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Bessel Functions of Integral Order

01◦ We begin by introducing the function:

(1) G(x, z) = exp(
1

2
x(z − 1

z
)) (x ∈ R, z ∈ C, z �= 0)

We may present G as a Laurent Series in z, the coefficients of which are
functions of x:

(2) G(x, z) =
∞∑

n=−∞
Jn(x)z

n

For each integer n, we refer to Jn as the Bessel Function of Order n. We refer
to G as the Generator for the Bessel Functions.

02◦ One can easily verify that:

J−n(x) = Jn(−x) = (−1)nJn(x) (n ∈ Z, x ∈ R

03◦ Obviously:

(3)

exp(
1

2
x(z − 1

z
)) = exp(

1

2
xz)exp(−1

2
x
1

z
)

= (

∞∑
p=0

1

p!
(
1

2
x)pzp)(

∞∑
q=0

1

q!
(−1)q(

1

2
x)q(

1

z
)q)

=
∞∑

n=−∞

∑
p−q=n

(−1)q
1

p!

1

q!
(
1

2
x)p+qzn

Hence:

(4) Jn(x) =

∞∑
q=0

(−1)q
1

q!

1

(q + n)!
(
1

2
x)2q+n (0 ≤ n, x ∈ R)

Clearly, the radius of convergence of the foregoing power series is infinite, so
Jn is the restriction to R of an entire function.
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Recurrence Relations

04◦ Clearly:

∞∑
n=−∞

(n+ 1)Jn+1(x)z
n =

∞∑
n=−∞

Jn(x)nz
n−1

= Gz(x, z)

=
1

2
x(1 +

1

z2
)G(x, z)

=

∞∑
n=−∞

1

2
xJn(x)z

n +

∞∑
n=−∞

1

2
xJn+2(x)z

n

Consequently:

(5) 2nJn(x) = x(Jn−1(x) + Jn+1(x)) (n ∈ Z, x ∈ R)

Similarly:

∞∑
n=−∞

J◦
n(x)z

n = Gx(x, z)

=
1

2
(z − 1

z
)G(x, z)

=

∞∑
n=−∞

1

2
Jn−1(x)z

n −
∞∑

n=−∞

1

2
Jn+1(x)z

n

Consequently:

(6) 2J◦
n(x) = Jn−1(x)− Jn+1(x) (n ∈ Z, x ∈ R)

05◦ From relations (5) and (6), we obtain:

(7) xJ◦
n(x) = xJn−1(x)− nJn(x) (n ∈ Z, x ∈ R)

(8) xJ◦
n(x) = nJn(x) − xJn+1(x) (n ∈ Z, x ∈ R)

Relations (5), (6), (7), and (8) are the Recurrence Relations for the Bessel
Functions and their derivatives.
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The Bessel Equation

06◦ Now let us differentiate relation (7) and let us multiply the result by x:

x2J◦◦
n (x) + xJ◦

n(x) = x2J◦
n−1(x) + xJn−1(x)− xnJ◦

n(x)

In turn, let us multiply equation (7) by −n:

−xnJ◦
n(x) = −xnJn−1(x) + n2Jn(x)

Finally, let us multiply relation (8) by x, replacing n by n− 1:

x2J◦
n−1(x) = x(n− 1)Jn−1(x) − x2Jn(x)

Adding the three equations, we obtain:

(9) x2J◦◦
n (x) + xJ◦

n(x) + (x2 − n2)Jn(x) = 0 (n ∈ Z, x ∈ R)

We infer that, for each integer n, Jn satisfies the Bessel Equation of order n:

(10) w◦◦(x) +
1

x
w◦(x) + (1− n2

x2
)w(x) = 0

07• Let r be a positive number. Let n be an integer. Show that if w is a
solution of the Bessel Equation of order n on the open interval (0, r) and if w
has a limit at 0 then w equals a constant multiple of Jn on (0, r).

Zeros of Bessel Functions

08◦ We contend that, for each nonnegative integer n, Jn has infinitely many
positive zeros. Of course, Jn can have at most finitely many zeros in any finite
interval. Moreover, for any positive number λ, if Jn(λ) = 0 then J◦

n(λ) �= 0.
That is, the zeros of Jn are simple.

