj2 , . . . , xjk (j1 < j2 < · · · < jk)

26 2 PREDICATE LOGICS: SYNTAX

In turn, let us introduce the sentence:

∀α = (∀xj1)(∀xj2) · · · (∀xjk)α

in LΠ. We refer to ∀α as the closure of α. Obviously, ∀α is a closed sentence.
Of course, if α itself is a closed sentence then k = 0, the foregoing list is empty,
and ∀α = α.

37◦ Let H be any subset of LΠ. Let us introduce the subset:

∀H

of LΠ consisting of all sentences of the form ∀α, where α is any sentence in
H. We refer to ∀H as the closure of H.

38◦ It may happen that, for each sentence α in H, α is closed, so that ∀H =
H. In such a case, we say that H is closed .

Substitution of Terms for Variable Symbols in Terms

39◦ Let ζ be any variable symbol in V and let τ and υ be any terms in TΠ.
Let us proceed to substitute τ for each of the occurrences of ζ in υ. We denote
the resulting term in TΠ by υ(τ |ζ).

40◦ Let ℓ be the number of occurrences of ζ in υ and let L1, L2, . . . , and Lℓ

be the corresponding leaves of the syntactic tree for υ on which ζ lies. We
form the syntactic tree for υ(τ |ζ) by grafting copies of the syntactic tree for
τ to each of the leaves Lj (1 ≤ j ≤ ℓ), then modifying the labels in accord
with the inductive instruction described in article 14◦.

41◦ Of course, there may be no occurrences of ζ in υ. In such a case, we
interpret υ(τ |ζ) to be υ.

Substitution of Terms for Variable Symbols in Sentences

42◦ Let ζ be any variable symbol in V , let τ be any term in TΠ, and let α
be any sentence in LΠ. Let us proceed to substitute τ for each of the free
occurrences of ζ in α. We denote the resulting sentence in LΠ by α(τ |ζ).

43◦ Let ℓ be the number of free occurrences of ζ in α and let L1, L2, . . . , and
Lℓ be the corresponding leaves of the unfolded syntactic tree for α on which ζ
lies. We form the unfolded syntactic tree for α(τ |ζ) by grafting copies of the
syntactic tree for τ to each of the leaves Lj (1 ≤ j ≤ ℓ), then modifying the
labels in accord with the inductive instructions described in article 20◦.

2.1 LANGUAGES 27

44◦ Of course, there may be no free occurrences of ζ in α. In such a case, we
interpret α(τ |ζ) to be α.

45◦ For illustration, we return to the sentence depicted in Figure 11. Let us
denote it by α. In turn, let us identify the term τ with (ψζη), where ψ is a
function symbol in F . Obviously, the variable symbols ζ, η, and θ occur in α.
Let us substitute τ for ζ in α and let us form the unfolded syntactic tree for
α(τ |ζ):

(((∀η)λ) −→ (µ −→ ((¬)ν)))

(−→) ((∀η)λ)

(∀η) λ

≡ (ψζη)

ψ ζ η

η

(µ −→ ((¬)ν))

(−→) µ

ρ υ

φ η

((¬)ν)

(¬) ν

≡ θ η

Figure 12: Substitution

Freedom

46◦ Let ζ be any variable symbol in V , let τ be any term in TΠ, and let α
be any sentence in LΠ. We say that τ is free for ζ in α iff, for any variable
symbol η in V , if η occurs in τ then the occurrences, if any, of η in α(τ |ζ)
introduced by substitution of τ (for all the free occurrences, if any, of ζ in α)
are free in α(τ |ζ).

47◦ In Figure 12, we find that τ is not free for ζ in α, because the occurrence
of η in α(τ |ζ) (introduced by substitution of τ for the free occurrence of ζ in
α) is bound. For contrast, one should note that τ is in fact free for both η
and θ in α.

28 2 PREDICATE LOGICS: SYNTAX

48• In context of an appropriate predicate language, consider the sentence:

α = (((∀θ)((∀ζ)(ρηζ))) −→ ((ρζθ) −→ ((∀η)(ση))))

Draw the unfolded syntactic tree for α. Let τ be the term:

τ = (φζθ)

Draw the unfolded syntactic tree for α(τ |ζ). Is τ free for ζ in α? Is τ free for
η in α? Is τ free for θ in α?

2.2 SYNTACTIC IMPLICATION

Axioms

01◦ Let AΠ be the subset of LΠ composed of all sentences of any one of the
following ten forms, called Axiom Schemes:

(A1) (α −→ (β −→ α))

(A2) ((α −→ (β −→ γ)) −→ ((α −→ β) −→ (α −→ γ)))

(A3) ((((¬)β) −→ ((¬)α)) −→ (α −→ β))

(A4) (((∀ζ)α) −→ α(τ |ζ))
(A5) (((∀ζ)(α −→ β)) −→ (α −→ ((∀ζ)β)))

(E1) (σ ≡ σ)
(E2) ((σ ≡ τ) −→ (τ ≡ σ))
(E3) ((σ ≡ τ) −→ ((τ ≡ υ) −→ (σ ≡ υ)))
(E4) ((σ1 ≡ τ1) −→ ((σ2 ≡ τ2) −→ · · ·

((σk ≡ τk) −→ ((φσ1σ2 · · · σk) ≡ (φτ1τ2 · · · τk))) · · ·))
(E5) ((σ1 ≡ τ1) −→ ((σ2 ≡ τ2) −→ · · ·

((σℓ ≡ τℓ) −→ ((ρσ1σ2 · · · σℓ) −→ (ρτ1τ2 · · · τℓ))) · · ·))

where α, β and γ are any sentences in LΠ, where ζ is any variable symbol
in V , where φ is any function symbol in F , where ρ is any predicate symbol
in P , and where the various σ’s, τ ’s, and υ’s are any terms in T . Of course,
k = v(φ) and ℓ = v(ρ). In case (A4), we require that τ be free for ζ in α. In
case (A5), we require that each occurrence (if any) of ζ in α be bound.

2.2 SYNTACTIC IMPLICATION 29

02◦ Supplemented by appropriate rules of deduction, the foregoing set AΠ of
axioms yields cogent proofs of the Deduction Principle and the Interpretation
Theorem.

Predicate Logics: Π =⇒ ΛΠ = (LΠ,AΠ)

03◦ Let Π be any preamble. We refer to the ordered pair:

ΛΠ = (LΠ,AΠ)

as the predicate logic defined by Π. However, to complete our description of
it, we must specify the rules of deduction and we must describe the concept
of syntactic implication.

Deductive Trees

04◦ Let H be any subset of LΠ. We refer to the sentences in H as hypotheses .
Let G = (N ,B) be any tree. We say that G is a deductive tree from H iff it
meets the following conditions:

(D1) G is active and labeled

(D2) for each node N in N , v(N) equals 0, 2, or 3

(D3) if N is a secondary leaf then the label α which occupies N is an
axiom in AΠ or an hypothesis in H

(D4) if v(N) = 2 then the labels which occupy the immediate descen-
dants of N are, in order:

(∀ζ), β
and the label which occupies N is the sentence ((∀ζ)β) in LΠ, where ζ is a
variable symbol in V and β is a sentence in LΠ

(D5) if v(N) = 3 then the labels which occupy the immediate descen-
dants of N are, in order:

(−→), γ1, (γ1 −→ γ2)

and the label which occupies N is γ2, where γ1 and γ2 are sentences in LΠ

Let R be the root in N and let δ be the sentence in LΠ which occupies R.
We refer to δ as the consequence of G.

05◦ Let H̃ be the subset of H consisting of all sentences α in H\AΠ which
occupy at least one of the secondary leaves in G. We refer to the sentences in
H̃ as the material hypotheses for G.

30 2 PREDICATE LOGICS: SYNTAX

06◦ Under condition (D4), we say that the sentence ((∀ζ)β) which occupies
the node N follows by Generalization from the sentence β which occupies the
second of the immediate descendants of N :

β =⇒ ((∀ζ)β)

in particular, by generalization over the variable symbol ζ. Briefly, we say
that G justifies ((∀ζ)β) by Generalization (over ζ).

07◦ Under condition (D5), we say that the sentence γ2 which occupies the
node N follows by Modus Ponens from the sentences γ1 and (γ1 −→ γ2) which
occupy the second and third of the immediate descendants of N :

γ1, (γ1 −→ γ2) =⇒ γ2

Briefly, we say that G justifies γ2 by Modus Ponens.

08◦ For the various predicate logics ΛΠ, we refer to Modus Ponens and to
Generalization as the Rules of Deduction.

09◦ Let ζ be a variable symbol in V and let α and β be sentences in LΠ. Let
H be the set of hypotheses, defined as follows:

H = {α, ((∀ζ)(α −→ β))}

We offer the following simple example of a deductive tree from H:

((∀ζ)β)

(∀ζ) β

(−→) α (α −→ β)

(−→) ((∀ζ)(α −→ β)) γ

Figure 13: Deductive Tree

2.2 SYNTACTIC IMPLICATION 31

where:
γ = (((∀ζ)(α −→ β)) −→ (α −→ β))

Clearly, the sentence γ is an instance of Axiom Scheme (A4). Of course, the
consequence of the tree is ((∀ζ)β).

10◦ Let G = (N ,B) be a deductive tree from H. Let N be any node in N ,
other than a primary leaf and let G◦ = (N◦,B◦) be the subtree of G defined
by N , with labels intact. Obviously, G◦ is a deductive tree from H and the
consequence of G◦ is the sentence in LΠ which occupies N .

Proper Deductive Trees

11◦ The practice of justification by Generalization requires restraint. To pre-
serve the Deduction Principle and, in due course, the Interpretation Theorem,
we must forbid generalization over a variable which occurs freely in one of the
material hypotheses. Let us be more precise.

12◦ Let G = (N ,B) be any deductive tree from H. Let N be any node in
N for which v(N) = 2. Of course, there must be a variable symbol ζ in V
and a sentence β in LΠ such that (∀ζ) and β are the labels, in order, on the
immediate descendants of N and such that ((∀ζ)β) is the label on N . Let
G◦ be the subtree of G defined by N . As noted earlier, G◦ is a deductive tree
from H and ((∀ζ)β) is its consequence. We say that N is an improper node
for G iff ζ occurs at least once freely in at least one of the material hypotheses
for G◦. Such a node marks an improper application of Generalization.

13◦ We say that G is improper iff there is at least one improper node for G.
Naturally, we say that G is proper iff it is not improper.

14• Review the deductive tree (from H) displayed in Figure 13. Let each
occurrence (if any) of ζ in α be bound. Verify that the tree is proper. Using
Axiom Scheme (A5), design a simpler proper deductive tree from H having
consequence ((∀ζ)β).

Syntactic Implication

15◦ Let H be any subset of LΠ. We refer to the sentences in H as hypotheses .
Let δ be any sentence in LΠ. We say that H syntactically implies δ iff there is
a proper deductive tree G from H for which δ is the consequence. To express
this relation, we write:

H ‖− δ
We say that G is a proper deductive tree for δ from H.

32 2 PREDICATE LOGICS: SYNTAX

16◦ Let H1 and H2 be any subsets of LΠ. We say that H1 syntactically
implies H2 iff, for each sentence δ in H2, H1 ‖− δ. To express this relation,
we write:

H1 ‖− H2

In practice, it may happen that one or both of the sets H1 and H2 are finite:

H1 = {β1, β2, . . . , βk} or/and H2 = {γ1, γ2, . . . , γℓ}

In such cases, we write not H1 ‖− H2 but:

β1, β2, . . . , βk ‖− H2

H1 ‖− γ1, γ2, . . . , γk
β1, β2, . . . , βk ‖− γ1, γ2, . . . , γk

17◦ Obviously, for any subsets H1 and H2 of LΠ and for any sentence δ in
LΠ:

H1 ⊆ H2, H1 ‖− δ =⇒ H2 ‖− δ

Modus Ponens

18◦ Obviously, for any subset H of LΠ and for any sentences γ and δ in LΠ:

(MP) H ‖− γ, H ‖− (γ −→ δ) =⇒ H ‖− δ

Generalization

19◦ Obviously, for any subset H of LΠ, for any variable symbol ζ in V , and
for any sentence β in LΠ, if ζ does not occur freely in any one of the sentences
in H then:

(GN) H ‖− β =⇒ H ‖− ((∀ζ)β)

In practice, we will introduce applications of Modus Ponens and Generaliza-
tion simply by mentioning the abbreviations (MP) and (GN).

Syntactic Theories

20◦ Let H be any subset of LΠ. We refer to the sentences in H as hypotheses .
Let:

ΘΠ(H)

2.2 SYNTACTIC IMPLICATION 33

be the subset of LΠ consisting of all sentences δ such that H ‖− δ. We refer
to the sentences in ΘΠ(H) as syntactic theorems and to ΘΠ(H) itself as the
syntactic theory of H. Of course:

H ‖− ΘΠ(H)

A Trivial Syntactic Implication

21◦ Let us illustrate syntactic implication by showing that, for any sentence
α in LΠ:

(SI1) ∅ ‖− (α −→ α)

To prove (SI1), we introduce the following proper deductive tree Ĝ from ∅:

(α −→ α)

(−→) δ1 δ2

(−→) δ3 δ4

Figure 14: (SI1)

where:

δ1 = (α −→ (α −→ α))

δ2 = ((α −→ (α −→ α)) −→ (α −→ α))

δ3 = (α −→ ((α −→ α) −→ α))

δ4 = ((α −→ ((α −→ α) −→ α)) −→ ((α −→ (α −→ α)) −→ (α −→ α)))

Clearly, δ1 and δ3 are instances of the Axiom Scheme (A1) and δ4 is an instance
of the Axiom Scheme (A2).

22◦ The foregoing peculiar argument is a cost of the design of the set AΠ of
axioms. In general, the design yields seamless proofs, notably, of the Deduc-
tion Principle and the Interpretation Theorem. However, for (SI1), the proof
is baroque.

34 2 PREDICATE LOGICS: SYNTAX

2.3 THE DEDUCTION PRINCIPLE

The Deduction Principle

01◦ Let H be any subset of LΠ and let α and β be any sentences in LΠ. We
contend that:

(DP) H ‖− β =⇒ H\{α} ‖− (α −→ β)

We refer to this fundamental fact as the Deduction Principle. It plays a critical
role in the design of deductions.

02◦ To prove (DP), we argue as follows. Let G = (N ,B) be a proper deduc-
tive tree for β from H. Let H̃ be the subset of H consisting of all material
hypotheses for G. We claim that there is a proper deductive tree Ḡ = (N̄ , B̄)
for (α −→ β) from H̃\{α}. Having proved the claim, we will have proved
(DP).

03◦ We begin by introducing the following labeled tree, as a utility:

(α −→ β)

(−→) β (β −→ (α −→ β))

Figure 15: Utility

Of course, the sentence:
(β −→ (α −→ β))

is an instance of the Axiom Scheme (A1). Let us assume that α /∈ H̃. Under
this assumption, we define Ḡ to be the tree obtained by grafting the tree G to
the leaf in the displayed tree (Figure 15) which carries the label β. Clearly, Ḡ
is a proper deductive tree for (α −→ β) from H̃\{α} = H̃.

04◦ Hereafter, we assume that α ∈ H̃. We proceed to argue by induction on
the number of nodes in G. Let R be the root of G.

05◦ Let us consider the case in which v(R) = 0. By definition, there is just
one node in G (namely, R) and β ∈ AΠ ∪ H̃. If β = α then we define Ḡ to
be the tree displayed in Figure 14. Clearly, Ḡ is a proper deductive tree for
(α −→ β) from ∅. If β 6= α then we define Ḡ to be the tree displayed in Figure
15. Clearly, Ḡ is a proper deductive tree for (α −→ β) from H̃\{α}.

2.3 THE DEDUCTION PRINCIPLE 35

06◦ Now let us consider the case in which v(R) = 2. Let P and N be the
immediate descendants of R, in order. Let (∀ζ) and γ be the labels which
occupy P and N , respectively, where ζ is a variable symbol in V and where γ
is a sentence in LΠ. Of course, β = ((∀ζ)γ). Let us emphasize that ζ does not
occur freely in any one of the sentences in H̃. In particular, ζ does not occur
freely in α. Let G◦ be the subtree of G defined by the node N . Obviously,
G◦ is a proper deductive tree for γ from H̃ and the number of nodes in G◦
is smaller than the number of nodes in G. By induction, we may introduce
a proper deductive tree Ḡ◦ for (α −→ γ) from H̃\{α}. Let us introduce the
following (labeled) tree, as a utility:

(α −→ ((∀ζ)γ))

(−→) ((∀ζ)(α −→ γ))

(∀ζ) (α −→ γ)

δ

Figure 16: Utility

where:
δ ≡ (((∀ζ)(α −→ γ)) −→ (α −→ ((∀ζ)γ)))

Clearly, δ is an instance of the Axiom Scheme (A5). At this point, we define Ḡ
to be the tree obtained by grafting the tree Ḡ◦ to the leaf in the displayed tree
(Figure 16) which carries the label (α −→ γ). Clearly, Ḡ is a proper deductive
tree for (α −→ β) from H̃\{α}.

