MATHEMATICS 322

THE KETTLE DRUM

Thomas Wieting, 2011

Bessel Functions of Integral Order

01° We begin by introducing the function:

$$
\begin{equation*}
G(x, z)=\exp \left(\frac{1}{2} x\left(z-\frac{1}{z}\right)\right) \quad(x \in \mathbf{R}, \quad z \in \mathbf{C}, \quad z \neq 0) \tag{1}
\end{equation*}
$$

We may present G as a Laurent Series in z, the coefficients of which are functions of x :

$$
\begin{equation*}
G(x, z)=\sum_{n=-\infty}^{\infty} J_{n}(x) z^{n} \tag{2}
\end{equation*}
$$

For each integer n, we refer to J_{n} as the Bessel Function of Order n. We refer to G as the Generator for the Bessel Functions.
02° One can easily verify that:

$$
J_{-n}(x)=J_{n}(-x)=(-1)^{n} J_{n}(x) \quad(n \in \mathbf{Z}, \quad x \in \mathbf{R}
$$

03° Obviously:

$$
\begin{align*}
\exp \left(\frac{1}{2} x\left(z-\frac{1}{z}\right)\right) & =\exp \left(\frac{1}{2} x z\right) \exp \left(-\frac{1}{2} x \frac{1}{z}\right) \\
& =\left(\sum_{p=0}^{\infty} \frac{1}{p!}\left(\frac{1}{2} x\right)^{p} z^{p}\right)\left(\sum_{q=0}^{\infty} \frac{1}{q!}(-1)^{q}\left(\frac{1}{2} x\right)^{q}\left(\frac{1}{z}\right)^{q}\right) \tag{3}\\
& =\sum_{n=-\infty}^{\infty} \sum_{p-q=n}(-1)^{q} \frac{1}{p!} \frac{1}{q!}\left(\frac{1}{2} x\right)^{p+q} z^{n}
\end{align*}
$$

Hence:

$$
\begin{equation*}
J_{n}(x)=\sum_{q=0}^{\infty}(-1)^{q} \frac{1}{q!} \frac{1}{(q+n)!}\left(\frac{1}{2} x\right)^{2 q+n} \quad(0 \leq n, x \in \mathbf{R}) \tag{4}
\end{equation*}
$$

Clearly, the radius of convergence of the foregoing power series is infinite, so J_{n} is the restriction to \mathbf{R} of an entire function.

Recurrence Relations

04° Clearly:

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty}(n+1) J_{n+1}(x) z^{n} & =\sum_{n=-\infty}^{\infty} J_{n}(x) n z^{n-1} \\
& =G_{z}(x, z) \\
& =\frac{1}{2} x\left(1+\frac{1}{z^{2}}\right) G(x, z) \\
& =\sum_{n=-\infty}^{\infty} \frac{1}{2} x J_{n}(x) z^{n}+\sum_{n=-\infty}^{\infty} \frac{1}{2} x J_{n+2}(x) z^{n}
\end{aligned}
$$

Consequently:

$$
\begin{equation*}
2 n J_{n}(x)=x\left(J_{n-1}(x)+J_{n+1}(x)\right) \quad(n \in \mathbf{Z}, \quad x \in \mathbf{R}) \tag{5}
\end{equation*}
$$

Similarly:

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} J_{n}^{\circ}(x) z^{n} & =G_{x}(x, z) \\
& =\frac{1}{2}\left(z-\frac{1}{z}\right) G(x, z) \\
& =\sum_{n=-\infty}^{\infty} \frac{1}{2} J_{n-1}(x) z^{n}-\sum_{n=-\infty}^{\infty} \frac{1}{2} J_{n+1}(x) z^{n}
\end{aligned}
$$

Consequently:

$$
\begin{equation*}
2 J_{n}^{\circ}(x)=J_{n-1}(x)-J_{n+1}(x) \quad(n \in \mathbf{Z}, \quad x \in \mathbf{R}) \tag{6}
\end{equation*}
$$

05° From relations (5) and (6), we obtain:

$$
\begin{array}{ll}
x J_{n}^{\circ}(x)=x J_{n-1}(x)-n J_{n}(x) & (n \in \mathbf{Z}, x \in \mathbf{R}) \\
x J_{n}^{\circ}(x)=n J_{n}(x)-x J_{n+1}(x) & (n \in \mathbf{Z}, x \in \mathbf{R}) \tag{8}
\end{array}
$$

Relations (5), (6), (7), and (8) are the Recurrence Relations for the Bessel Functions and their derivatives.