09◦ To prove the contention, we argue by Mathematical Induction. Let n = 0.
Let us define the functions:

u(x) ≡ √
xJ0(x), v(x) = cos(x) (0 < x)

We find that:

u◦◦(x) + (1 +
1

4x2
)u(x) = 0

and that:
v◦◦(x) + v(x) = 0
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By the Sturm Comparison Theorem, we infer that u must have zeros between
the successive positive zeros of v:

1

2
π <

3

2
π <

5

2
π <

7

2
π < · · ·

The same must be true of J0.

10◦ Now let n be any nonnegative integer and let us assume that Jn has
infinitely many positive zeros. Let λ and µ be successive zeros of Jn, so
that J◦

n(λ)J
◦
n(µ) < 0. By relation (8), we find that J◦

n(λ) = −Jn+1(λ) and
J◦
n(µ) = −Jn+1(µ), so that Jn+1(λ)Jn+1(µ) < 0. By the Intermediate Value

Theorem, we infer that Jn+1 must have a zero somewhere between λ and µ.
We conclude that Jn+1 has infinitely many positive zeros. Now our contention
follows by Mathematical Induction.

11◦ We shall denote the positive zeros of Jn in increasing order:

λn,1 < λn,2 < λn,3 < · · · (n ∈ Z, 0 ≤ n)

From the Handbook of Mathematical Functions by Abramowitz and Stegun,
we display a few of the zeros:

λn,p :




1 2 3 4 5
0 02.405 05.520 08.654 11.792 14.931
1 03.832 07.016 10.173 13.324 16.471
2 05.136 08.417 11.620 14.796 17.960
3 06.380 09.761 13.015 16.223 19.409
4 07.588 11.065 14.373 17.616 20.827
5 08.771 12.339 15.700 18.980 22.218




12◦ Using relations (7) and (8), one can show that the positive zeros of Jn
and Jn+1 interlace:

λn,1 < λn+1,1 < λn,2 < λn+1,2 < λn,3 < · · ·

13◦ By a more profound analysis, one can show that the zeros:

λn,p

are all distinct. See A Treatise on the Theory of Bessel’s Functions (1944) by
G. N. Watson.
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The Completeness Theorems

14◦ Let n be any integer and let ν be any positive number. Let us introduce
the function kn,ν , defined on the interval [0, 1] as follows:

kn,ν(r) = Jn(νr) (0 ≤ r ≤ 1)

By relation (9):

(11) r2k◦◦n,ν(r) + rk◦n,ν(r) + (ν2r2 − n2)kn,ν(r) = 0

In turn, let λ and µ be any positive numbers. By relation (11), we find that:

d

dr

(
rk◦n,λ(r)kn,µ(r) − rkn,λ(r)k

◦
n,µ(r)

)
= −(λ2 − µ2)rkn,λ(r)kn,µ(r)

Hence, for any positive integers p and q:

(λ2
n,p − λ2

n,q)

∫ 1

0

Jn(λn,pr)Jn(λn,qr)rdr = 0

Consequently, if p �= q then:

(12) 2

∫ 1

0

Jn(λn,pr)Jn(λn,qr)rdr = 0

By relation (9), we find that:

2x(Jn(x))
2 =

d

dx

(
x2(J◦

n(x))
2 + (x2 − n2)(Jn(x))

2
)

By relation (5), if n �= 0 then Jn(0) = 0. Hence, for each positive number λ:

2

∫ λ

0

(Jn(x))
2xdx = λ2(J◦

n(λ))
2 + (λ2 − n2)(Jn(λ))

2

Setting λ = λn,p, making the change of variables x = λn,pr, and applying
relation (8), we find that:

(13) 2

∫ 1

0

(Jn(λn,pr))
2rdr = (Jn+1(λn,p))

2
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15◦ Finally, let us introduce the assembly of functions Kn,p, defined on the
interval [0, 1] as follows:

(14) Kn,p(r) =
1

Jn+1(λn,p)
Jn(λn,pr) (n ∈ Z, p ∈ Z+, 0 ≤ r ≤ 1)

