LORENTZ TRANSFORMATIONS

Thomas Wieting
Reed College, 2000

1 Basic Concepts
 2 Simultaneity
 3 Clocks and Rods

1

Basic Concepts

1°
Given two vectors X and Y in \mathbf{R}^{4} :

$$
X=\left(\begin{array}{c}
X^{0} \\
X^{1} \\
X^{2} \\
X^{3}
\end{array}\right), \quad Y=\left(\begin{array}{c}
Y^{0} \\
Y^{1} \\
Y^{2} \\
Y^{3}
\end{array}\right)
$$

one defines the minkowski inner product of X and Y as follows:

$$
\begin{aligned}
\langle X, Y 》: & =X^{0} Y^{0}-X^{1} Y^{1}-X^{2} Y^{2}-X^{3} Y^{3} \\
& =X^{*} \eta Y
\end{aligned}
$$

where X^{*} is the transpose of X and where::

$$
\eta:=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

$2^{\circ} \quad$ By an orthonormal frame in \mathbf{R}^{4}, one means an ordered quadruple:

$$
F_{0}, F_{1}, F_{2}, F_{3}
$$

of vectors in \mathbf{R}^{4} for which:

$$
\left.《 F_{j}, F_{k}\right\rangle=\eta_{j k} \quad(0 \leq j \leq 3,0 \leq k \leq 3)
$$

The following vectors in \mathbf{R}^{4} comprise the standard orthonormal frame:

$$
E_{0}:=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad E_{1}:=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad E_{2}:=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad E_{3}:=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

$3^{\circ} \quad$ Given two vectors X and Y in \mathbf{R}^{4}, one defines the time/space interval between X and Y as follows:

$$
\tau(X, Y):=\langle\langle Y-X, Y-X\rangle
$$

One says that the interval $\tau(X, Y)$ is spacelike iff $\tau(X, Y)<0$, lightlike iff $\tau(X, Y)=0$, and timelike iff $0<\tau(X, Y)$. One says that X causally precedes Y iff $\tau(X, Y)$ is lightlike and $X^{0}<Y^{0}$. We will write $X<Y$ to express the foregoing relation.
$4^{\circ} \quad$ By a lorentz transformation on \mathbf{R}^{4}, one means a linear mapping Λ carrying \mathbf{R}^{4} to itself and meeting the following condition:

$$
\langle\Lambda(X), \Lambda(Y)\rangle=\left\langle\langle X, Y\rangle \quad\left(X \in \mathbf{R}^{4}, Y \in \mathbf{R}^{4}\right)\right.
$$

We will identify Λ with its matrix relative to the standard orthonormal frame:

$$
\Lambda=\left(\begin{array}{cccc}
\Lambda_{0}^{0} & \Lambda_{1}^{0} & \Lambda_{2}^{0} & \Lambda_{3}^{0} \\
\Lambda_{0}^{1} & \Lambda_{1}^{1} & \Lambda_{2}^{1} & \Lambda_{3}^{1} \\
\Lambda_{0}^{2} & \Lambda_{1}^{2} & \Lambda_{2}^{2} & \Lambda_{3}^{2} \\
\Lambda_{0}^{3} & \Lambda_{1}^{3} & \Lambda_{2}^{3} & \Lambda_{3}^{3}
\end{array}\right)
$$

and we will refer to Λ as a lorentz matrix. One can easily show that the linear mapping Λ carrying \mathbf{R}^{4} to itself is a lorentz matrix iff:

$$
\Lambda^{*} \eta \Lambda=\eta
$$

where Λ^{*} is the transpose of Λ. By this relation, one can easily show that if Λ is a lorentz matrix then Λ^{-1} and Λ^{*} are also lorentz matrices. Moreover:

$$
\operatorname{det}(\Lambda)= \pm 1
$$

One says that Λ is proper iff $\operatorname{det}(\Lambda)=1$. In turn, Λ is a lorentz matrix iff the columns of Λ :

$$
\Lambda_{0}=\Lambda E_{0}, \Lambda_{1}=\Lambda E_{1}, \Lambda_{2}=\Lambda E_{2}, \Lambda_{3}=\Lambda E_{3}
$$