07◦ Finally, let us consider the case in which v(R) = 3. Let P , N1, and N2 be
the immediate descendants of R, in order. Let (−→), γ1, and γ2 be the labels
which occupy P , N1, and N2, respectively, where γ1 and γ2 are sentences in
LΠ. Of course, γ2 = (γ1 −→ β). Let G1 and G2 be the subtrees of G defined by
the nodes N1 and N2, respectively. Obviously, G1 and G2 are proper deductive
trees for γ1 and γ2, respectively, from H̃ and the numbers of nodes in G1 and
G2 are smaller than the number of nodes in G. By induction, we may introduce
proper deductive trees Ḡ1 and Ḡ2 for (α −→ γ1) and (α −→ γ2), respectively,
from H̃\{α}. Let us introduce the following (labeled) tree, as a utility:

36 2 PREDICATE LOGICS: SYNTAX

(α −→ β)

(−→) (α −→ γ1) ((α −→ γ1) −→ (α −→ β))

(−→) (α −→ γ2) δ

Figure 17: Utility

where:
δ ≡ ((α −→ γ2) −→ ((α −→ γ1) −→ (α −→ β)))

Since γ2 ≡ (γ1 −→ β), δ is an instance of the Axiom Scheme (A2). At this
point, we define Ḡ to be the tree obtained by grafting the trees Ḡ1 and Ḡ2 to the
leaves in the displayed tree (Figure 17) which carry the labels (α −→ γ1) and
(α −→ γ2), respectively. Clearly, Ḡ is a proper deductive tree for (α −→ β)
from H̃\{α}. ♮

The Transitivity Principle

08◦ For any subsets H1, H2, and H3 of LΠ, we contend that if H1 ‖− H2 and
if H2 ‖− H3 then H1 ‖− H3:

(TP) H1 ‖− H2, H2 ‖− H3 =⇒ H1 ‖− H3

We refer to this fundamental fact as the Transitivity Principle.

09◦ For the proof of (TP), we may assume that H3 is a singleton. Let γ
be the lone sentence in H3, so that H3 = {γ}. In turn, we may assume that
H2 is finite. We argue by induction on the number of sentences in H2. The
arguments for the initial step and for the inductive step take the same form.
Let β be any sentence in H2. We apply (DP) to obtain H2\{β} ‖− (β −→ γ).
By induction, we infer that H1 ‖− (β −→ γ). Of course, H1 ‖− β. By (MP),
we infer that H1 ‖− γ. ♮

(DP) and (TP) in Action

10• Let ζ be a variable symbol in V and let α and β be sentences in LΠ.
Prove that:

∅ ‖− (((∀ζ)(α −→ β)) −→ (((∀ζ)α) −→ ((∀ζ)β))))

2.3 THE DEDUCTION PRINCIPLE 37

To that end, explain the following syntactic implications:

((∀ζ)α), ((∀ζ)(α −→ β)) ‖− α, (α −→ β)

α, (α −→ β) ‖− β
((∀ζ)α), ((∀ζ)(α −→ β)) ‖− β
((∀ζ)α), ((∀ζ)(α −→ β)) ‖− ((∀ζ)β)

((∀ζ)(α −→ β)) ‖− (((∀ζ)α) −→ ((∀ζ)β))
∅ ‖− (((∀ζ)(α −→ β)) −→ (((∀ζ)α) −→ ((∀ζ)β)))

Compare the sentences of the form just described with the various instances of
Axiom Scheme (A5). By symmetry of structure, one might prefer the former
to the latter in the design of the scheme. However, the latter fit seamlessly
into the proof of the Deduction Principle. See article 06◦.

Several Syntactic Implications

11◦ Granted (DP) and (TP), let us prove several syntactic implications,
which serve as lemmas for subsequent arguments. For the statements and
proofs of these implications, we adopt some of the notational substitutions
described in article 1.12◦:

(SI2) (¬α), α ‖− β

(SI3)
(¬(¬α)) ‖− α

α ‖− (¬(¬α))

(SI4) (α −→ β) ‖− ((¬β) −→ (¬α))

(SI5)

β ‖− (α −→ β)

(¬α) ‖− (α −→ β)

(¬(α −→ β)) ‖− α, (¬β)
α, (¬β) ‖− (¬(α −→ β))

(SI6) ((¬α) −→ β), (α −→ β) ‖− β

where α and β are any sentences in LΠ. We will present the proofs as series’
of implications, with pointers to justifications entered on the margin. As a
utility, let δ = (γ −→ γ), where γ is any sentence in LΠ.

38 2 PREDICATE LOGICS: SYNTAX

For (SI2):

(¬α) ‖− ((¬β) −→ (¬α))
((¬β) −→ (¬α)) ‖− (α −→ β)

(¬α) ‖− (α −→ β)

(¬α), α ‖− β

(A1), (MP)

(A3), (MP)

(TP)

(MP)

For (SI3):

(¬(¬α)), (¬α) ‖− (¬δ)
(¬(¬α)) ‖− (δ −→ α)

(¬(¬α)) ‖− α
(¬(¬(¬α))) ‖− (¬α)

α ‖− (¬(¬α))

(SI2)

(DP), (A3), (MP)

(SI1), (MP)

(DP), (A3), (MP)

For (SI4):

(¬(¬α)), (α −→ β), (¬β) ‖− (¬δ)
(α −→ β), (¬β) ‖− (δ −→ (¬α))
(α −→ β), (¬β) ‖− (¬α)

(α −→ β) ‖− ((¬β) −→ (¬α))

(SI3), (MP), (SI2)

(DP), (A3), (MP)

(SI1), (MP)

(DP)

For (SI5):

β ‖− (α −→ β)

(¬α) ‖− ((¬β) −→ (¬α))
(¬α) ‖− (α −→ β)

∅ ‖− (β −→ (α −→ β))

∅ ‖− ((¬α) −→ (α −→ β))

(¬(α −→ β) ‖− α, (¬β)
α, (¬β), (α −→ β) ‖− (¬δ)

α, (¬β) ‖− ((α −→ β) −→ (¬δ))
α, (¬β) ‖− ((¬(¬δ)) −→ (¬(α −→ β)))

α, (¬β) ‖− (¬(α −→ β))

(A1), (MP)

(A1), (MP)

(A3), (MP)

(DP)

(DP)

(SI4), (SI3), (MP)

(MP), (SI2)

(DP)

(SI4), (MP)

(SI3), (SI1), (MP)

2.3 THE DEDUCTION PRINCIPLE 39

For (SI6):

(α −→ β), ((¬α) −→ β), (¬β) ‖− (¬(¬α)), (¬α)
(α −→ β), ((¬α) −→ β), (¬β) ‖− (¬δ)

(α −→ β), ((¬α) −→ β) ‖− (δ −→ β)

(α −→ β), ((¬α) −→ β) ‖− β

(SI4), (MP)

(SI2), (TP)

(DP), (A3), (MP)

(SI1), (MP)

12• Following the pointers, write detailed and formally precise explanations
of the syntactic implications (SI2), (SI3), (SI4), (SI5), and (SI6).

13• Prove that:

(SI7) α ‖− β =⇒ (∀ζ)α ‖− (∀ζ)β

where α and β are any sentences in LΠ and where ζ is any variable symbol in
V .

Abbreviations

14◦ Let Π be any preamble. Let α, β, and γ be any sentences in LΠ and let
ζ be any variable symbol in V . Let us introduce the following abbreviations,
which provide links to conventional expressions:

(α ∨ β) for (((¬)α) −→ β)

(α ∧ β) for ((¬)(α −→ ((¬)β)))
(α←→ β) for ((α −→ β) ∧ (β −→ α))

((∃ζ)γ) for ((¬)((∀ζ)((¬)γ)))

15• Let α and β be any sentences in LΠ. To animate the foregoing abbrevi-
ations, prove the following implications:

α ‖− (α ∨ β)
β ‖− (α ∨ β)

(α ∧ β) ‖− α
(α ∧ β) ‖− β

α, β ‖− (α ∧ β)

16• Show that, if τ is free for ζ in α then:

α(τ |ζ) ‖− (∃ζ)α

40 2 PREDICATE LOGICS: SYNTAX

17• Should one expect the (seemingly plausible) contention:

(α ∨ β) ‖− α or (α ∨ β) ‖− β

to be true?

18• Let us say that α and β are syntactically equivalent iff::

α ‖− β and β ‖− α

We express this relation by writing α ≈ β. Show that:

α ≈ β ⇐⇒ ∅ ‖− (α←→ β)

Substitution and Syntactic Implication

19• Let α, β, and β̄ be sentences in LΠ. Let β be a subsentence of α and let
ᾱ be the sentence defined by substituting β̄ for β in α. Prove that:

β ≈ β̄ =⇒ α ≈ ᾱ

To that end, one should argue by induction on the length of the path in the
basic syntactic tree for α which joins the root R, carrying the label α, to the
particular node N , carrying the label β. The argument can be fabricated from
the following implications:

β ≈ β̄ =⇒

¬β ≈ ¬β̄
(∀ζ)β ≈ (∀ζ)β̄
(β −→ δ) ≈ (β̄ −→ δ)

(δ −→ β) ≈ (δ −→ β̄)

where ζ is any variable symbol in V and where δ is any sentence in LΠ.

20• Let β and γ be sentences in LΠ and let η and θ be variable symbols in
V . Prove that if:

θ 6∈ Vβ, θ free for η in β, γ = β(θ|η)

then:
η 6∈ Vγ , η free for θ in γ, β = γ(η|θ)

and:
(∀η)β ≈ (∀θ)γ

2.3 THE DEDUCTION PRINCIPLE 41

The Freedom Maneuver

21◦ Let α be a sentence in LΠ, let τ be a term in TΠ, and let ζ be a variable
symbol in V . It may happen that τ is not free for ζ in α. Nevertheless, by
a procedure to be described in a moment, we can design a sentence ᾱ in LΠ
such that:

(F1) τ is free for ζ in ᾱ

(F2) α ≈ ᾱ
(F3) the basic syntactic trees for α and ᾱ have the same number of

nodes

We refer to this procedure as the Freedom Maneuver (FM).

22◦ To design ᾱ, we proceed by induction on the number of nodes in the
basic syntactic tree for α. Three of the cases are simple:

α = λ =⇒ ᾱ = α

α = (¬β) =⇒ ᾱ = (¬β̄)
α = (γ −→ δ) =⇒ ᾱ = (γ̄ −→ δ̄)

where λ is any atomic sentence and where β, γ, and δ are any sentences in
LΠ. Let us consider the fourth, more complex case:

α = (∀η)β

where η is any variable symbol in V and where where β is any sentence in LΠ.

23◦ It may happen that η = ζ. In such a case, τ is free for ζ in α by default,
so we can take ᾱ to be α.

24◦ Let us assume that η 6= ζ. In this case, we might leap to define ᾱ as
follows:

ᾱ = (∀η)β̄
Obviously, ᾱ (so defined) would meet (F3) and, by (SI7), it would meet (F2)
as well. However, it might not meet (F1), because η might occur in τ . We
provide a remedy by introducing a new variable symbol θ in V such that θ
does not occur in τ , θ does not occur freely in β̄, and θ is free for η in β̄. Now
we define ᾱ as follows:

ᾱ = (∀θ)γ where γ = β̄(θ|η)

Clearly, ᾱ meets (F1) and (F3). By article 20•, ᾱ meets (F2) as well. ♮

42 2 PREDICATE LOGICS: SYNTAX

2.4 CONSISTENCY

Inconsistency

01◦ Let H be any subset of LΠ. We say that H is inconsistent iff there is a
sentence α in LΠ such that:

H ‖− (¬α), α

One may say that H syntactically implies a contradiction. We express this
property of H by writing:

Inc(H)
By (SI2) and (TP), if H is inconsistent then, for any (!) sentence β in LΠ:

H ‖− β

Reductio ad Absurdum

02◦ For any subset H of LΠ and for any sentence γ in LΠ, we contend that:

(RA)
Inc(H ∪ {(¬γ)}) =⇒ H ‖− γ
Inc(H ∪ {γ}) =⇒ H ‖− (¬γ)

These simple but subtle facts set the base for arguments by contradiction in
Mathematics.

03◦ To prove these contentions, we argue as follows. First, let H∪{(¬γ)} be
inconsistent. By article 01◦, H ∪ {(¬γ)} ‖− γ. By (DP), H ‖− ((¬γ) −→ γ).
By (SI1), ∅ ‖− (γ −→ γ). By (SI6) and (TP), H ‖− γ. Second, let H ∪ {γ}
be inconsistent. By (SI3), H∪ {(¬(¬γ))} is inconsistent, so that, by the first
contention, H ‖− (¬(¬(¬γ))). By (SI3) and (TP), H ‖− (¬γ). ♮

Consistency

04◦ Let H be any subset of LΠ. We say that H is consistent iff H is not
inconsistent. We express this property of H by writing:

Con(H)

In the following chapter, we will prove that H is consistent iff it admits an
interpretation in the context of informal Set Theory under which every sen-
tence in H is true. This foundation stone of Mathematics is the substance of
the Interpretation Theorem.

2.4 CONSISTENCY 43

Sublogics

05◦ Let C′ and C′′ be any subsets of the set of all constant symbols for which
C′ ⊆ C′′. Let F and P be any subsets of the sets of all function symbols and
predicate symbols, respectively, where ≡ is a member of P . Let:

Π′ = (C′,F ,P) and Π′′ = (C′′,F ,P)

be the corresponding preambles and let:

Λ′ = (L′,A′) and Λ′′ = (L′′,A′′)

be the predicate logics which they define. Obviously, L′ ⊆ L′′ and A′ ⊆ A′′.
Now Λ′ is a sublogic of Λ′′, in a sense which requires no explanation.

06◦ For precise expression, let us introduce the symbols:

‖− ′, ‖− ′′

to distinguish the relations of syntactic implication in Λ′ and Λ′′.

The Consistency Principle

07◦ Let H be any subset of L′. Of course, H is a subset of L′′ as well.
We contend that if H is consistent with respect to the logic Λ′ then H is also
consistent with respect to the logic Λ′′. We refer to this fact as the Consistency
Principle (CP).

08◦ We prepare for the proof of (CP) by describing an operation on trees.
Let G′′ be a labeled tree for which the labels on the nodes of G′′ are sentences
in L′′. Let:

χ1, χ2, . . . , χk

be a list (without repetitions) of the constant symbols in C′′\C′ which occur
in some one of the labels on the nodes of G′′. Let:

θ1, θ2, . . . , θk

be a list (without repetitions) of variable symbols in V which do not occur
in any one of the labels on the nodes of G′′. Let N be any node in G′′. Let
α′′ be the sentence in L′′ which serves as the label on N . For each index j
(1 ≤ j ≤ k), let us substitute θj for each occurrence of χj in α′′, to obtain a
new sentence α′. Of course, α′ is a sentence in L′. Let us replace the label
α′′ for N by the new label α′. In this way, we obtain a new labeled tree. Let
us denote it by G′.

44 2 PREDICATE LOGICS: SYNTAX

09◦ By systematic review of the relevant definitions, one can easily show
that if G′′ is a proper deductive tree from H relative to Λ′′ then G′ is a proper
deductive tree from H relative to Λ′. Obviously:

H ‖− ′′ δ′′ =⇒ H ‖− ′ δ′

where δ′ and δ′′ are the consequences for G′ and G′′, respectively.

10◦ Now the proof of (CP) is routine. We argue by contradiction. Let us
assume that H is consistent with respect to Λ′ but let us suppose that H
is inconsistent with respect to Λ′′. By our supposition, we may introduce a
sentence δ′′ in L′′ such that:

H ‖− ′′ (¬δ′′), δ′′

By the foregoing discussion:

H ‖− ′ (¬δ′), δ′

contradicting our assumption. ♮

The Remote Constant Principle

11◦ In the context just described, let α be a sentence in L′, let ζ be a variable
symbol in V , and let χ be a constant symbol in C′′\C′. We contend that:

H ‖− ′′ α(χ|ζ) =⇒ H ‖− ′ (∀ζ)α

We refer to this implication as the Remote Constant Principle (RC).