Now relation (11) stands as follows:

(15) r2K◦◦
n,ν(r) + rK◦

n,ν(r) + (ν2r2 − n2)Kn,ν(r) = 0

From relations (11) and (12), we obtain the following basic relations:

(16) 2

∫ 1

0

Kn,p(r)Kn,q(r)rdr =

{
0 if p �= q
1 if p = q

Theorem A

16◦ Let E be the complex linear space consisting of all complex valued func-
tions defined and continuous on [ 0, 1 ]. Let E be supplied with the following
Inner Product:

〈〈 f1, f2 〉〉 ≡ 2

∫ 1

0

f1(r)f2(r)rdr (f1, f2 ∈ E)

and the corresponding Integral Norm:

〈〈 f 〉〉2 ≡ 〈〈 f, f 〉〉 = 2

∫ 1

0

|f(r)|2rdr (f ∈ E)

In this context, we contend that, for each integer n, the assembly:

Kn,p (p ∈ Z+)

is a Complete Orthonormal Family in E. For the proof, see Watson.

17◦ Let us explain what our contention means. By relations (16), we have:

(17) 〈〈 Kn,p,Kn,q 〉〉 =
{
0 if p �= q
1 if p = q
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The foregoing relations express the condition that the assembly be an or-
thonormal family. (In this context, note that the functions Kn,p are real
valued.) For such a family, we may compute the Fourier Coefficients for the
various functions in E:

cn,p ≡ 〈〈 f,Kn,p 〉〉 = 2

∫ 1

0

f(r)Kn,p(r)rdr (f ∈ E, p ∈ Z+)

We assert that:

(18) lim
q→∞ 〈〈 f −

q∑
p=1

cn,pKn,p 〉〉 = 0 (f ∈ E)

For the proof, see Watson. The foregoing assertion expresses the condition
that the assembly be complete.

18◦ Just to be clear, let us write the basic relation (16) in fully rounded form:

lim
q→∞ 2

∫ 1

0

|f(r)−
q∑

p=1

cn,pKn,p(r)|2rdr = 0

In practice, one writes the relation rather informally:

f =

∞∑
p=1

cn,pKn,p

One refers to the series as the Fourier Series for f .

19◦ For suitably restricted functions f , one can show that the series converges
to f not only under the Integral Norm, as stated in relation (16), but also
under the Uniform Norm:

lim
q→∞ ‖f −

q∑
p=1

cn,pKn,p‖ = 0

Theorem B

20◦ From Theorem A, we obtain another theorem, which supports our analy-
sis of the Kettle Drum. To that end, let us introduce an assembly of functions
Hn,p, defined on the unit disk ∆ in R2 as follows:

Hn,p(x, y) = Kn,p(r)e
inθ (n ∈ Z, p ∈ Z+, x2 + y2 ≤ 1)
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Of course:
x = r cos(θ), y = r sin(θ)

In this context, one should note, once again, that if n �= 0 then Kn,p(0) = 0.

21◦ Let F be the complex linear space consisting of all complex valued func-
tions defined and continuous on ∆. Let F be supplied with the following
Inner Product:

〈〈 w1, w2 〉〉 ≡ 1

π

∫ ∫
∆

w1(x, y)w2(x, y)dxdy (w1, w2 ∈ F)

and the corresponding Integral Norm:

〈〈w 〉〉2 ≡ 〈〈 w,w 〉〉 = 1

π

∫ ∫
∆

|w(x, y)|2dxdy (w ∈ F)

In this context, we contend that the assembly:

Hn,p (n ∈ Z, p ∈ Z+)

is a Complete Orthonormal Family in F. For the proof, one requires the
foregoing Theorem A and the fundamental Theorem of Stone.