comprise an orthonormal frame on \mathbf{R}^{4}. By this fact, one can easily show that if Λ is a lorentz matrix then:

$$
\Lambda_{0}^{0} \leq-1 \quad \text { or } \quad 1 \leq \Lambda_{0}^{0}
$$

One says that Λ is orthochronous iff $1 \leq \Lambda_{0}^{0}$.
$5^{\circ} \quad$ Now let Π be any mapping carrying \mathbf{R}^{4} to itself. One says that Π is a causal mapping iff:

$$
\Pi(X)<\Pi(Y) \quad \text { iff } \quad X<Y \quad\left(X \in \mathbf{R}^{4}, Y \in \mathbf{R}^{4}\right)
$$

In 1964, C. Zeeman proved that, for any mapping Π carrying \mathbf{R}^{4} to itself, Π is causal iff it has the following form:

$$
\Pi(X)=W+a \Lambda X \quad\left(X \in \mathbf{R}^{4}\right)
$$

where W is any vector in \mathbf{R}^{4}, where a is any positive real number, and where Λ is any orthochronous lorentz matrix.
6° Let us concentrate upon lorentz matrices which are both proper and orthochronous. There are two cases of special interest, the rotations and the boosts. Let R be a rotation matrix having three rows and three columns. In terms of R, we may form the lorentz matrix \hat{R} as follows:

$$
\hat{R}:=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & R_{1}^{1} & R_{2}^{1} & R_{3}^{1} \\
0 & R_{1}^{2} & R_{2}^{2} & R_{3}^{2} \\
0 & R_{1}^{3} & R_{2}^{3} & R_{3}^{3}
\end{array}\right)
$$

Clearly, \hat{R} is proper and orthochronous. One refers to \hat{R} as a rotation. Now let θ be any real number. In terms of θ, we may form the lorentz matrix B_{θ} as follows:

$$
B_{\theta}:=\left(\begin{array}{cccc}
\alpha & \beta & 0 & 0 \\
\beta & \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where:

$$
\alpha:=\cosh (\theta) \quad \text { and } \quad \beta:=\sinh (\theta)
$$

Clearly, B_{θ} is proper and orthochronous. One refers to B_{θ} as a boost.
$7^{\circ} \quad$ Let Λ be a proper orthochronous lorentz matrix. If $\Lambda_{0}^{0}=1$ then (one can easily show that) Λ must be a rotation. Let us assume that $1<\Lambda_{0}^{0}$. Under this assumption, we contend that there exist rotations \hat{R} and \hat{S} and a boost B_{θ} such that:

$$
\Lambda=\hat{R} B_{\theta} \hat{S}
$$

In fact, we may insist that $0<\theta$ and that $\cosh (\theta)=\Lambda_{0}^{0}$. To prove this contention, we introduce rotation matrices Q and S (having three rows and three columns) such that:

$$
\left(\begin{array}{c}
\Lambda_{0}^{1} \\
\Lambda_{0}^{2} \\
\Lambda_{0}^{3}
\end{array}\right)=\left(\begin{array}{lll}
Q_{1}^{1} & Q_{2}^{1} & Q_{3}^{1} \\
Q_{1}^{2} & Q_{2}^{2} & Q_{3}^{2} \\
Q_{1}^{3} & Q_{2}^{3} & Q_{3}^{3}
\end{array}\right)\left(\begin{array}{c}
\beta \\
0 \\
0
\end{array}\right)
$$

and:

$$
\left(\begin{array}{lll}
\Lambda_{1}^{0} & \Lambda_{2}^{0} & \Lambda_{3}^{0}
\end{array}\right)\left(\begin{array}{ccc}
S_{1}^{1} & S_{2}^{1} & S_{3}^{1} \\
S_{1}^{2} & S_{2}^{2} & S_{3}^{2} \\
S_{1}^{3} & S_{2}^{3} & S_{3}^{3}
\end{array}\right)=\left(\begin{array}{lll}
\beta & 0 & 0
\end{array}\right)
$$

where:

$$
\begin{aligned}
0<\beta: & =\sqrt{\left(\Lambda_{0}^{1}\right)^{2}+\left(\Lambda_{0}^{2}\right)^{2}+\left(\Lambda_{0}^{3}\right)^{2}} \\
& =\sqrt{\left(\Lambda_{1}^{0}\right)^{2}+\left(\Lambda_{2}^{0}\right)^{2}+\left(\Lambda_{3}^{0}\right)^{2}}
\end{aligned}
$$