12◦ To prove (RC), we follow the procedure in articles 08◦ and 09◦. Let
α′′ = α(χ|ζ). Let us assume that:

H ‖− ′′ α′′

Let G′′ be a proper deductive tree from H relative to Λ′′, for which the con-
sequence is α′′. Let G′ be the corresponding proper deductive tree from H
relative to Λ′, and let α′ be its consequence. By design, α′ = α(θ|ζ), where
θ is a variable symbol which does not occur in any one of the labels on the
nodes of G′′. Of course:

H ‖− ′ α′

By article 20• in the foregoing section:

H ‖− ′ (∀ζ)α

2.5 EXAMPLES 45

13◦ Let us pause to observe that (FM), (CP), and (RC) all play critical
roles in the proof of the Interpretation Theorem.

2.5 EXAMPLES

Examples

01◦ In later chapters, we will develop the Predicate Logic for Arithmetic
and the Predicate Logic for Set Theory. These logics set the context for the
fundamental theorems of Tarski, Gödel, and Church. They require careful
preparation. For now, we provide four simple instances of predicate logics,
which will serve as illustrations for the Interpretation Theorem, soon to follow:
Ordered Fields, Groups, Abstract Lines, and Boolean Rings.

Ordered Fields

02◦ Let ΠF be the preamble defined by the following specifications:

CF = {0̄, 1̄}, FF = {−, ι,+,×}, PF = {≡, <}

where 0̄ = (c|) and 1̄ = (c||), where − = (|f |) and ι = (|f ||), where + = (||f |)
and × = (||f ||), and where <= (||r||). We refer to 0̄ and 1̄ as the zero symbol
and the one symbol, respectively; to + and × as the addition symbol and
the multiplication symbol, respectively; to − and ι as the additive inversion
symbol and the multiplicative inversion symbol, respectively; and to < as the
order symbol. As usual, we write:

(τ1 + τ2)

(τ1 × τ2)
(−τ1)
τ−1
2

(τ1 ≡ τ2)
(τ1 6≡ τ2)
(τ1 < τ2)

(τ1 6< τ2)

46 2 PREDICATE LOGICS: SYNTAX

instead of:
(+τ1τ2)

(×τ1τ2)
(−τ1)
(ιτ2)

(≡τ1τ2)
((¬)(≡τ1τ2))

(<τ1τ2)

((¬)(<τ1τ2))

respectively, where τ1 and τ2 are any terms in TF . Let LF be the predicate
language defined by ΠF and let AF be the corresponding set of axioms. Let
ΛF be the predicate logic defined by ΠF :

ΛF = (LF ,AF)

We refer to ΛF as the Predicate Logic for Ordered Field Theory. Let HF

be the subset of LF consisting of all sentences in any one of the following
schemes:

(HF)

∀ (ζ + η ≡ η + ζ)

∀ (ζ × η ≡ η × ζ)
∀ ((ζ + η) + θ ≡ ζ + (η + θ))

∀ ((ζ × η)× θ ≡ ζ × (η × θ))
∀ (ζ × (η + θ) ≡ (ζ × η) + (ζ × θ))

∀ (ζ + 0̄ ≡ ζ)
∀ (ζ × 1̄ ≡ ζ)

∀ (ζ + (−ζ) ≡ 0̄)

∀ (ζ 6≡ 0̄ −→ (ζ × ζ−1 ≡ 1̄)

(0̄ 6≡ 1̄)

∀ (ζ 6< ζ)

∀ ((ζ < η) ∧ (η < θ) −→ ζ < θ)

∀ (ζ 6≡ η −→ (ζ < η) ∨ (η < ζ))

∀ ((ζ < η) −→ (ζ + θ) < (η + θ))

∀ ((ζ < η) ∧ (0̄ < θ) −→ (ζ × θ) < (η × θ))

2.5 EXAMPLES 47

We refer to the sentences in HF as the hypotheses underlying Ordered Field
Theory. Let:

ΘF (HF)

be the subset of LF consisting of all sentences δ for which HF ‖− δ. We refer
to ΘF (HF) as the syntactic Theory of Ordered Fields.

03• Should one expect that:

HF ‖− ∀ ((0̄ < ζ) −→ (∃η)(ζ ≡ (η × η))) ?

Groups

04◦ Let ΠG be the preamble defined by the following specifications:

CG = {e}, FG = {ι, µ}, PG = {≡}

where e = (c|), where ι = (|f |), and where µ = (||f |). We write:

τ−1
1 for (ιτ1) and (τ2 · τ3) or τ2 · τ3 for (µτ2τ3)

where τ1, τ2 and τ3 are any terms in TG. Let ΛG be the predicate logic defined
by ΠG:

ΛG = (LG,AG)

We refer to ΛG as the Predicate Logic for Group Theory. Let HG be the
subset of LG consisting of all sentences in any one of the following schemes:

(HG)

∀ ((e · ζ ≡ ζ) ∧ (ζ · e ≡ ζ))
∀ ((η−1 · η ≡ e) ∧ (η · η−1 ≡ e))
∀ (ζ · (η · θ) ≡ (ζ · η) · θ)

We refer to the sentences in HG as the hypotheses underlying Group Theory.
Let:

ΘG(HG)

be the subset of LG consisting of all sentences δ for which HG ‖− δ. We refer
to ΘG(HG) as the syntactic Theory of Groups.

05• Should one expect that:

HG ‖− ∀ (ζ · η ≡ η · ζ) ?

48 2 PREDICATE LOGICS: SYNTAX

Abstract Lines

06◦ Let ΠL be the preamble defined by the following specifications:

CL = ∅, FL = ∅, PL = {≡, <}

where < = (||f ||). We refer to < as the order symbol. Note that v(<) = 2.
As usual, we write:

(τ1 ≡ τ2)
(τ1 6≡ τ2)
(τ1 < τ2)

(τ1 6< τ2)

instead of:
(≡τ1τ2),

(¬)(≡τ1τ2))
(<τ1τ2)

((¬)(<τ1τ2))

respectively, where τ1 and τ2 are any terms in TL. Let ΛL be the predicate
logic defined by ΠL:

ΛL = (LL,AL)

We refer to ΛL as the Predicate Logic for Abstract Lines. Let HL be the
subset of LL consisting of all sentences in any one of the following schemes:

(HL)

(∀ζ)(ζ 6< ζ)

(∀ζ)(∀η)(∀θ)(((ζ < η) ∧ (η < θ)) −→ (ζ < θ))

(∀ζ)(∀η)((ζ < η) ∨ (ζ ≡ η) ∨ (η < ζ))

(∀ζ)(∃θ)(θ < ζ)

(∀ζ)(∀η)((ζ < η) −→ (∃θ)((ζ < θ) ∧ (θ < η)))

(∀η)(∃θ)(η < θ)

We refer to the sentences in HL as the hypotheses underlying the Theory of
Abstract Lines. Let:

ΘL(HL)

be the subset of LL consisting of all sentences δ for which HL ‖− δ. We refer
to ΘL(HL) as the syntactic Theory of Abstract Lines.

07• Should one expect that HL be consistent?

2.5 EXAMPLES 49

Boolean Rings

08◦ Let ΠB be the preamble defined by the following specifications:

CB = {0̄, 1̄}, FB = {+,×}, PB = {≡}

where 0̄ = (c|) and 1̄ = (c||), and where + = (||f |) and × = (||f ||). We refer
to 0̄ and 1̄ as the zero symbol and the one symbol, respectively, and to +
and × as the addition symbol and the multiplication symbol, respectively. As
usual, we write:

(τ1 + τ2)

(τ1 × τ2)
(τ1 ≡ τ2)
(τ1 6≡ τ2)

instead of:
(+τ1τ2)

(×τ1τ2)
(≡τ1τ2)

((¬)(≡τ1τ2))

respectively, where τ1 and τ2 are any terms in TF . Let ΛB be the predicate
logic defined by ΠB:

ΛB = (LB ,AB)

We refer to ΛB as the Predicate Logic for Boolean Ring Theory. Let HB

be the subset of LB consisting of all sentences in any one of the following
schemes:

(HB)

∀ ((ζ + η) ≡ (η + ζ))

∀ (((ζ + η) + θ) ≡ (ζ + (η + θ)))

∀ (((ζ × η)× θ) ≡ (ζ × (η × θ)))
∀ ((ζ × (η + θ)) ≡ ((ζ × η) + (ζ × θ)))
∀ (((η + θ)× ζ) ≡ ((η × ζ) + (θ × ζ)))

∀ ((ζ + 0̄) ≡ ζ)
∀ ((ζ × 1̄) ≡ ζ)

(0̄ 6≡ 1̄)

∀ ((ζ × ζ) ≡ ζ)

50 2 PREDICATE LOGICS: SYNTAX

We refer to the sentences in HB as the hypotheses underlying Boolean Ring
Theory. Let:

ΘB(HB)

be the subset of LB consisting of all sentences δ for which HB ‖− δ. We refer
to ΘB(HB) as the syntactic Theory of Boolean Rings.

09• Show that:

HB ‖− ∀ (ζ + ζ ≡ 0̄) and HB ‖− ∀ (η × θ ≡ θ × η)

CHAPTER 3

PREDICATE LOGICS: SEMANTICS

To assign meaning to the sentences in a predicate language LΠ, we must
introduce structure sufficient to interpret the preamble Π which defines the
language. For that purpose, we turn, without apology, to the intuitive con-
cepts of Set Theory.

3.1 INTERPRETATIONS

Interpretations

01◦ Let Π be any preamble:

Π = (C,F ,P)

By an interpretation I of Π, we mean an ordered pair:

I = (Ω, S)

where Ω is any nonempty set and where S is an ordered triple:

S = (C,F, P)

for which C, F , and P are any mappings having domains C, F , and P ,
respectively, and assigning values as follows:

(IN1) for each χ in C, C(χ) is a member of Ω

(IN2) for each φ in F , F (φ) is a mapping carrying Ωk to Ω

(IN3) for each ρ in P , P (ρ) is a subset of Ωℓ

In this context, k = v(φ) and ℓ = v(ρ). We require that:

P (≡) = {(ω′, ω′′) ∈ Ω2 : ω′ = ω′′ }

We refer to Ω as the universe and to S as the structure underlying I.

52 3 PREDICATE LOGICS: SEMANTICS

Assignments

02◦ By an assignment for V in Ω, we mean any mapping A having domain
V and assigning values as follows:

(IN4) for each ζ in V , A(ζ) is a member of Ω

Valuations

03◦ Let I be an interpretation of Π and let A be an assignment for V in the
universe Ω underlying I. Let LΠ be the predicate language defined by Π and
let δ be a sentence in LΠ. Relative to I and A, we plan to inquire whether δ
is false or true.

04◦ To that end, let:
Z = {0, 1}

be the set composed of the falsity sign 0 and the truth sign 1. In terms of I
and A, we shall define a mapping IA having domain LΠ and assigning values
in Z in accord with a certain recursive pattern, soon to be described. We will
refer to IA as the valuation defined by I and A. Then we will say that δ is
false if IA(δ) = 0 and that δ is true if IA(δ) = 1.

05◦ For the definition of IA, we must prepare the way by extending the defi-
nitions of C and A. Let SA be the mapping having domain TΠ and codomain
Ω, assigning values by the following recursive pattern:

(S1) for each χ in C, SA(χ) = C(χ)

(S2) for each ζ in V , SA(ζ) =A(ζ)

(S3) for each φ in F and for any τ1, τ2, . . . , and τk in TΠ:

SA((φτ1τ2 . . . τk)) = F (φ)(SA(τ1), SA(τ2), . . . , SA(τk))

Of course, k = v(φ). Let us emphasize that SA depends upon Ω, C, F , and
A but not upon P .

06◦ For illustration, let us recover the syntactic tree G for the term τ from
article 1.15◦ in Chapter 2:

τ = ((φζ η (ψηχ))

See Figure 8. To calculate SA(τ), we apply the foregoing prescription. In
Figures 19 and 20, soon to follow, we display two copies of G, one with labels
appropriate to τ and one with labels appropriate to the calculation of SA(τ).

3.1 INTERPRETATIONS 53

We denote C(χ) by k; A(ζ) and A(η) by v and w, respectively; and F (φ) and
F (ψ) by f and g, respectively. We find that:

SA((ψηχ)) = g(w,k), SA(τ) = SA((φζ η (ψηχ))) = f(v,w,g(w,k))

(φζ η (ψηχ))

φ ζ η (ψηχ)

ψ η χ

Figure 19: τ

f(v,w,g(w,k))

f v w g(w,k)

g w k

Figure 20: SA(τ)

The Joint Valuation Mapping J

07◦ Let I be an interpretation of Π:

I = (Ω, S)

where Ω is the universe and S is the structure underlying I. Let V be the
set of all assignments for V in Ω. We plan to define, by recursion, the joint
valuation mapping J carrying the set:

V × LΠ
to the set:

Z = {0, 1}

54 3 PREDICATE LOGICS: SEMANTICS

Specifically, for each sentence α in LΠ, we will define the values of J on the
set:

V × {α}
in terms of its values, defined prior, on the sets:

V × {β}

where β is any proper subsentence of α, that is, where β is any subsentence
of α other than α itself. We will organize the definition in terms of four rules:

(J1), (J2), (J3), (J4)

which reflect the various characteristics of the sentence α.

08◦ Let us proceed. Let A be any assignment in V and let α be any atomic
sentence in LΠ:

α = (ρτ1τ2 · · · τℓ)
where ρ is any predicate symbol in P and where τ1, τ2, . . . , and τℓ are any
terms in TΠ. Of course, ℓ = v(ρ). We define:

(J1) J(A,α) = 1 ⇐⇒ (SA(τ1), SA(τ2), . . . , SA(τℓ)) ∈ P (ρ)

In particular, if:
α = (τ1 ≡ τ2)

where τ1 and τ2 are any terms in TΠ, then:

J(A,α) = 1 ⇐⇒ SA(τ1) = SA(τ2)

09◦ Let A be any assignment in V, let β be any sentence in LΠ, and let:

α = ((¬)β)

We define:

(J2) J(A,α) = 1 ⇐⇒ J(A, β) = 0

10◦ Let A be any assignment in V, let γ1 and γ2 be any sentences in LΠ,
and let:

α = (γ1 −→ γ2)

We define:

(J3) J(A,α) = 1 ⇐⇒ J(A, γ1) = 0 or J(A, γ2) = 1

3.1 INTERPRETATIONS 55

11◦ Let A be any assignment in V, let β be any sentence in LΠ, let ζ be any
variable symbol in V , and let:

α = ((∀ζ)β)

We define:

(J4) J(A,α) = 1 ⇐⇒ for any ωω in Ω, J(B, β) = 1

where B is the assignment in V such that A and B coincide on V\{ζ} while
B(ζ) = ωω.

12◦ Let A be an assignment for V in Ω and let ζ be a variable symbol in V .
For each member ωω of Ω, let A(ωω|ζ) denote the assignment for V in Ω defined
as follows:

A(ωω|ζ)(η) =
{

A(η) if η 6= ζ
ωω if η = ζ

The rule (J4) now takes the form:

(J4) J(A,α) = 1 ⇐⇒ for any ωω in Ω, J(A(ωω|ζ), β) = 1

The Valuation IA

13◦ Finally, we can produce the valuation IA defined by I and A:

IA(δ) = J(A, δ)

where δ is any sentence in LΠ. As noted, we say that δ is false if IA(δ) = 0
and that δ is true if IA(δ) = 1.

An Example

14◦ With reference to article 5.04◦ in Chapter 2, let us introduce the preamble
ΠG, the Predicate Logic:

ΛG = (LG,AG)

and the set HG of hypotheses underlying Group Theory. Let us adopt the
notation introduced in the article just mentioned. In turn, let I be the inter-
pretation:

I = (Ω, S), S = (C,F, P)

56 3 PREDICATE LOGICS: SEMANTICS

of ΠG, where Ω is the set consisting of all invertible matrices having two rows
and two columns and having rational entries and where:

C(e) = e

F (ι)(m) = m−1

F (µ)(m′,m′′) = m′m′′

In the foregoing relations, e is the identity matrix in Ω, while m, m′, and
m′′ are any matrices in Ω, m−1 is the inverse of m in Ω, and m′m′′ is the
product of m′ and m′′ in Ω. Let ζ and η be distinct variable symbols in V
and let α and β be the sentences:

α = (∃ζ)β = (¬)((∀ζ)((¬)β)), β = (η ≡ ζ · ζ)

in LG. Let A′ and A′′ be assignments for V in Ω such that, in particular:

A′(η) =

(

1 2
0 1

)

, A′′(η) =

(

1 0
0 2

)

We find that:
IA′(α) = J(A′, α) = 1

because J(A′(m|ζ), β) = 1, where:

m =

(

1 1
0 1

)

However:
IA′′(α) = J(A′′, α) = 0

because, for any matrix m in Ω, J(A′′(m|ζ), β) = 1 would imply that det(m)
equals

√
2, an irrational number.