22◦ Now we may compute the Fourier Coefficients for the various functions
in F:

cn,p ≡ 〈〈 w,Hn,p 〉〉 = 1

2π

∫ π

−π

2

∫ 1

0

w(r, θ)Hn,p(r)rdrdθ

(w ∈ F, n ∈ Z, p ∈ Z+)

We obtain:

(19) lim
|�|→∞

lim
q→∞ 〈〈w −

�∑
n=−�

q∑
p=1

cn,pHn,p 〉〉 = 0 (w ∈ F)

Just to be clear, let us write the basic relation (17) in fully rounded form:

lim
|�|→∞

lim
q→∞

1

π

∫ π

−π

∫ 1

0

|w(r, θ) −
�∑

n=−�

q∑
p=1

cn,pHn,p(r)|2rdrdθ = 0

In practice, one writes the relation rather informally:

w =

∞∑
n=−∞

∞∑
p=1

cn,pHn,p
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One refers to the series as the Fourier Series for w.

23◦ For suitably restricted functions w, one can show that the series converges
to w not only under the Integral Norm, as stated in relation (17), but also
under the Uniform Norm:

lim
|�|→∞

lim
q→∞ ‖w −

�∑
n=−�

q∑
p=1

cn,pHn,p‖ = 0

24◦ One should note that, for each n, p, and θ:

Hn,p(1, θ) =
1

Jn+1(λn,p)
Jn(λn,p)e

inθ = 0

The Kettle Drum

25◦ Let us identify the closed unit disk ∆ in R2 with the elastic membrane
covering a conventional kettle drum. One may describe the motion of such a
membrane by introducing a complex-valued function W defined on R × ∆,
which satisfies the Wave Equation:

(◦) Wtt(t, x, y) = Wxx(t, x, y) +Wyy(x, y) ((t, x, y) ∈ R×∆)

For each (t, x, y), (the real or imaginary part of) W (t, x, y) is the vertical
displacement at time t of the position (x, y) on the membrane. Of course, W
should be of class C2.

26◦ We require that the boundary of the drum remain fixed:

x2 + y2 = 1 =⇒ W (t, x, y) = 0

27◦ We plan to describe all such functions W in a useful way and to show
that every such function W is uniquely determined by the initial values:

(•) W (0, x, y), Wt(0, x, y) ((x, y) ∈ ∆)

28◦ Let us recast the Wave Equation in terms of polar coordinates:

(◦) Wtt(t, r, θ) = Wrr(t, r, θ) +
1

r
Wr(t, r, θ) +

1

r2
Wθθ(t, r, θ)
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where:
0 < r ≤ 1 and 0 ≤ θ < 2π

In turn, let us present W in terms of the orthonormal basis for E described
earlier:

Hn,p(r, θ) = Kn,p(r)e
inθ =

1

Jn+1(λn,p)
Jn(λn,pr)e

inθ

We find that:

W (t, r, θ) =

∞∑
n=−∞

∞∑
p=1

cn,p(t)Hn,p(r, θ)

where:

cn,p(t) =
1

π

∫ 2π

0

∫ 1

0

W (t, r, θ)Hn,p(r, θ)rdrdθ

Clearly:

Wtt(t, r, θ) =

∞∑
n=−∞

∞∑
p=1

c◦◦n,p(t)Kn,p(r)e
inθ

In turn, by relation (15):

Wrr(t, r, θ) +
1

r
Wr(t, r, θ) +

1

r2
Wθθ(t, r, θ)

=

∞∑
n=−∞

∞∑
p=1

cn,p(t)
(
K◦◦

n,p(r) +
1

r
K◦

n,p(r) −
n2

r2
Kn,p(r)

)
einθ

=

∞∑
n=−∞

∞∑
p=1

(−λ2
n,p)cn,p(t)Kn,p(r)e

inθ

Hence, W satisfies the Wave Equation iff:

(20) c◦◦n,p(t) + λ2
n,pcn,p(t) = 0 (n ∈ Z, p ∈ Z+, t ∈ R)

29◦ The initial conditions (•) determine the appropriate solutions of relations
(20), as follows:

cn,p(0) =
1

π

∫ 2π

0

∫ 1

0

W (0, r, θ)Hn,p(r, θ)rdrdθ

c◦n,p(0) =
1

π

∫ 2π

0

∫ 1

0

Wt(0, r, θ)Hn,p(r, θ)rdrdθ
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