We obtain:

$$
\hat{Q}^{-1} \Lambda \hat{S}^{-1}=\left(\begin{array}{rrrr}
\alpha & \beta & 0 & 0 \\
\beta & \alpha & 0 & 0 \\
0 & 0 & u & -v \\
0 & 0 & v & u
\end{array}\right)
$$

where $\alpha:=\Lambda_{0}^{0}$ and where:

$$
\left(\begin{array}{rr}
u & -v \\
v & u
\end{array}\right)
$$

is a suitable rotation matrix having two rows and two columns. We introduce the rotation matrix P :

$$
P:=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & u & -v \\
0 & v & u
\end{array}\right)
$$

having three rows and three columns. Clearly:

$$
\left(\begin{array}{rrrr}
\alpha & \beta & 0 & 0 \\
\beta & \alpha & 0 & 0 \\
0 & 0 & u & -v \\
0 & 0 & v & u
\end{array}\right)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & u & -v \\
0 & 0 & v & u
\end{array}\right)\left(\begin{array}{rrrr}
\alpha & \beta & 0 & 0 \\
\beta & \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Hence:

$$
\Lambda=\hat{R} B_{\theta} \hat{S}
$$

where $R:=Q P$, where $0<\theta$, and where:

$$
\tanh (\theta)=\frac{\beta}{\alpha}=\frac{\sqrt{\left(\Lambda_{0}^{1}\right)^{2}+\left(\Lambda_{0}^{2}\right)^{2}+\left(\Lambda_{0}^{3}\right)^{2}}}{\Lambda_{0}^{0}}
$$

8° Let us imagine two inertial observers K and L who coordinatize events by vectors X and Y in \mathbf{R}^{4}. Let us presume that these coordinate vectors are related by a proper orthochronous lorentz matrix Λ :

$$
Y=\Lambda X
$$

The coordinate vectors:

$$
X=w E_{0}=\left(\begin{array}{c}
w \\
0 \\
0 \\
0
\end{array}\right) \quad(w \in \mathbf{R})
$$

comprise the world line of the spatial origin for K. One can easily check that the corresponding vectors Y satisfy the relation:

$$
\left(\begin{array}{c}
Y^{1} \\
Y^{2} \\
Y^{3}
\end{array}\right)=\tanh (\theta) Y^{0}\left(\begin{array}{c}
R_{1}^{1} \\
R_{1}^{2} \\
R_{1}^{3}
\end{array}\right)
$$

Of course, we have made use of the representation $\Lambda=\hat{R} B_{\theta} \hat{S}$ of Λ in terms of the rotations \hat{R} and \hat{S} and the boost B_{θ}. Hence, we may say that, for L, the spatial origin for K moves in the direction:

$$
\left(\begin{array}{l}
R_{1}^{1} \\
R_{1}^{2} \\
R_{1}^{3}
\end{array}\right)=\frac{1}{\beta}\left(\begin{array}{c}
\Lambda_{0}^{1} \\
\Lambda_{0}^{2} \\
\Lambda_{0}^{3}
\end{array}\right)
$$

with speed $\tanh (\theta)$.
$9^{\circ} \quad$ Let v stand for $\tanh (\theta)$. Since:

$$
\cosh ^{2}(\theta)-\sinh ^{2}(\theta)=1 \quad \text { and } \quad \sinh (\theta)=\tanh (\theta) \cosh (\theta)
$$

we find that:

$$
\cosh ^{2}(\theta)=\left(1-v^{2}\right)^{-1} \quad \text { and } \quad \sinh ^{2}(\theta)=v^{2}\left(1-v^{2}\right)^{-1}
$$