The Coincidence Principle

15◦ Let α be any sentence in LΠ. Let Vα be, as usual, the subset of V
consisting of all variable symbols η such that η occurs at least once freely in
α. Let I be any interpretation of Π and let Ω be the universe underlying I.
Let A′ and A′′ be any assignments for V in Ω. We contend that:

(KP) for any η in Vα, A′(η) = A′′(η) =⇒ J(A′, α) = J(A′′, α)

We refer to this fact as the Coincidence Principle.

3.1 INTERPRETATIONS 57

16◦ To prove the contention, we prepare the unfolded syntactic tree for α,
then argue by induction on the number of nodes in the basic syntactic tree
for α.

17◦ For rules (J1), (J2), and (J3), the arguments are obvious. For rule (J4),
in context of which α = ((∀ζ)β), we note that, Vβ ⊆ Vα ∪ {ζ}, while ζ /∈ Vα.
By hypothesis, for any η in Vα, A′(η) = A′′(η). It follows that, for any ωω in
Ω and for any η in Vβ , A′(ωω|ζ)(η) = A′′(ωω|ζ)(η). By induction, we infer that
J(A′(ωω|ζ), β) = J(A′′(ωω|ζ), β). Therefore, J(A′, α) = J(A′′, α). ♮

Closed Sentences

18◦ Let α be any sentence in L0Π. That is, let α be a closed sentence in LΠ.
For such a sentence, (KP) implies that, for any assignments A′ and A′′ for V
in Ω, IA′(α) = IA′′ (α). Naturally, we simplify notation by writing:

I(α) for IA(α)

where A is any assignment for V in Ω.

The Substitution Principle

19◦ Let α be any sentence in LΠ, let ζ be any variable symbol in V , and
let τ be any term in TΠ. Let I be any interpretation of Π and let A be any
assignment for V in the universe Ω underlying I. Let ωω = SA(τ). We contend
that:

(SP) τ free for ζ in α =⇒ J(A,α(τ |ζ)) = J(A(ωω|ζ), α)

We refer to this fact as the Substitution Principle.

20◦ To prove the contention, we prepare the unfolded syntactic trees for α
and α(τ |ζ), then argue by induction on the number of nodes in the basic
syntactic tree for α.

21◦ For rule (J1), in context of which α = (ρ τ1τ2 · · · τℓ) and ℓ = v(ρ), we
note that α(τ |ζ) = (ρ τ1(τ |ζ)τ2(τ |ζ) . . . τℓ(τ |ζ)) and that, for each index j
(1 ≤ j ≤ ℓ), SA(τj(τ |ζ)) = SB(τj), where B = A(ωω|ζ). We find that:

J(A,α(τ |ζ)) = 1⇐⇒ (SA(τ1(τ |ζ)), SA(τ2(τ |ζ)), . . . , SA(τℓ(τ |ζ))) ∈ P (ρ)
⇐⇒ (SB(τ1), SB(τ2), . . . , SB(τℓ)) ∈ P (ρ)
⇐⇒ J(A(ωω|ζ), α) = 1

22◦ For rules (J2) and (J3), the arguments are obvious. For rule (J4), in
context of which α = ((∀η)β) and η 6= ζ, we note that α(τ |ζ) = (∀η)β(τ |ζ).

58 3 PREDICATE LOGICS: SEMANTICS

Since τ is free for ζ in α, η does not occur in τ . Hence, for any υυ in Ω,
SB(τ) = SA(τ), where B = A(υυ|η). We find that:

J(A,α(τ |ζ)) = 1⇐⇒ for all υυ in Ω, J(A(υυ|η), β(τ |ζ)) = 1

⇐⇒ for all υυ in Ω, J(A(υυ|η)(ωω|ζ), β) = 1

⇐⇒ for all υυ in Ω, J(A(ωω|ζ)(υυ|η), β) = 1

⇐⇒ J(A(ωω|ζ), α) = 1

The second of the foregoing equivalences follows by induction.

23◦ To be thorough, let us note that if η = ζ then α(τ |ζ) = α and, by (KP),
J(A,α) = J(A(ωω|ζ), α). ♮

Valuations of Axioms

24◦ Let I be any interpretation of Π and let A be any assignment for V in
the universe Ω underlying I. Let α be any axiom in AΠ. We contend that:

IA(α) = J(A,α) = 1

This unsurprising result is fundamental to our subject.

25◦ To prove the contention, one need only apply the rules. The cases (A1),
(A2), and (A3) follow by inspection. The cases (E1), (E2), (E3), (E4), and
(E5) follow from the meaning of SA. Let us sketch the arguments for the more
complicated cases (A4) and (A5).

26◦ For the case (A4), we introduce the sentence:

α = ((∀η)β −→ β(τ |η))

where β is any sentence in LΠ, η is any variable symbol in V , and τ is any
term in TΠ. Of course, τ is free for η in β. Let us suppose that J(A,α) = 0,
so that:

J(A, (∀η)β) = 1 and J(A, β(τ |η)) = 0

By the first relation, it would follow that, for any υυ in Ω, J(A(υυ|η), β) = 1.
By the second relation and by (SP), we find that J(A(ωω|η), β) = 0, where
ωω = SA(τ). By this contradiction, we conclude that J(A,α) = 1.

27◦ For the case (A5), we introduce the sentence:

α = ((∀η)(β −→ γ) −→ (β −→ (∀η)γ))

3.2 SEMANTIC IMPLICATION 59

where β and γ are any sentences in LΠ and where η is any variable symbol in
V . Of course, each occurrence (if any) of η in β is bound. Hence, for any ωω in
Ω, the restrictions of A and A(ωω|η) to Vβ coincide. By (KP), we infer that,
for any ωω in Ω, J(A, β) = J(A(ωω|η), β). Let us suppose that J(A,α) = 0, so
that:

J(A, (∀η)(β −→ γ)) = 1 and J(A, (β −→ (∀η)γ)) = 0

By the first relation, it would follow that, for any υυ in Ω, J(A(υυ|η), β) = 0 or
J(A(υυ|η), γ) = 1. By the second relation, it would follow that J(A, β) = 1 and
J(A, (∀η)γ) = 0. Hence, for some ωω in Ω, J(A(ωω|η), γ) = 0 and, by our prior
inference, J(A(ωω|η), β) = J(A, β) = 1. By this contradiction, we conclude
that J(A,α) = 1. ♮

3.2 SEMANTIC IMPLICATION

Semantic Implication

01◦ Let H be any subset of LΠ. We refer to the sentences in H as hypotheses .
Let δ be any sentence in LΠ. We say that H semantically implies δ iff, for
any interpretation I of Π and for any assignment A for V in the universe Ω
underlying I, if, for any sentence α in H, IA(α) = 1, then IA(δ) = 1. To
express this relation, we write:

H |= δ

02◦ In parallel with our description of syntactic implication in Chapter 2, we
are led to the expressions:

H1 |= H2

β1, β2, . . . , βk |= H2

H1 |= γ1, γ2, . . . , γk

β1, β2, . . . , βk |= γ1, γ2, . . . , γk

and to the implication:

H1 ⊆ H2, H1 |= δ =⇒ H2 |= δ

Semantic Theories

03◦ Let H be any subset of LΠ. We refer to the sentences in H as hypotheses .
Let:

TΠ(H)

60 3 PREDICATE LOGICS: SEMANTICS

be the subset of LΠ consisting of all sentences δ such that H |= δ. We refer
to the sentences in TΠ(H) as semantic theorems and to TΠ(H) itself as the
semantic theory of H. Of course:

H |= TΠ(H)

The Soundness Theorem

04◦ Let H be any subset of LΠ and let δ be any sentence in LΠ. We contend
that if H syntactically implies γ then H semantically implies γ:

(ST) H ‖− γ =⇒H |= γ

This fact is the simple half of the Completeness Theorem, often called the
Soundness Theorem. We prove it now because we require it in the proof of
the Interpretation Theorem.

05◦ To prove the contention, we argue as follows. Let G be any proper de-
ductive tree from H and let δ be its consequence. Let I be any interpretation
of Π and let A be any assignment for V in the universe Ω underlying I such
that, for each sentence α in H, J(A,α) = 1. We claim that J(A, δ) = 1.
Having proved the claim, we will have proved (ST). To prove the claim, we
will argue by induction on the number of nodes in G.

06◦ Let R be the root of G. Let H̃ be the subset ofH consisting of all material
hypotheses for G.

07◦ Let us consider the case in which v(R) = 0. By definition, the number
of nodes in G equals 1, so that R is a leaf. Hence, δ ∈ AΠ ∪ H̃. Obviously,
J(A, δ) = 1.

08◦ Let us consider the case in which v(R) = 2. Let P and N be the imme-
diate descendants of R, in order. Let (∀ζ) and γ be the labels which occupy
P and N , respectively, where ζ is a variable symbol in V and where γ is a
sentence in LΠ. Of course, δ = ((∀ζ)γ). Let G◦ be the subtree of G defined by
the node N . Obviously, G◦ is a proper deductive tree for γ from H̃ and the
number of nodes in G◦ is smaller than the number of nodes in G. Let ωω be
any member of Ω. Let α be any sentence in H̃. Since ζ does not occur freely
in α, we find that the restrictions of A and A(ωω|ζ) to Vα coincide. By (KP),
J(A(ωω|ζ), α) = J(A,α) = 1. By induction, J(A(ωω|ζ), γ) = 1. We conclude
that J(A, δ) = 1

09◦ Finally, let us consider the case in which v(R) = 3. Let P , N1, and N2 be
the immediate descendants of R, in order. Let (−→), γ1, and γ2 be the labels

3.3 THE INTERPRETATION THEOREM 61

which occupy P , N1, and N2, respectively, where γ1 and γ2 are sentences in
LΠ. Of course, γ2 = (γ1 −→ δ). Let G1 and G2 be the subtrees of G defined by
the nodes N1 and N2, respectively. Obviously, G1 and G2 are proper deductive
trees for γ1 and γ2, respectively, from H̃ and the numbers of nodes in G1 and
G2 are smaller than the number of nodes in G. By induction, J(A, γ1) = 1
and J(A, γ2) = 1. We conclude that J(A, δ) = 1. ♮

Satisfaction

10◦ Let H be any subset of LΠ. We say that H is satisfiable iff there are an
interpretation I of Π:

I = (Ω, S)

and an assignment A for V in the universe Ω underlying I such that, for any
sentence δ in H, IA(δ) = 1. We express this property of H by writing:

Sat(H)

11◦ When H is closed, we suppress reference to A.

3.3 THE INTERPRETATION THEOREM

The Interpretation Theorem

01◦ Let H be any subset of LΠ. We contend that H is consistent iff H is
satisfiable:

(IT) Con(H)⇐⇒ Sat(H)

We refer to this fundamental fact as the Interpretation Theorem, a cornerstone
of Mathematics.

02◦ To prove (IT), we must prove:

(SC) Sat(H) =⇒ Con(H)
(CS) Con(H) =⇒ Sat(H)

To prove (SC), we assume thatH is satisfiable but we suppose thatH is incon-
sistent. Accordingly, we introduce an interpretation I of Π and an assignment
A for V in the universe Ω underlying I such that, for any sentence α in H,
IA(α) = 1 and we introduce a sentence γ in LΠ such that H ‖− (¬γ), γ. By
the Soundness Theorem, H |= (¬γ), γ. Hence, IA((¬γ)) = 1 and IA(γ) = 1,
a contradiction. We infer that our supposition is untenable, hence, that H is
consistent.

62 3 PREDICATE LOGICS: SEMANTICS

03◦ To prove (CS), we assume that H is consistent. Following a method
designed by L. Henkin. we will define an interpretation I of Π and an assign-
ment A for V in the universe Ω underlying I such that, for any sentence α in
H, IA(α) = 1. Having done so, we may infer that H is satisfiable.

04◦ We begin by assuming, provisionally, that H is maximally consistent ,
which is to say that the following conditions hold:

(H1) H is consistent

(H2) for any subset H̄ of LΠ, if H̄ is consistent and if H ⊆ H̄ then
H̄ = H

and that H is universal , which is to say that the following condition holds:

(H3) for any variable symbol ζ in V and for any sentence β in LΠ, if
(∀ζ)β /∈ H then there is a constant symbol χ in C such that β(χ|ζ) /∈ H

One interprets χ as a witness to the relation (∀ζ)β /∈ H.

05◦ Under the foregoing provisional assumptions, we will proceed to define I
and A. Later, we will show that conditions (H2) and (H3) can, in a sense, be
justified.

06◦ One can easily show that conditions (H1) and (H2) imply the following
conditions:

(H4) for any sentence γ in LΠ, (¬γ) ∈ H or γ ∈ H
(H5) for any sentence γ in LΠ, γ ∈ H iff H ‖− γ
(H6) AΠ ⊆ H
(H7) for any sentences γ and δ in LΠ:

(γ −→ δ) ∈ H iff (¬γ) ∈ H or δ ∈ H

For pointers, let us note that (RA) figures in the proof of (H4) and (SI5)
figures in the proof of (H7).

07◦ Let us design I and A. To that end, we introduce a relation ∼ on the
set TΠ of terms:

τ1 ∼ τ2 ⇐⇒ H ‖− (τ1 ≡ τ2)
where τ1 and τ2 are any terms in TΠ. By (E1), (E2), and (E3) and by (H5),
(H6), and (H7), one can easily verify that ∼ is reflexive, symmetric, and
transitive, that is, that ∼ is an equivalence relation. Let Ω be the set of all

3.3 THE INTERPRETATION THEOREM 63

equivalence classes in TΠ following ∼. For each term τ in TΠ, let us denote
by [τ] the equivalence class defined by τ :

τ ∈ [τ]

08◦ Let C be the mapping defined as follows:

C(χ) = [χ]

where χ is any constant symbol in C. Let F be the mapping defined as follows:

F (φ)([τ1], [τ2], . . . , [τk]) = [(φτ1τ2 · · · τk)]

where φ is any function symbol in F and where τ1, τ2, . . . , and τk are any
terms in TΠ. Of course, k = v(φ). By (E4) and by (H5), (H6), and (H7), one
can easily verify that F (φ) is a properly defined mapping carrying Ωk to Ω.
Let P be the mapping defined as follows:

([τ1], [τ2], . . . , [τℓ]) ∈ P (ρ) ⇐⇒ H ‖− (ρτ1τ2 · · · τℓ)

where ρ is any predicate symbol in P and where τ1, τ2, . . . , and τℓ are any
terms in TΠ. Of course, ℓ = v(ρ). By (E5) and by (H5), (H6), and (H7), one
can easily verify that P (ρ) is a properly defined subset of Ωℓ. Moreover:

P (≡) = {([τ1], [τ2]) ∈ Ω2 : [τ1] = [τ2]}

09◦ Let I be the interpretation of Π defined as follows:

I = (Ω, S), S = (C,F, P)

In turn, let A be the assignment for V in Ω defined as follows:

A(ζ) = [ζ]

where ζ is any variable symbol in V . One can easily prove that, for any term
τ in TΠ:

SA(τ) = [τ]

To that end, one should argue by induction on the number of nodes in the
syntactic tree for τ .

64 3 PREDICATE LOGICS: SEMANTICS

10◦ Now we claim that, for every sentence α in LΠ:

α ∈ H ⇐⇒ IA(α) = 1

Having proved the claim, we will have proved that H is satisfiable. To prove
the claim, we argue by induction on the number of nodes in the basic syntactic
tree for α. We apply, tacitly, rules (J1) through (J4) and conditions (H3)
through (H7), as needed.