Hence, we may display the boost B_{θ} in the following conventional form:

$$
B_{\theta}:=\left(\begin{array}{cccc}
\gamma & v \gamma & 0 & 0 \\
v \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where:

$$
\gamma:=\left(1-v^{2}\right)^{-1 / 2}
$$

2 Simultaneity

10° Let us consider certain peculiar facts concerning the coordinate vectors X and Y of events for the inertial observers K and L. For simplicity, we will assume that the lorentz matrix relating X and Y is simply the boost B_{θ} :

$$
\left(\begin{array}{l}
Y^{0} \\
Y^{1} \\
Y^{2} \\
Y^{3}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & v \gamma & 0 & 0 \\
v \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
X^{0} \\
X^{1} \\
X^{2} \\
X^{3}
\end{array}\right)
$$

Let Ω_{1} and Ω_{2} be any two events. Let X_{1} and X_{2} be the coordinate vectors of these events for K and let Y_{1} and Y_{2} be the coordinate vectors of these events for L. It may happen that $X_{1}^{0}=X_{2}^{0}$. In that case, one may say that, for K, the events Ω_{1} and Ω_{2} are simultaneous. However:

$$
Y_{2}^{0}-Y_{1}^{0}=v \gamma\left(X_{2}^{1}-X_{1}^{1}\right)
$$

Hence, the events Ω_{1} and Ω_{2} are not simultaneous for L unless $v=0$ or $X_{1}^{1}=X_{2}^{1}$. We conclude that the relation of simultaneity is not an invariant among inertial observers.

3 Clocks and Rods

11° In turn, it may happen that:

$$
\left(\begin{array}{l}
X_{1}^{1} \\
X_{1}^{2} \\
X_{1}^{3}
\end{array}\right)=\left(\begin{array}{l}
X_{2}^{1} \\
X_{2}^{2} \\
X_{2}^{3}
\end{array}\right) \quad \text { and } \quad X_{1}^{0}<X_{2}^{0}
$$

In that case, one may say that, for K, the events Ω_{1} and Ω_{2} occur at the same place but at different times. One might say that, for K, the events Ω_{1} and Ω_{2} mark two distinct ticks of a clock at rest with respect to K. However, for L, the events Ω_{1} and Ω_{2} mark two distinct ticks of that same clock moving at speed v in the direction:

$$
\left(\begin{array}{c}
R_{1}^{1} \\
R_{1}^{2} \\
R_{1}^{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Moreover:

$$
Y_{2}^{0}-Y_{1}^{0}=\gamma\left(X_{2}^{0}-X_{1}^{0}\right)
$$

so that:

$$
1 \leq \gamma=\frac{Y_{2}^{0}-Y_{1}^{0}}{X_{2}^{0}-X_{1}^{0}}
$$

Hence, one might say that a clock ticks more slowly when in motion than when at rest.
12° Finally, it may happen that:

$$
\left(\begin{array}{c}
X_{2}^{1} \\
X_{2}^{2} \\
X_{2}^{3}
\end{array}\right)-\left(\begin{array}{c}
X_{1}^{1} \\
X_{1}^{2} \\
X_{1}^{3}
\end{array}\right)=\left(\begin{array}{l}
\ell \\
0 \\
0
\end{array}\right) \quad \text { and } \quad Y_{1}^{0}=Y_{2}^{0} \quad(0<\ell)
$$

In that case, one may say that, for L, the events Ω_{1} and Ω_{2} correspond to simultaneous observations of the ends of a straight rod of length ℓ lying at rest with respect to K along the first spatial coordinate axis. Moreover:

$$
\left(\begin{array}{c}
Y_{2}^{1} \\
Y_{2}^{2} \\
Y_{2}^{3}
\end{array}\right)-\left(\begin{array}{c}
Y_{1}^{1} \\
Y_{1}^{2} \\
Y_{1}^{3}
\end{array}\right)=\frac{1}{\gamma}\left(\begin{array}{l}
\ell \\
0 \\
0
\end{array}\right)
$$

Hence, one might say that a straight rod is shorter when in motion than when at rest.