11◦ Let α be any atomic sentence in LΠ:

α = (ρτ1τ2 · · · τℓ)

where ρ is any predicate symbol in P and where τ1, τ2, . . . , and τℓ are any
terms in TΠ. Of course, ℓ = v(ρ). We find that:

IA(α) = 1⇐⇒ (SA(τ1), SA(τ2), . . . , SA(τℓ)) ∈ P (ρ)
⇐⇒ ([τ1], [τ2], . . . , [τℓ]) ∈ P (ρ)
⇐⇒ H ‖− (ρτ1τ2 · · · τℓ)
⇐⇒ α ∈ H

12◦ Let β be any sentence in LΠ and let:

α = (¬β)

We find that:
IA(α) = 1⇐⇒ IA(β) = 0

⇐⇒ β /∈ H
⇐⇒ α ∈ H

13◦ In turn, let β and γ be any sentences in LΠ and let:

α = (β −→ γ)

We find that:
IA(α) = 1⇐⇒ IA(β) = 0 or IA(γ) = 1

⇐⇒ β /∈ H or γ ∈ H
⇐⇒ α ∈ H

3.3 THE INTERPRETATION THEOREM 65

14◦ Finally, let β be any sentence in LΠ, let ζ be any variable symbol in V ,
and let:

α = (∀ζ)β

Let us assume that α /∈ H. Since H is universal, we may introduce a constant
symbol χ in C such that β(χ|ζ) /∈ H. By induction, J(A, β(χ|ζ)) = 0. By
(SP), J(A([χ]|ζ), β) = 0. By rule (J4), we infer that J(A,α) = 0.

15◦ Let us assume that J(A,α) = 0. By rule (J4), there is a term τ in TΠ
such that J(A([τ]|ζ), β) = 0. Presuming that τ is free for ζ in β, we may
apply (SP) to obtain J(A, β(τ |ζ)) = 0. By induction, β(τ |ζ) /∈ H. By (H6)
and (A4), ((∀ζ)β −→ β(τ |ζ)) ∈ H. By (H7), ¬((∀ζ)β) ∈ H. Under our
presumption, we infer that α /∈ H.

16◦ We hasten to admit that we have no basis for presuming that τ is free
for ζ in β. However, by (FM), that is, by the Freedom Maneuver, we can
design a sentence β̄ in LΠ such that:

(F1) τ is free for ζ in β̄

(F2) β ‖− β̄ and β̄ ‖− β
(F3) the basic syntactic trees for β and β̄ have the same number of

nodes

By (F2) and (ST), we obtain β̄ |= β. Since J(A([τ]|ζ), β) = 0, we find that
J(A([τ]|ζ), β̄) = 0. By (F1) and (F3) and by the presumptuous argument
in the preceding article, we find that ¬((∀ζ)β̄) ∈ H. By (F2) and (SI7),
(∀ζ)β ‖− (∀ζ)β̄. Without presumption, we infer that α /∈ H.

17◦ Now let us return to our original assumption that H is consistent but let
us rescind our provisional assumptions that H is maximally consistent and
that H is universal.

18◦ To prove the Interpretation Theorem, we propose a naive plan. We will
design a subset H∗ of LΠ such that H ⊆ H∗ and such that H∗ is maximally
consistent and universal. That done, we will apply the foregoing argument to
prove that H∗ is satisfiable. Of course, it would follow that H is satisfiable as
well.

19◦ However, there is an obstacle to the plan. In certain troublesome cases,
the conditions that H∗ be (maximally) consistent and universal are incompat-
ible, because there is a shortage of “independent” witnesses. The following
simple example serves to illustrate the matter.

66 3 PREDICATE LOGICS: SEMANTICS

20• Let ζ and η be distinct variable symbols in V . Let H be the subset of
LΠ consisting of the sentence:

¬(∀ζ)(∀η)(ζ ≡ η)
together with all sentences of the form:

(χ′ ≡ χ′′)

where χ′ and χ′′ are any constant symbols in C. Show that H is satisfiable,
hence consistent. Let H∗ be any subset of LΠ for which H ⊆ H∗. Suppose
that H∗ is both consistent and universal. Let β be the sentence in LΠ defined
as follows:

β = (∀η)(ζ ≡ η)
Note that (∀ζ)β /∈ H∗. Hence, there is a constant symbol χ1 in C such that
β(χ1|ζ) /∈ H∗. Let γ be the sentence in LΠ defined as follows:

γ = (χ1 ≡ η)

Note that β(χ1|ζ) = (∀η)γ, so that (∀η)γ /∈ H∗. Hence, there is a constant
symbol χ2 in C such that γ(χ2|η) /∈ H∗. However:

γ(χ2|η) = (χ1 ≡ χ2)

which, by design, is contained in H. By this contradiction, it follows that H∗

is not both consistent and universal.

21◦ Let us propose a more sophisticated plan. We will define a new preamble:

Π∗ = (C∗,F ,P) (C ⊆ C∗)

by introducing a rich supply of new constant symbols to serve as witnesses. Of
course, LΠ ⊆ LΠ∗ . Then we will produce a subsetH∗ of LΠ∗ such thatH ⊆ H∗

and such that, relative to the new logic ΛΠ∗ , H∗ is maximally consistent and
universal. Finally, we will apply the foregoing argument to prove that H∗ is
satisfiable. Of course, it would follow that H is satisfiable as well.

22◦ The idea of the plan is simple but the implementation of it requires
careful organization of the new constant symbols.

23◦ Let us implement the plan. Let C∗ be the set consisting of all (!) constant
symbols:

c1, c2, . . . , cn, . . .

Let Π∗ be the preamble:
Π∗ = (C∗,F ,P)

3.3 THE INTERPRETATION THEOREM 67

and let Λ∗ be the predicate logic defined by Π∗:

Λ∗ = (L∗,A∗)

Of course, we can present C∗ as an indexed array:

ckℓm

without repetitions, where k, ℓ, and m run through all positive integers. For
each positive integer j, let Dj be the set of all constant symbols of the form:

cjℓm

where ℓ and m run through all positive integers. For each positive integer k,
let:

Ck =

k
⋃

j=1

Dj

Let Πk be the preamble:
Πk = (Ck,F ,P)

and let Λk be the predicate logic defined by Πk:

Λk = (Lk,Ak)

Of course, the sequences:

C1, C2, . . . , Ck, . . . ; L1,L2, . . . ,Lk, . . .

are increasing, and:

C∗ =

∞
⋃

k=1

Ck; L∗ =

∞
⋃

k=1

Lk

Without loss of generality, we can identify C with a subset of D1, so that:

LΠ ⊆ L1

24◦ Let us denote H by H1. By (CP), H1 is consistent with respect to Λ1.
We intend to generate an increasing sequence:

H1, H2, H3, H4, . . .

68 3 PREDICATE LOGICS: SEMANTICS

of subsets of L∗ such that, for each positive integer k, Hk is a subset of Lk
and such that the union:

H∗ =

∞
⋃

k=1

Hk

is maximally consistent and universal with respect to Λ∗. We proceed by
induction.

25◦ Let k be a positive integer. Let Hk be a subset of Lk such that Hk is
consistent with respect to Λk. Let us make a list, without repetitions, of the
sentences in Lk:

α1, α2, α3, . . .

Let K0 = Hk and let:
K0, K1, K2, K3, . . .

be the increasing sequence of subsets of Lk defined, by induction, as follows:

Kj =

{

Kj−1 if Inc (Kj−1 ∪ {αj})
Kj−1 ∪ {αj} if Con(Kj−1 ∪ {αj})

Let:

H◦

k =

∞
⋃

j=0

Kj

Obviously, Hk ⊆ H◦

k. One can easily check that H◦

k is maximally consistent
with respect to Λk. In turn, let us form the list, in natural order, of the
variable symbols in V :

x1, x2, . . . , xℓ, . . .

and let us make a list, without repetitions, of the sentences in H◦

k:

β1, β2, . . . , βm, . . .

Let H•

k be the subset of Lk+1 consisting of all sentences of the form:

βℓm = (βm(c(k+1)ℓm|xℓ) −→ (∀xℓ)βm)

where ℓ and m run through all positive integers. Finally, let us introduce
Hk+1:

Hk+1 = H◦

k ∪H•

k

26◦ Of course, Hk+1 is a subset of Lk+1. To complete our inductive design,
we will prove that Hk+1 is consistent with respect to Λk+1. We argue by
contradiction. Let us suppose that Hk+1 is inconsistent with respect to Λk+1.
Under this supposition, we may introduce a finite subset E of H•

k and a sen-
tence β̄ in H•

k\E such that H◦

k ∪ E is consistent with respect to Λk+1 while

3.3 THE INTERPRETATION THEOREM 69

H◦

k ∪ E ∪ {β̄} is inconsistent with respect to Λk+1. Of course, β̄ must stand
in the form:

β̄ = (β(χ̄|ζ) −→ (∀ζ)β)
where β is a formula in H◦

k, where ζ is a variable symbol in V , and where χ̄
is the appropriate constant symbol in Dk+1. By (RA):

H◦

k ∪ E ‖− ¬(β(χ̄|ζ) −→ (∀ζ)β)

with respect to Λk+1. By (SI5):

H◦

k ∪ E ‖− β(χ̄|ζ),¬(∀ζ)β

with respect to Λk+1. Now let us invoke (RC), the Remote Constant Prin-
ciple. See article 4.10◦ in Chapter 2. To be precise, we interpret the set C′
of constant symbols to be the set Ck augmented by the constant symbols in
Dk+1 which occur in the sentences composing E . In turn, we interpret the set
C′′ of constant symbols to be C′ ∪ {χ̄}. Now, by (RC), we obtain:

H◦

k ∪ E ‖− (∀ζ)β,¬(∀ζ)β

with respect to Λk+1. We infer that H◦

k ∪ E is inconsistant with respect to
Λk+1, contrary to our initial supposition. We conclude thatHk+1 is consistent
with respect to Λk+1.

27◦ By induction, we form the increasing sequence:

H1, H2, H3, H4, . . .

of subsets of L∗. Of course, for each positive integer k, Hk ⊆ H◦

k ⊆ Hk+1.
Let:

H∗ =

∞
⋃

k=1

Hk =

∞
⋃

k=1

H◦

k

We contend that, with respect to the logic Λ∗, H∗ is maximally consistent
and universal. To prove the contention, we require conditions (H4) and (H7).
See articles 04◦ and 06◦.

28◦ For each positive integer k, Hk is consistent with respect to Λk. By
(CP), Hk is consistent with respect to Λ∗. By observations now familiar, we
infer that H∗ is consistent with respect to Λ∗. Let δ be any formula in L∗.
Of course, there is a positive integer k such that δ is a member of H◦

k. By
design, H◦

k is maximally consistent with respect to Λk. By (H4), ¬δ ∈ H◦

k or
δ ∈ H◦

k. Therefore, ¬δ ∈ H∗ or δ ∈ H∗. We conclude that, with respect to
Λ∗, H∗ is maximally consistent.

70 3 PREDICATE LOGICS: SEMANTICS

29◦ Let δ be any formula in H∗ and let ζ be any variable symbol in V . Let
us assume that (∀ζ)δ /∈ H∗. Of course, there is a positive integer k such
that δ ∈ H◦

k. By design, there is a constant symbol χ in Dk+1 such that the
formula:

(δ(χ|ζ) −→ (∀ζ)δ)
is contained inH•

k. Of course, it must be contained inH◦

k+1 as well. By design,
H◦

k+1 is maximally consistent with respect to Λk+1. Obviously, (∀ζ)δ /∈ H◦

k+1.
By (H7), ¬δ(χ|ζ) ∈ H◦

k+1, so that ¬δ(χ|ζ) ∈ H∗. Consequently, δ(χ|ζ) /∈ H∗.
We conclude that H∗ is universal. ♮

Skolem

30◦ In the context just described, the universe Ω underlying the interpre-
tation I is countable (that is, finite or countably infinite). In fact, it is a
quotient of the countably infinite set TΠ. This simple observation presents a
first impression of the Theorem of Skolem:

(SK) Con(H) =⇒ Sat◦(H)

Informally, it asserts that if H is consistent then H admits a “countable in-
terpretation.”

3.4 COMPLETENESS/COMPACTNESS

The Completeness Theorem

01◦ Let H be any subset of LΠ and let δ any sentence in LΠ. We contend
that H syntactically implies δ iff H semantically implies δ:

(CT) H ‖− δ ⇐⇒ H |= δ

Consequently:
ΘΠ(H) = TΠ(H)

We refer to this central result as the Completeness Theorem.

02◦ To prove (CT), we argue as follows. Directly, let us assume that H ‖− δ.
By (ST),H |= δ. Conversely, let us assume thatH 6‖− δ. By (RA),H∪{(¬δ)}
is consistent. By (IT), H∪{(¬δ)} is satisfiable, so there are an interpretation
I of Π and an assignment A for V in the universe Ω underlying I such that,
for any sentence α in H, IA(α) = 1 and such that IA(¬δ) = 1 as well. Hence,
H 6|= δ. ♮

3.4 COMPLETENESS/COMPACTNESS 71

Tautologies

03◦ It may happen that the set H of hypotheses is empty: H = ∅. In that
case, (CT) states that, for any sentence δ in LΠ:

∅ ‖− δ ⇐⇒ ∅ |= δ

By definition, ∅ |= δ iff:

(T1) for any interpretation I of Π and for any assignment A for V in
the universe Ω underlying I, IA(δ) = 1

Just as well, ∅ |= δ iff:

(T2) for any interpretation I of Π, I(∀δ) = 1

Under condition (T1) and/or (T2), we say that δ is a tautology. We also say
that δ is valid or even that δ is true in “all possible worlds.”

The Compactness Theorem

04◦ Let H be any subset of LΠ. We contend that Sat(H) iff, for every finite
subset Ho of H, Sat(Ho):

(KT) Sat(H)⇐⇒ (∀Ho)
[(

Ho ⊆ H ∧ Fin(Ho)
)

=⇒ Sat(Ho)
]

This remarkable result is called the Compactness Theorem.

05◦ To prove (KT), we note that, for any deductive tree G from H, the set H̃
consisting of all material hypotheses for G is finite. Hence, H is consistent iff,
for every finite subset Ho of H, Ho is consistent. Now (IT) implies (KT). ♮

NonStandard Interpretations

06◦ We have taken care to design a proof of the Interpretation Theorem which
applies to arbitrary (consistent) sets H of hypotheses, even those that contain
open sentences. Of course, the Completeness Theorem and the Compactness
Theorem inherit the same level of generality. We will find that, in context of
the Predicate Logic for Arithmetic, the Compactness Theorem yields inter-
pretations of Arithmetic for which the underlying universe contains “infinite
numbers.” One refers to such interpretations as NonStandard.

72 3 PREDICATE LOGICS: SEMANTICS

3.5 INTERPRETATIONS REDUX

Equivalence/Isomorphism

01◦ Let Π be a preamble and let Λ be the corresponding predicate logic:

Λ = (LΠ,A)

Let I be an interpretation of Π and let A be an assignment for V with values
in the universe Ω underlying I. For smooth expression, we will refer to (I, A)
as a model for Π. Let:

T (I, A)

be the subset of LΠ consisting of all sentences δ such that IA(δ) = 1, which
is to say that, relative to I and A, δ is true.

02• Review articles 3.04◦ and 3.06◦. Then prove that T (I, A) is a maximally
consistent subset of LΠ.

03• In turn, let H be a maximally consistent subset of LΠ. Show that there
is a model (I, A) for Π such that T (I, A) = H.

04◦ Let (I ′, A′) and (I ′′, A′′) be models for Π. One says that (I ′, A′) and
(I ′′, A′′) are equivalent , that is, (I ′, A′) ≡ (I ′′, A′′), iff:

T (I ′, A′) = T (I ′′, A′′)

05◦ Let us display the component parts of I ′ and I ′′, respectively, as follows:

I ′ = (Ω′, (C′, F ′, P ′)), I ′′ = (Ω′′, (C′′, F ′′, P ′′))

We say that (I ′, A′) and (I ′′, A′′) are isomorphic, that is, (I ′, A′) ∼ (I ′′, A′′),
iff there exists a bijective mapping H carrying Ω′ to Ω′′ such that:

(IS1) C′′ = H.C′

(IS2) A′′ = H.A′

(IS3) F ′′ = H.F ′

(IS4) P ′′ = H.P ′

Condition (IS1) means that, for each χ in C:

H(C′(χ)) = C′′(χ)

3.5 INTERPRETATIONS REDUX 73

Condition (IS2) means that, for each ζ in V :

H(A′(ζ)) = A′′(ζ)

Condition (IS3) means that, for each φ in F and for any ω1, ω2, . . . , and ωk

in Ω′:

H(F ′(φ)(ω1, ω2, . . . , ωk)) = F ′′(φ)(H(ω1), H(ω2), . . . , H(ωk))

Condition (IS4) means that, for each ρ in P and for any ω1, ω2, . . . , and ωℓ

in Ω′:

(ω1, ω2, . . . , ωℓ) ∈ P ′(ρ) iff (H(ω1), H(ω2), . . . , H(ωℓ)) ∈ P ′′(ρ)

Of course, k = v(φ) and ℓ = v(ρ).

06• Show that if (I ′, A′) and (I ′′, A′′) are isomorphic then they are equivalent.
Should one expect that the converse be true?

Closed Sentences

07◦ Very often, one chooses to restrict the foregoing developments to closed
sentences. One replaces LΠ by L0Π and one suppresses the references to as-
signments A. One is led to replace T (I, A) by T (I). The adjustments to
the definitions of equivalence and isomorphism are obvious, but one might
be inclined to accept as members of T (I) the sentences δ in LΠ for which
I(∀δ) = 1.

An Example

08• With reference to article 5.06◦ in Chapter 2, let us recover the Predicate
Logic for Abstract Lines:

ΛL = (LL,AL)

defined by the preamble ΠL. Let HL be the set of hypotheses underlying
the syntactic Theory of Abstract Lines. Of course, HL is a closed set of
hypotheses. Let I ′ and I ′′ be interpretations of ΠL and let Ω′ and Ω′′ be the
underlying universes. Show that if:

HL ⊆ T (I ′) ∩ T (I ′′)

74 3 PREDICATE LOGICS: SEMANTICS

and if Ω′ and Ω′′ are countable then I ′ and I ′′ are isomorphic. To do so, one
might proceed as follows:

(1) Identify Ω′ with the set of dyadic rationals.

(2) Interpret < in the usual manner.

(3) Display the members of Ω′′ as a sequence of distinct elements.

(4) Define the required isomorphism carrying Ω′′ to Ω′ by induction.

Direct Products of Interpretations/Models

09◦

Powers of Interpretations/Models

10◦

Quotients of Interpretations/Models

11◦

Filters

12◦

Ultra Products of Interpretations/Models

13◦

Loś’ Theorem

14◦

UltraPowers of Interpretations/Models

15◦

Examples

16◦

CHAPTER 4

RECURSIVE MAPPINGS

In this chapter, we introduce recursive mappings . Such mappings provide a
precise model for algorithmic computation. They yield precise definitions of
enumerable and decidable subsets of Nk. In the Theory of Arithmetic, the
Diagonal Mapping and the Deduction Mapping prove to be recursive, while
their graphs prove to be decidable. By the Representation Theorem, these
graphs prove to be (syntactically/semantically) definable.

4.1 RECURSIVE MAPPINGS

Seed Mappings

01◦ Let k and ℓ be positive integers. Let Tℓ
k be the family of all mappings f

carrying Nk to Nℓ. We adopt the following notation:

f(x) = y

where x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yℓ) are members of Nk and
Nℓ, respectively. Let T be the union of all such families of mappings:

T =
∞
⋃

k=1

∞
⋃

ℓ=1

Tℓ
k

02◦ Now let us display certain simple instances of mappings in T:

ν(x) = 0

σ(x) = x+ 1

πk
j (x1, x2, . . . , xk) = xj

We intend that x be any nonnegative integer. Of course, the last instance is
in fact an infinite scheme. We intend that j and k be any positive integers
such that 1 ≤ j ≤ k and we intend that x1, x2, . . . , xk be any nonnegative
integers.

76 4 RECURSIVE MAPPINGS

03◦ We refer to the simple mappings just defined as the Seed Mappings. In
particular, we refer to ν as the null mapping, to σ as the successor mapping,
and to πk

j as a projection mapping.

Operations

04◦ Let k, ℓ′, and ℓ′′ be positive integers. Let ℓ = ℓ′ + ℓ′′. Let f ′ and f ′′ be
mappings in Tℓ′

k and Tℓ′′

k , respectively. Let (f ′, f ′′) be the mapping in Tℓ
k,

defined as follows:
(f ′, f ′′)(x) = (f ′(x), f ′′(x))

where x is any member of Nk. We refer to (f ′, f ′′) as the Juxtaposition of f ′

and f ′′.

05◦ Let k, ℓ, and m be positive integers. Let f and g be mappings in Tℓ
k and

Tm
ℓ , respectively. Let g · f be the mapping in Tm

k , defined as follows:

(g · f)(x) = g(f(x))

where x is any member of Nk. We refer to g · f as the Composition of f and
g.

06◦ Of course, we may extend the foregoing operations on mappings to mul-
tiple combinations, for which the domains and codomains of the mappings are
suitably constrained.

07◦ Let us pause to note a simple but useful fact. For any positive integers
k and ℓ and for any mapping f in Tℓ

k, we can express f as the juxtaposition
of compositions with projections:

f = (πℓ
1 · f, πℓ

2 · f, . . . , πℓ
ℓ · f) = (f1, f2, . . . , fℓ)

We refer to the compositions:

fj = πℓ
j · f (1 ≤ j ≤ ℓ)

as the Components of f . They are mappings in T1
k.

08◦ Again, let k be a positive integer. Let f be a mapping in T1
k and let h

be a mapping in T1
k+2. Let g be the mapping in T1

k+1, determined as follows:

g(x, 0) = f(x)

g(x, y + 1) = h(x, y, g(x, y))

where x is any member of Nk and where y is any member of N. We refer to
g as the mapping defined by Induction from f and h.

4.1 RECURSIVE MAPPINGS 77

09◦ Given the data f and h, one can easily show that g exists and is unique.

10◦ On occasion, we will invoke degenerate instances of the operation just
defined, in which k = 0. Let c be a member of N and h be a mapping in T1

2.
Let g be the mapping in T1

1, determined as follows:

g(0) = c

g(y + 1) = h(y, g(y))

where x and y are any members of N. Again, we refer to g as the mapping
defined by Induction from c and h.

11• Show that the foregoing degenerate case of definition by Induction can
in fact be derived from a well defined special case.

12◦ Finally, let k be a positive integer. Let h be a mapping in T1
k+1 which

satisfies the condition that, for each member x of Nk, there exists a member
y of N such that:

h(x, y) = 0

Let g be the mapping in T1
k defined as follows:

g(x) = min{y ∈ N : h(x, y) = 0}

where x is any member of Nk. We refer to g as the mapping defined by
Minimization from h.

Recursive Mappings

13◦ Now we are prepared to describe the subfamily R of T consisting of
all Recursive Mappings. These are the mappings which can be generated
from the Seed Mappings by application of the operations of Juxtaposition,
Composition, Induction, and Minimization. Let us be precise.

14◦ Let S be a subfamily of T which meets the following conditions:

(•) the Seed Mappings are contained in S

(◦) S is closed under the operations of Juxtaposition, Composition,
Induction, and Minimization

Regarding the second condition, we mean to say that, for any mappings in S
(suitably constrained), the mappings defined from them by application of the
four foregoing operations must themselves be in S.

78 4 RECURSIVE MAPPINGS

15◦ The family T itself meets conditions (•) and (◦). Consequently, we may
introduce the intersectionR of the collection of all subfamilies ofT which meet
the conditions. By this familiar maneuver, we obtain the smallest subfamily
of T which meets conditions (•) and (◦). We refer to the mappings f in R as
Recursive.

16◦ The following notation will prove useful:

Rℓ
k = R ∩Tℓ

k R =

∞
⋃

k=1

∞
⋃

ℓ=1

Rℓ
k

17• By a recursive chain in T, we mean a finite sequence:

f1, f2, . . . , fn

of mappings in T such that, for each index m (1 ≤ m ≤ n), one (or more) of
the following conditions holds:

(1) fm is a Seed Function

(2) there exist indices k and ℓ such that (1 ≤ k < m) and (1 ≤ ℓ < m),
such that fk and fℓ are recursive, and such that fm follows from fk and fℓ by
Juxtaposition

(3) there exist indices k and ℓ such that (1 ≤ k < m) and (1 ≤ ℓ < m),
such that fk and fℓ are recursive, and such that fm follows from fk and fℓ by
Composition

(4) there exist indices k and ℓ such that (1 ≤ k < m) and (1 ≤ ℓ < m),
such that fk and fℓ are recursive, and such that fm follows from fk and fℓ by
Induction

(5) there exists an index j such that (1 ≤ j < m), such that fj is
recursive, and such that fm follows from fj by Minimization

Of course, the various mappings fj , fk, and fℓ must be suitably constrained.
Now prove that, for each mapping f in T, f is recursive iff there is a recursive
chain:

f1, f2, . . . , fn

in T such that fn = f .

18• Note that T is uncountably infinite. Show that R is countably infinite.
Of course, it follows that the overwhelming majority of mappings in T are
not recursive. But many are.

4.1 RECURSIVE MAPPINGS 79

Basic Recursive Mappings

19◦ Now we will describe a medley of recursive mappings, all of which will
figure in subsequent arguments. For mappings which derive from Juxtapo-
sition and Composition alone, we will proceed informally. For instance, we
would accept without comment that the following mapping is recursive:

f(x1, x2, x3, x4) = (x4 + 1, 0, x1, x3, x3)

where x1, x2, x3, and x4 are any natural numbers. For mappings involving
Induction and Minimization, we will be more careful. For instance, we argue
that the mapping:

so(y) =

{

0 if y = 0
y − 1 if 0 < y

is recursive because it follows by a degenerate case of Induction from the data:

0, h(y, z) = y

That is:
so(0) = 0, so(y + 1) = h(y, so(y)) = y

In turn, we argue that the Subtraction Mapping:

s(x, y) =

{

0 if x < y
x− y if y ≤ x

is recursive because it follows by Induction from the data :

f(x) = x, h(x, y, z) = so(z)

That is:

s(x, 0) = f(x) = x, s(x, y + 1) = h(x, y, s(x, y)) = so(s(x, y))

In practice, we will write:

x⊖ y for s(x, y)

20◦ In turn, we define the Dirac Mappings:

δ1(y) = 1⊖ y =

{

1 if y = 0
0 if 0 < y

and δ0(y) = 1⊖ δ1(y) =
{

0 if y = 0
1 if 0 < y

where y is any natural number. They are recursive.

80 4 RECURSIVE MAPPINGS

21◦ Now we define the Addition and Multiplication Mappings:

a(x, y) = x+ y, m(x, y) = xy

together with the Exponentiation Mapping:

ǫ(x, y) =
{

1 if x = 0 and y = 0
xy otherwise

where x and y are any natural numbers.. To that end, we apply Induction
from the following schemes:

f(x) = x

h(x, y, z) = z + 1

f(x) = 0

h(x, y, z) = x+ z

f(x) = 1

h(x, y, z) = xz

=⇒

a(x, 0) = x

a(x, y + 1) = a(x, y) + 1

m(x, 0) = 0

m(x, y + 1) = m(x, y) + x

ǫ(x, 0) = 1

ǫ(x, y + 1) = xǫ(x, y)

The mappings are recursive. Note that each mapping requires its predecessor
for the inductive definition.

22◦ The Subtraction Mapping yields the Distance Mapping, as follows:

d(x, y) = s(x, y) + s(y, x) =

{

0 if x = y
|x− y| if x 6= y

where x and y are any natural numbers. Of course, it is recursive. Very often,
we will write:

|x− y| for d(x, y)

as in complex expressions it is easier to read.

23◦ Let k be a positive integer. Let g be a mapping carrying Nk ×N to N.
Let us present the Bounded Sum and Bounded Product Mappings defined by
g. Informally:

g◦(x, z) =

z
∑

y=0

g(x, y)

g•(x, z) =

z
∏

y=0

g(x, y)

4.1 RECURSIVE MAPPINGS 81

The following schemes yield these mappings, by Induction:

f(x) = g(x, 0)

h(x, y, z) = z + g(x, y + 1)

f(x) = g(x, 0)

h(x, y, z) = zg(x, y + 1)

=⇒

g◦(x, 0) = g(x, 0)

g◦(x, y + 1) = g◦(x, y) + g(x, y + 1)

g•(x, 0) = g(x, 0)

g•(x, y + 1) = g•(x, y)g(x, y + 1)

Of course, if g is recursive then g◦ and g• are recursive.

24• Let φ and λ be the Factorial Mapping and the Parity Mapping, respec-
tively, carrying N to N, defined as follows:

φ(x) = x!, λ(x) =
{

0 if x is even
1 if x is odd

where x is any natural number. Show that they are recursive.

25• By combining the Seed Mappings with the operations of Juxtaposition
and Composition, define generalizations of the Addition and Multiplication
Mappings, such as the following:

α(x1, x2, x3, y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3)

µ(x1, x2, x3, x4, x5) = (x1x2, x1x3, x1x4, x1x5)

Show that they are recursive.

Quotients and Remainders

26◦ Let us now define the fundamental Quotient and Remainder Mappings.
We want recursive mappings q and r carrying N2 to N such that:

y = q(x, y)x+ r(x, y) and 1 ≤ r(x, y) ≤ x

where x and y are any positive integers. The default case in which x = 0 or
y = 0 produces values which are irrelevant to our purposes.

27◦ We define q and r by Induction from the following schemes:

f(x) = 0

h(x, y, z) = zδ0(|x− z|) + 1

f(x) = 0

h(x, y, z) = z + δ1(|x− r(x, y)|)

=⇒

r(x, 0) = 0

r(x, y + 1) = r(x, y)δ0(|x− r(x, y)|) + 1

q(x, 0) = 0

q(x, y + 1) = q(x, y) + δ1(|x − r(x, y)|)

82 4 RECURSIVE MAPPINGS

28◦ The unconventional condition on the remainders r(x, y) proves useful in
computations with Gödel Numbers. See articles 1.1.07•, 08◦, and 09•.

Bijections

29◦ Now let us prove a remarkable fact. Let k and ℓ be positive integers.
We contend that there are bijective mappings h carrying Nk to Nℓ such that
both h and its inverse are recursive.

30◦ For the proof of the contention, we introduce the mapping η2 carrying
N2 to N1, defined as follows:

η2(y, z) = 2y(2z + 1)− 1

where y and z are any natural numbers. Obviously, η2 is both recursive and
bijective. Let e2 be the inverse of η2 and let u and v be its components:

e2(x) = (u(x), v(x)), x+ 1 = 2u(x)(2v(x) + 1)

where x is any natural number. The components are bijective mappings
carrying N1 to N1. We must show that they are recursive. To that end,
we note that the relation:

r(2, z)⊖ 1 = 0

signals that z is odd. Then we find that:

u(x) = min{y ∈ N : r(2, q(2y , x+ 1))⊖ 1 = 0}
v(x) = q

(

2, q(2u(x), x+ 1)⊖ 1
)

By these relations, it is plain that u and v are recursive.

31◦ Now we may apply (conventional) induction to define mappings ηℓ and
eℓ carrying Nℓ to N1 and N1 to Nℓ, respectively, such that both ηℓ and eℓ

are bijective and recursive. The following display initiates the procedure:

η3(y1, y2, y3) = η2(y1, η
2(y2, y3))

e3(x) = (u(x), e2(v(x)))

The inductive step stands as follows:

ηℓ+1(y1, y2, . . . , yℓ, yℓ+1) = η2(y1, η
ℓ(y2, . . . , yℓ, yℓ+1))

eℓ+1(x) = (u(x), eℓ(v(x)))

32◦ By design, ηℓ and eℓ are inverse to one another.

4.1 RECURSIVE MAPPINGS 83

33◦ Finally, we obtain a bijective mapping h carrying Nk to Nℓ by composi-
tion:

h = eℓ · ηk, h−1 = ek · ηℓ

Both h and its inverse are recursive. ♮

The Beta Mapping

34◦ The Beta Mapping, designed by Kurt Gödel, plays a basic role in the
proof of the Representation Theorem. It is defined as follows:

β(x, y, z) = r(1 + y(1 + z), x)⊖ 1

where x, y, and z are any nonnegative integers. It carries N3 to N, it is re-
cursive, and it has the following remarkable property. For any finite sequence:

k0, k1, k2, . . . , kn

of nonnegative integers, there exist positive integers x and y such that:

(∗)

β(x, y, 0) = k0

β(x, y, 1) = k1

β(x, y, 2) = k2

...

β(x, y, n) = kn

35◦ Let us prove the foregoing assertion. Let y be defined by the relation:

y = n!max{1, k0, k1, k2, . . . , kn}

and let:
ℓ0, ℓ1, ℓ2, . . . , ℓn

be the finite sequence of positive integers defined by the relations:

ℓj = 1 + y(1 + j)

where j is any index (0 ≤ j ≤ n).

36◦ We contend that the positive integers just defined are relatively prime
in pairs. To prove the contention, we argue by contradiction. Let us suppose
that there are indices j′ and j′′ (0 ≤ j′ < j′′ ≤ n) and a prime positive integer
π such that π divides both ℓj′ and ℓj′′ . From this supposition, we will prove
that π must divide y, hence must divide 1, a bald contradiction. To that end,

84 4 RECURSIVE MAPPINGS

we note that π must divide ℓj′′ − ℓj′ = y(j′′− j′), so must divide y or j′′ − j′.
However, j′′ − j′ ≤ n, so j′′ − j′ divides y. Obviously, π must divide y.

37◦ By the Chinese Remainder Theorem, we may introduce a positive integer
x such that, for each index j (0 ≤ j ≤ n), ℓj divides x − (kj + 1). Since
1 ≤ kj + 1 ≤ ℓj , it is the same to say that:

β(x, y, j) + 1 = r(ℓj , x) = kj + 1

These relations coincide with the relations in column (∗). ♮

4.2 ENUMERABLE/DECIDABLE SETS

Enumerable Sets

01◦ Let k be a positive integer. Let A be a subset of Nk. We say that A is
enumerable iff A = ∅, or A 6= ∅ and there is a mapping f in Rk

1 such that
the range of f is A. In the latter case, we may display the members of A as
follows:

f(0), f(1), f(2), . . . , f(j), . . .

Let us emphasize that we require no special properties of f , other than that
it be recursive.

02◦ By article 5.1.31◦, we may introduce the recursive mapping ek carrying
N bijectively (hence surjectively) to Nk. Visibly, Nk is enumerable.

Decidable Sets

03◦ Now let A be a subset of Nk and B be the complement of A in Nk. We
say that A is decidable iff both A and B are enumerable. Obviously, A is
decidable iff B is decidable.

Characteristic Mappings

04◦ Let cA be the mapping carrying Nk to N, defined as follows:

cA(x) =
{

0 if x /∈ A
1 if x ∈ A

where x is any member of Nk. We refer to cA as the Characteristic Mapping
for A. We contend that:

(DR) A is decidable ⇐⇒ cA is recursive

4.2 ENUMERABLE/DECIDABLE SETS 85

Of course, if A = ∅ or B = ∅ then the contention is obvious. Let us assume
that A 6= ∅ and B 6= ∅. To prove the contention, we argue as follows.

05◦ Let cA be recursive. Since:

cB = 1⊖ cA

we find that cB is recursive as well. Let a be any member of A and let b be
any member of B. Let f and g be the mappings carrying Nk to Nk, defined
as follows:

f(x) = cA(x)x+ cB(x)a, g(x) = cA(x)b + cB(x)x

where x is any member of Nk. Clearly, f and g are recursive. Let h′ = f · ek
and h′′ = g · ek. Clearly, h′ and h′′ are recursive mappings carrying N to Nk

and the ranges of h′ and h′′ are A and B, respectively. We infer that A and
B are enumerable. Consequently, A is decidable.

06◦ Now let A be decidable. Let h′ and h′′ be recursive mappings carrying
N to Nk such that the ranges of h′ and h′′ are A and B, respectively. Let u
and v be the components of e2:

e2(y) = (u(y), v(y))

where y is any member of N. They are recursive. Let g′, g′′, and g be the
recursive mappings carrying Nk ×N to N, defined as follows:

g′(x, y) = 1⊖ |x− h′(u(y))|, g′′(x, y) = 1⊖ |x− h′′(u(y))|

g(x, y) = 1⊖ (g′(x, y) + g′′(x, y))

where x is any member of Nk and where y is any member of N. Clearly, for
each member x of Nk, there is some member y of N such that g′(x, y) = 1 or
g′′(x, y) = 1 (but not both) so that g(x, y) = 0.

07◦ Now we are prepared to introduce the mapping f carrying Nk to N,
defined from g by Minimization:

f(x) = min{y ∈ N : g(x, y) = 0}

where x is any member of Nk. By design:

cA(x) = g′(x, f(x))

where x is any member of Nk. Consequently, cA is recursive. ♮

86 4 RECURSIVE MAPPINGS

08• Let k be a positive integer. For any subsets A and B of Nk, the charac-
teristic mappings for A and B satisfy the relations:

cA∩B = cAcB, cA∪B = (cA + cB)⊖ cA∩B

By these relations, verify that the family of all decidable subsets of Nk is an
algebra.

09• Let k and ℓ be positive integers. Let f be a recursive mapping carrying
Nk to Nℓ. Let A be a subset ofNk and let D be a subset ofNℓ. Let B = f(A)
and let C = f−1(D). Show that if A is enumerable then B is enumerable,
while if D is decidable then C is decidable.

Graphs

10◦ Let k and ℓ be positive integers. Let g be a mapping carrying Nk to Nℓ

and let G be the graph of g. Of course, G is the subset of Nk×Nℓ consisting
of all ordered pairs (x,y) for which:

g(x) = y

where x is any member of Nk. We contend that:

(RD) g is recursive ⇐⇒ G is decidable

11◦ Let us assume that g is recursive. We find that:

cG(x,y) = 1⊖ |g(x)− y|

where x is any member of Nk and where y is any member of Nℓ. It follows
that cG is recursive. Consequently, G is decidable.

12◦ Now let us assume that G is decidable. By (DR), cG is recursive. By
Minimization, we may introduce the mapping f carrying Nk to N, defined as
follows:

f(x) = min{y ∈ N : 1⊖ cG(x, eℓ(y)) = 0}
where x is any member of Nk. Clearly:

g(x) = eℓ(f(x))

where x is any member of Nk. Consequently, g is recursive. ♮

4.2 ENUMERABLE/DECIDABLE SETS 87

Cases

13◦ Let k be a positive integer. Let:

A1, A2, . . . , An

be a finite family of subsets of Nk composing a partition of Nk. We mean to
say that, for each member x ofNk, there is precisely one indexm (1 ≤ m ≤ n)
such that x is contained in Am. In turn, let ℓ be a positive integer and let:

f1, f2, . . . , fn

be a finite family of mappings carrying Nk to Nℓ. We are led to introduce
the mapping h carrying Nk to Nℓ, defined as follows by Cases:

h(x) =

f1(x) if x ∈ A1

f2(x) if x ∈ A2

...
fn(x) if x ∈ An

That is:

h =

n
∑

m=1

cmfm

In the foregoing relation, we have abbreviated the characteristic mapping for
Am by cm.

14◦ Obviously, if the given sets are decidable and if the given mappings are
recursive then the corresponding mapping defined by cases is recursive.

15• Let h be the mapping carrying N to N, defined as follows:

h(x) =

{

q(2, x) if r(2, x) ⊖ 2 = 0
3x+ 1 if r(2, x) ⊖ 1 = 0

Show that h is recursive.

Bounded Quantification

16◦ Let k be a positive integer. Let A be a subset of Nk ×N and let B be
the complement of A in Nk×N. Let A• be the subset of Nk×N consisting of
all members (x, z) such that, for each nonnegative integer y, if 0 ≤ y ≤ z then
(x, y) is contained in A. In turn, let B◦ be the subset of Nk ×N consisting
of all members (x, z) such that there is some nonnegative integer y for which
0 ≤ y ≤ z and (x, y) is contained in B. We say that A• is defined from A by

88 4 RECURSIVE MAPPINGS

Bounded Universal Quantification and that B◦ is defined from B by Bounded
Existential Quantification.

17◦ Now let us introduce the Bounded Product Mapping c•A defined by the
Characteristic Mapping cA for A. We find that:

c•A(x, z) =

z
∏

y=0

cA(x, y) =

{

0 if (x, z) ∈ B◦

1 if (x, z) ∈ A•

Consequently, c•A and 1⊖ c•A are the Characteristic Mappings for A• and B◦,
respectively. Of course, B◦ is the complement of A• in Nk ×N.

18◦ Obviously, if A is decidable then B, A•, A◦, B•, and B◦ are decidable.

19• In the foregoing context, verify that:

A•• = A• ⊆ A and B ⊆ B◦ = B◦◦

CHAPTER 5

ARITHMETIC

In this chapter, we introduce the predicate logic:

Λa = (La,Aa)

for Arithmetic. We will develop just enough of the Theory of Arithmetic to
support the Representation Theorem, the Diagonal Theorem, the Fixed Point
Theorem, and the Deduction Theorem, which connect syntactic implication
with recursive mappings. In the following chapter, this aggregate of theorems
will figure in the proofs of the theorems of Tarski, Gödel, and Church.

5.1 THE PREDICATE LOGIC FOR ARITHMETIC

The Predicate Logic for Arithmetic

01◦ Let Πa be the preamble:

Πa = (Ca,Fa,Pa)

defined as follows:

Ca = {0̄, 1̄}, Fa = {+,×}, Pa = {≡, <}

where 0̄ and 1̄ stand for the selected constant symbols:

0̄ = (c|), 1̄ = (c||)

where + and × stand for selected the function symbols:

+ = (||f |), × = (||f ||)

and where < stands for the selected relation symbol:

<= (||r||)

Of course, the latter three have valence 2.

90 5 ARITHMETIC

02◦ We refer to 0̄ and 1̄ as the zero symbol and one symbol, respectively, and
to + and × as the addition symbol and multiplication symbol, respectively.
We refer to < as the less than symbol. As usual, we write:

(τ1 + τ2)

(τ1 × τ2)
(τ1 ≡ τ2)
(τ1 < τ2)

(τ1 6≡ τ2)
(τ1 6< τ2)

instead of:
(+ τ1τ2)

(× τ1τ2)
(≡τ1τ2)
(<τ1τ2)

((¬)(≡τ1τ2))
((¬)(<τ1τ2))

respectively, where τ1 and τ2 are any terms in Ta.

03◦ Let La be the predicate language defined by Πa and let Aa be the cor-
responding set of axioms. Let Λa be the predicate logic defined by Πa:

Λa = (La,Aa)

We refer to Λa as the Predicate Logic for Arithmetic.

The Set Ha of Hypotheses

04◦ Let Ha be the subset of La composed of all sentences of any one of the
following forms, called Hypothesis Schemes. For visual clarity, we break the
schemes into three groups:

5.1 THE PREDICATE LOGIC FOR ARITHMETIC 91

(Ha)

∀ ((ζ + η) ≡ (η + ζ))

∀ ((ζ × η) ≡ (η × ζ))
∀ (((ζ + η) + θ) ≡ (ζ + (η + θ)))

∀ (((ζ × η)× θ) ≡ (ζ × (η × θ)))
∀ ((ζ × (η + θ)) ≡ ((ζ × η) + (ζ × θ)))

∀ ((ζ + 0̄) ≡ ζ)
∀ ((ζ × 1̄) ≡ ζ)
∀ (((ζ + θ) ≡ (η + θ)) −→ (ζ ≡ η))

∀ (((ζ × η) ≡ 0̄) −→ ((ζ ≡ 0̄) ∨ (η ≡ 0̄)))

(Ha)

Ha ‖− (∀ζ)(¬(ζ < ζ))

Ha ‖− (∀ζ)(∀η)(∀θ)(((ζ < η) ∧ (η < θ)) −→ (ζ < θ))

Ha ‖− (∀ζ)(∀η)((ζ < η) ∨ (ζ ≡ η) ∨ (η < ζ))

Ha ‖− (0̄ < 1̄)

Ha ‖− (∀ζ)(∀η)(∀θ)((ζ < η)←→ ((ζ + θ) < (η + θ)))

Ha ‖− (∀ζ)(∀η)(∀θ)(((ζ < η) ∧ (0̄ < θ)) −→ ((ζ × θ) < (η × θ)))

(Ha) ∀
(

(α(0̄|ζ) ∧ ((∀ζ)(α −→ α((ζ + 1̄)|ζ)))) −→ α
)

where ζ, η, and θ are any variable symbols in V and where α is any sentence
in La. By design, Ha is closed.

05◦ The last of the foregoing schemes is called the Mathematical Induction
Scheme.

06◦ We denote by:
Θa(Ha)

the subset of La consisting of all sentences δ such thatHa syntactically implies
δ:

Ha ‖− δ
We refer to Θa(Ha) as the syntactic theory of Arithmetic. The sentences
it contains are legion, expressing, under suitable interpretation, the familiar
facts of Arithmetic.

92 5 ARITHMETIC

Mathematical Induction

07◦ The Mathematical Induction Scheme yields the following implication,
itself called the Mathematical Induction Principle:

(MI) Ha, α(0̄|ζ), (∀ζ)
(

α −→ α((ζ + 1̄)|ζ)
)

‖− (∀ζ)α

where α is any sentence in La and where ζ is any variable symbol in V .
In practice, we will introduce applications of the Mathematical Induction
Principle simply by mentioning the abbreviation (MI).

Terms

08◦ For the closed terms:

(1̄ + 1̄), ((1̄ + 1̄) + 1̄), (((1̄ + 1̄) + 1̄) + 1̄), ((((1̄ + 1̄) + 1̄) + 1̄) + 1̄), . . .

in La, we introduce the familiar abbreviations:

2̄, 3̄, 4̄, 5̄, . . .

That is, for any nonnegative integer n:

n+ 1 = (n̄+ 1̄)

Now one may show that, for any nonnegative integers m and n:

Ha ‖− (m+ n ≡ (m̄+ n̄))

Ha ‖− (m× n ≡ (m̄× n̄))
Moreover:

m < n⇐⇒ HA ‖− (m̄ < n̄)

09◦ One may interpret the terms in Ta as polynomials with nonnegative in-
teger coefficients. For instance, one may express the term:

(

(((6̄ × ζ)× η)× η) + (((1̄1 × θ)× θ)× θ)
)

in the familiar form::
6ζη2 + 11θ3

Similarly, one may interpret the atomic sentences in La as polynomial equa-
tions with (nonnegative) integer coefficients. For instance, one may express
the atomic sentence:

(((2̄× ζ) × ζ)× η) ≡ ((((7̄ × θ)× θ)× θ)× θ)

5.2 THE STANDARD INTERPRETATION 93

in the familiar form of an equation:

2ζ2η ≡ 7θ4 or 2ζ2η − 7θ4 ≡ 0

10• Show that, for any closed term τ in Ta, there is some nonnegative integer
n such that:

Ha ‖− (τ ≡ n̄)

Complete Induction/The Least Integer Principle

11◦ From (MI), we obtain the following implication, called Complete Induc-
tion:

(CI) Ha, (∀η)
(

(∀θ)((θ < η) −→ α(θ|ζ)) −→ α(η|ζ)
)

‖− (∀ζ)α

We also obtain the Least Integer Principle:

(LI)
Ha, (∃ζ)α

‖− (∃η)
(

α(η|ζ) ∧
(

(∀θ)((θ < η) −→ ¬(α(θ|ζ))
))

Of course, we intend that the variable symbols η and θ be free for ζ in α.

12◦ Now one may prove the following medley of syntactic implications:

Ha ‖− (∀ζ)(∀η)((0̄ < η) −→ (ζ < (ζ + η)))

Ha ‖− (∀ζ)((ζ ≡ 0̄) ∨ (0̄ < ζ))

Ha ‖− (∀ζ)((ζ ≡ 0̄) ∨ (ζ ≡ 1̄) ∨ (1̄ < ζ))

Ha ‖− (∀ζ)((ζ ≡ 0̄) ∨ (ζ ≡ 1̄) ∨ (ζ ≡ 2̄) ∨ (2̄ < ζ))

...

Ha ‖− (∀ζ)(∀η)
(

(ζ < η) −→ (∃θ)((0̄ < θ) ∧ (η ≡ (ζ + θ))
)

Ha ‖− (∀ζ)(∀η)
(

(∃θ)((0̄ < θ) ∧ (η ≡ (ζ + θ)) −→ (ζ < η)
)

Ha ‖− (∀ζ)
(

(0̄ < ζ) −→ (∃η)((η + 1̄) ≡ ζ)
)

Ha ‖− (∀ζ)(∀η)
(

(ζ < η) −→ ¬(η < (ζ + 1̄))
)

94 5 ARITHMETIC

We will draw upon the foregoing implications, and others, as we need them
in the proofs of the Representation, Diagonal, and Deduction Theorems.

5.2 THE STANDARD INTERPRETATION

The Standard Interpretation

01◦ By the Standard Interpretation of Πa, we mean the ordered pair:

I = (N, S)

where N is the set of nonnegative integers and where S is the ordered triple:

S = (C,F, P)

for which C, F , and P are the mappings having domains Ca, Fa, and Pa,
respectively, and assigning values as follows:

(I1) C(0̄) = 0 and C(1̄) = 1 are the neutral elements in N for the
operations of addition and multiplication on N, respectively

(I2) F (+) and F (×) are the operations + and × themselves

(I3) P (<) is the order relation < on N and, as usual, P (≡) is the
equality relation =

02◦ We refer to I as the Standard Interpretation for the Predicate Logic Λa

for Arithmetic and we denote by:

T (I)

the subset of La consisting of all sentences δ in La for which I(∀δ) = 1. In
turn, let us recover the syntactic and the semantic theories of Arithmetic:

Θa(Ha) and Ta(Ha)

By the Completeness Theorem:

Ha ⊆ Θa(Ha) = Ta(Ha) ⊆ T (I)

03• Should one expect that Ta(Ha) = T (I)?

5.3 PREPARATION 95

5.3 PREPARATION

Flexible Notation

01◦ Let k be a positive integer. Let α be a sentence in Lka. Let Vα be the
set consisting of the variable symbols which occur at least once freely in α.
By definition, Vα contains k members. When useful, we will emphasize the
relation between α and the variable symbols in Vα by writing α in functional
form:

α(ζ1, ζ2, . . . , ζk) for α

The variable symbols shall appear in natural order. Moreover, for any terms
τ1, τ2, . . ., and τk, we will write:

α(τ1, τ2, . . . , τk) for α(τ1|ζ1)(τ2|ζ2) · · · (τk|ζk)

Of course, the terms might be constant terms.

Syntactically Definable Sets

02◦ Let T be any subset of N. We say that T is syntactically definable iff
there is a sentence α(ζ) in L1a such that, for each natural number j:

(1) j ∈ T =⇒ Ha ‖− α(̄)

(2) j /∈ T =⇒ Ha ‖− ¬α(̄)

03◦ Let W be any subset of N×N. We say that W is syntactically definable
iff there is a sentence δ(η, θ) in L2a such that, for any ordered pair (k, ℓ) of
natural numbers:

(1) (k, ℓ) ∈W =⇒ Ha ‖− δ(k̄, ℓ̄)

(2) (k, ℓ) /∈W =⇒ Ha ‖− ¬δ(k̄, ℓ̄)

It may happen that W is the graph of a mapping D carrying N to N. In
such a case, we claim that W is syntactically definable iff there is a sentence
δ̄(η, θ) in L2a such that, for any natural number k:

(3) Ha ‖− (∀θ)(δ̄(k̄, θ)←→ (D(k) ≡ θ))

For the proof of the claim, see article 4.01◦.

96 5 ARITHMETIC

Semantically Definable Sets

04◦ Let T be any subset of N. We say that T is semantically definable iff
there is a sentence α(ζ) in L1a such that, for each natural number j:

j ∈ T ⇐⇒ I(α(̄)) = 1

where ̄ is the constant term corresponding to j.

05◦ Let W be any subset of N×N. We say that W is semantically definable
iff there is a sentence δ(η, θ) in L2a such that, for all ordered pairs (k, ℓ) of
natural numbers:

(k, ℓ) ∈ W ⇐⇒ I(δ(k̄, ℓ̄)) = 1

A Basic Implication

06◦ By the Soundness Theorem, it is plain that Syntactically Definable sets
are Semantically Definable.

The Diagonalization Theorem

07◦ For each sentence α(ζ) in L1a, let k = Γ(α) and let ᾱ = α(k̄). Let ∆◦ be
the mapping carrying Σ∗ to itself, defined as follows:

∆◦(α) =

{

ǫ if α /∈ L1a
ᾱ if α ∈ L1a

We refer to ∆◦ as the Diagonalization Mapping. Let D◦ be the corresponding
mapping carrying N to N, defined by conjugation of ∆◦ by Γ as follows:

D◦ = Γ ·∆◦ · Γ−1

Let W ◦ be the graph of D◦, a subset of N × N. We contend that D◦ is
recursive. We refer to this basic fact as the Diagonalization Theorem. For
the proof of the contention, see article 4.02◦. It follows, in turn, that W ◦ is
decidable.

08◦ To show that W ◦ is decidable, we display the characteristic mapping for
W ◦:

1W◦(k, ℓ) = 1⊖ |ℓ−D◦(k)|
where k and ℓ are any natural numbers. Clearly, 1W◦ is recursive.

5.3 PREPARATION 97

The Representation Theorem

09◦ Let T be any subset of N. We contend that if T is decidable then T is
syntactically definable. In turn, let W be any subset of N×N. We contend
that if W is decidable then W is syntactically definable. We refer to these
fundamental facts as the Representation Theorem. For the proofs of these
contentions, see article 4.03◦.

The Fixed Point Theorem

10◦ Let α(ζ) be any sentence in L1a. We contend that there is a sentence β
in L0a such that:

Ha ‖−
(

β ←→ α(b̄)
)

where b = Γ(β). We refer to this basic fact as the strong (syntactic) form of
the Fixed Point Theorem.

11◦ Let us prove the contention. By conjoining the Diagonalization Theorem
and the Representation Theorem, we may introduce a sentence δ◦(η, θ) in L2a
such that δ◦(η, θ) syntactically defines W ◦. We mean to say that condition
(3) in article 09◦ is valid for the mapping D◦ carrying N to N. Without loss
of generality, we may assume that ζ 6= η and ζ 6= θ. Let γ(η) be the sentence
in L1a defined as follows:

γ(η) = (∀θ)(δ◦(η, θ) −→ α(θ))

Let c = Γ(γ). Let β be the sentence in L0a defined as follows:

β = ∆◦(γ) = γ̄ = γ(c̄) = (∀θ)(δ◦(c̄, θ) −→ α(θ))

Let b = Γ(β). By definition, D◦(c) = b. By condition (3):

Ha ‖− (∀θ)(δ◦(c̄, θ)←→ (b̄ ≡ θ))

By elementary steps, we complete the proof:

Ha ‖−
(

(∀θ)((b̄ ≡ θ) −→ α(θ))←→ (∀θ)(δ◦(c̄, θ) −→ α(θ))
)

Ha ‖−
(

(∀θ)((b̄ ≡ θ) −→ α(θ))←→ α(b̄)
)

Ha ‖−
(

β ←→ α(b̄)
)

12◦ Let α(ζ) be any sentence in L1a. We contend that there is a sentence β
in L0a such that:

I(β) = 1 ⇐⇒ I(α(b̄)) = 1

98 5 ARITHMETIC

where b = Γ(β). We refer to this basic fact as the weak (semantic) form of
the Fixed Point Theorem.

13◦ To prove the contention, we need only review the foregoing argument.
Of course, δ◦(η, θ) semantically defines W ◦. By straightforward inspection,
we find that, relative to I, β is true iff α(b̄) is true.

The Deduction Theorem

14◦ Let Da be the subset of Σ∗ consisting of all strings λ which are identifiable
with proper deductions from Ha. For each proper deduction λ in Da, let δλ
be the consequence of λ, a sentence in La. Let ∆• be the mapping carrying
Σ∗ to itself, defined as follows:

∆•(λ) =

{

ǫ if λ /∈ Da

δλ if λ ∈ Da

We refer to ∆• as the Deduction Mapping. Let D• be the corresponding
mapping carrying N to itself, defined by conjugation of ∆• by Γ as follows:

D• = Γ ·∆• · Γ−1

Let W • be the graph of D•, a subset of N × N. We contend that D• is
recursive. We refer to this basic fact as the Deduction Theorem. It follows,
in turn, that W • is decidable.

15◦ For the proof of this contention, see article 4.04◦. To show that W • is
decidable, one need only review article 08◦.

5.4 PROOF

Proof

01◦ In context of article 3.03◦, we claim that there is a sentence δ(η, θ) in L2a
such that, for any ordered pair (k, ℓ) of natural numbers:

(1) (k, ℓ) ∈W =⇒ Ha ‖− δ(k̄, ℓ̄)

(2) (k, ℓ) /∈W =⇒ Ha ‖− ¬δ(k̄, ℓ̄)

iff there is a sentence δ̄(η, θ) in L2a such that, for any natural number k:

(3) Ha ‖− (∀θ)(δ̄(k̄, θ)←→ (D(k) ≡ θ))

5.4 PROOF 99

To prove the claim, we note that if condition (3) holds for δ̄ then conditions
(1) and (2) hold for δ̄ as well. In turn, we contend that if conditions (1) and
(2) hold for δ then condition (3) holds for δ̄, defined as follows:

(∗) δ̄(η, θ) = δ(η, θ) ∧
(

(∀ζ)((ζ ≤ θ) −→ (δ(η, ζ) −→ (ζ ≡ θ)))
)

Let us prove the contention.

02◦ Let us prove the Diagonalization Theorem.

03◦ Let us prove the Representation Theorem.

04◦ Let us prove the Deduction Theorem.

100 5 ARITHMETIC

CHAPTER 6

TARSKI, GÖDEL, AND CHURCH

In the previous chapter, we laid the groundwork. Now let us prove the theo-
rems of Tarski, Gödel, and Churche.

6.1 TARSKI, GÖDEL, AND CHURCH

Proof and Truth

01◦ From section 5.2, let us recover the subsets Θa(Ha) and T (I) of La and
let us introduce the subsets:

P = Γ(Θa(Ha)) and T = Γ(T (I))

of N. We refer to P as the proof set for the syntactic theory of Arithmetic
and to T as the truth set for the standard interpretation of Arithmetic. They
are subsets of N.

Tarski

02◦ We contend that the truth set T is not semantically definable. This
assertion is the substance of the Theorem of Tarski. To prove the contention,
we argue by contradiction. Let us suppose that there is a sentence α(ζ) in
L1a which semantically defines T. By the weak (semantic) form of the Fixed
Point Theorem, we may introduce a sentence β in L0a such that β is true iff
(¬α)(b̄) is true iff α(b̄) is false, where b = Γ(β). Hence:

b ∈ T ⇐⇒ b /∈ T

By this contradiction, we infer that T is not semantically definable.

102 6 TARSKI, GÖDEL, AND CHURCH

Gödel

03◦ We contend that:
T\P 6= ∅

We may say that there exist sentences which are true, relative to the standard
interpretation of Arithmetic, but not provable in the predicate logic for Arith-
metic. This fundamental fact is the substance of the Incompleteness Theorem
of Gödel.

04◦ By conjoining the Representation Theorem and the Deduction Theorem,
we may introduce a sentence δ•(η, θ) in L2a which semantically defines the
graph W • of D•. Let γ be the sentence in L1a defined as follows:

γ(θ) = (∃η)δ•(η, θ)

We claim that γ semantically defines P ∪ {0}.

05◦ Obviously, P ∪ {0} = ran(D•). To prove the claim, we argue as follows.
Let ℓ be any natural number in N. Of course, γ(ℓ̄) = (∃η)δ•(η, ℓ̄). Clearly,
γ(ℓ̄) is true iff there is some natural number k in N such that δ•(k̄, ℓ̄) is true.
Moreover, δ•(k̄, ℓ̄) is true iff D•(k) = ℓ. Hence, γ(ℓ̄) is true iff ℓ ∈ ran(D•).

06◦ Now let us prove our contention. By the weak (semantic) form of the
Fixed Point Theorem, we may introduce a sentence β in L0a such that β is
true iff (¬γ)(b̄) is true iff γ(b̄) is false, where b = Γ(β). Hence:

b ∈ T ⇐⇒ b /∈ P ∪ {0}

Of course, b 6= 0. If b were not a member of T then, by the Soundness
Theorem, b would not be a member of P. By the foregoing equivalence, we
infer that b ∈ T\P.

Syntax versus Semantics

07◦ It seems interesting that the proofs of the Theorems of Tarski and Gödel
depend not upon the strong (syntactic) form of the Fixed Point Theorem but
upon the weak (semantic) form. However, the Theorem of Church, soon to
follow, requires the full strength of the theorem.

Church

08◦ We contend that P is enumerable but that P is not decidable. One refers
to these fundamental facts as the Theorem of Church.

6.1 TARSKI, GÖDEL, AND CHURCH 103

09◦ For the first contention, we argue as follows. By the Deduction Theorem,
the mapping D• is recursive. It follows that the range of D• is enumerable.
Of course, the range of D• is P ∪ {0}. Consequently:

P = (P ∪ {0})\{0}

is enumerable. For the second contention, we argue by contradiction. Let us
suppose that P is decidable. Let Q = N\P. Of course, Q would be decidable.
By the Representation Theorem, there would be a sentence α(ζ) in L1a such
that α syntactically defines Q. That is, for each natural number k:

(1) k ∈ Q =⇒ Ha ‖− α(k̄)

(2) k /∈ Q =⇒ Ha ‖− ¬α(k̄)

By the strong (syntactic) form of the Fixed Point Theorem, we may introduce
a sentence β in L0a such that:

Ha ‖−
(

β ←→ α(b̄)
)

where b = Γ(β). Now we would find that:

b ∈ Q =⇒ Ha ‖− α(b̄)
=⇒ Ha ‖− β
=⇒ b ∈ P

=⇒ b /∈ Q

=⇒ Ha ‖− ¬α(b̄)
=⇒ Ha ‖− ¬β
=⇒ Ha 6‖− β
=⇒ b /∈ P

=⇒ b ∈ Q

a bald contradiction. Consequently, P is not decidable.

104 6 TARSKI, GÖDEL, AND CHURCH

6.2 BUBBLE

The Gonfalon Bubble, Franklin Pierce Adams (1910)

These are the saddest of possible words:
Tinker to Evers to Chance.
Trio of bear cubs, and fleeter than birds,
Tinker and Evers and Chance.
Ruthlessly pricking our gonfalon bubble,
Making a Giant hit into a double
Words that are heavy with nothing but trouble:
Tinker to Evers to Chance.

CHAPTER 7

SET THEORY

BIBLIOGRAPHY

01◦ For further development of our subject, one might turn to any one of the
following excellent books:

Computability and Logic
D. E. Cohen, Ellis Horwood Limited, 1987

Mathematical Logic
E. B. Ebbinghaus, J. Flum, and W. Thomas, Springer-Verlag, 1984

Principles of Mathematical Logic
D. Hilbert and W. Ackermann, Chelsea, 1950

Notes on Logic and Set Theory
S. C. Kleene, Van Nostrand, 1952

A Course in Mathematical Logic
Yu. I. Manin, Springer-Verlag, 1977

Introduction to Mathematical Logic
Elliott Mendelson, Chapman and Hall/CRC, 1997

Mathematical Logic
Joel Robbin, W. A. Benjamin, 1969

Gödel’s Incompleteness Theorems
Raymond M. Smullyan, Oxford University Press, 1992

The fifth and sixth books played fundamental roles in the design of our own
exposition.

02◦ For a first impression of the theorems of Gödel, one should study the
classic booklet:

Gödel’s Proof
Ernest Nagel and James R. Newman, New York University Press, 2001

and the recently published gem:

Gödel’s Theorem: An Incomplete Guide to Its Use and Abuse
Torkel Franzén, A. K. Peters, 2005, New York University Press, 2001

For a study of the philosophical context and significance of the theorems, one
might consult the book:

Incompleteness: The Proof and Paradox of Kurt Gödel
Rebecca Goldstein, W. W. Norton and Company, 2005

For a general survey, one should read:

A Tour Through Mathematical Logic
Richard S. Wolf, Mathematical Association of America, 2007

03◦ As acts of respect, one should study the classical papers by K. Gödel:

“Die Vollständigkeit der Axiome des logischen Funktionenkalküls”
Monatshefte für Mathematik und Physik 37 (1930), 349-360

“Über formal unentscheidbare Sätze der Principia Mathematica ... I”
Monatshefte für Mathematik und Physik 38 (1931), 173-198

and L. Henkin:

“The completeness of the first-order functional calculus”
Journal of Symbolic Logic 14 (1949) 159-166

FIGURES

............

............

............

............

............

............

ACRONYMS

............

............

............

............

............

............

PROBLEMS

1.1.07• 2.1.48• 3.3.24•

1.1.09• 2.2.14• 3.5.02•

1.1.10• 2.3.10• 3.5.04•

1.2.21• 2.3.12• 3.5.06•

1.2.25• 2.3.13• 3.5.08•

1.2.30• 2.3.15•

1.2.43• 2.3.16•

2.3.17•

2.3.18•

2.5.03•

2.5.05•

2.5.07•

2.5.09•

INDEX

............

............

............

............

............

............