The Bessel Equation

06° Now let us differentiate relation (7) and let us multiply the result by x :

$$
x^{2} J_{n}^{\circ \circ}(x)+x J_{n}^{\circ}(x)=x^{2} J_{n-1}^{\circ}(x)+x J_{n-1}(x)-x n J_{n}^{\circ}(x)
$$

In turn, let us multiply equation (7) by $-n$:

$$
-x n J_{n}^{\circ}(x)=-x n J_{n-1}(x)+n^{2} J_{n}(x)
$$

Finally, let us multiply relation (8) by x, replacing n by $n-1$:

$$
x^{2} J_{n-1}^{\circ}(x)=x(n-1) J_{n-1}(x)-x^{2} J_{n}(x)
$$

Adding the three equations, we obtain:

$$
\begin{equation*}
x^{2} J_{n}^{\circ \circ}(x)+x J_{n}^{\circ}(x)+\left(x^{2}-n^{2}\right) J_{n}(x)=0 \quad(n \in \mathbf{Z}, \quad x \in \mathbf{R}) \tag{9}
\end{equation*}
$$

We infer that, for each integer n, J_{n} satisfies the Bessel Equation of order n :

$$
\begin{equation*}
w^{\circ \circ}(x)+\frac{1}{x} w^{\circ}(x)+\left(1-\frac{n^{2}}{x^{2}}\right) w(x)=0 \tag{10}
\end{equation*}
$$

07^{\bullet} Let r be a positive number. Let n be an integer. Show that if w is a solution of the Bessel Equation of order n on the open interval $(0, r)$ and if w has a limit at 0 then w equals a constant multiple of J_{n} on $(0, r)$.

Zeros of Bessel Functions

08° We contend that, for each nonnegative integer n, J_{n} has infinitely many positive zeros. Of course, J_{n} can have at most finitely many zeros in any finite interval. Moreover, for any positive number λ, if $J_{n}(\lambda)=0$ then $J_{n}^{\circ}(\lambda) \neq 0$. That is, the zeros of J_{n} are simple.
09° To prove the contention, we argue by Mathematical Induction. Let $n=0$. Let us define the functions:

$$
u(x) \equiv \sqrt{x} J_{0}(x), \quad v(x)=\cos (x) \quad(0<x)
$$

We find that:

$$
u^{\circ \circ}(x)+\left(1+\frac{1}{4 x^{2}}\right) u(x)=0
$$

and that:

$$
v^{\circ \circ}(x)+v(x)=0
$$

By the Sturm Comparison Theorem, we infer that u must have zeros between the successive positive zeros of v :

$$
\frac{1}{2} \pi<\frac{3}{2} \pi<\frac{5}{2} \pi<\frac{7}{2} \pi<\ldots
$$

The same must be true of J_{0}.
10° Now let n be any nonnegative integer and let us assume that J_{n} has infinitely many positive zeros. Let λ and μ be successive zeros of J_{n}, so that $J_{n}^{\circ}(\lambda) J_{n}^{\circ}(\mu)<0$. By relation (8), we find that $J_{n}^{\circ}(\lambda)=-J_{n+1}(\lambda)$ and $J_{n}^{\circ}(\mu)=-J_{n+1}(\mu)$, so that $J_{n+1}(\lambda) J_{n+1}(\mu)<0$. By the Intermediate Value Theorem, we infer that J_{n+1} must have a zero somewhere between λ and μ. We conclude that J_{n+1} has infinitely many positive zeros. Now our contention follows by Mathematical Induction.
11° We shall denote the positive zeros of J_{n} in increasing order:

$$
\lambda_{n, 1}<\lambda_{n, 2}<\lambda_{n, 3}<\cdots \quad(n \in \mathbf{Z}, \quad 0 \leq n)
$$

From the Handbook of Mathematical Functions by Abramowitz and Stegun, we display a few of the zeros:

$$
\lambda_{n, p}:\left(\begin{array}{cccccc}
& 1 & 2 & 3 & 4 & 5 \\
0 & 02.405 & 05.520 & 08.654 & 11.792 & 14.931 \\
1 & 03.832 & 07.016 & 10.173 & 13.324 & 16.471 \\
2 & 05.136 & 08.417 & 11.620 & 14.796 & 17.960 \\
3 & 06.380 & 09.761 & 13.015 & 16.223 & 19.409 \\
4 & 07.588 & 11.065 & 14.373 & 17.616 & 20.827 \\
5 & 08.771 & 12.339 & 15.700 & 18.980 & 22.218
\end{array}\right)
$$

12° Using relations (7) and (8), one can show that the positive zeros of J_{n} and J_{n+1} interlace:

$$
\lambda_{n, 1}<\lambda_{n+1,1}<\lambda_{n, 2}<\lambda_{n+1,2}<\lambda_{n, 3}<\cdots
$$

13° By a more profound analysis, one can show that the zeros:

$$
\lambda_{n, p}
$$

are all distinct. See A Treatise on the Theory of Bessel's Functions (1944) by G. N. Watson.

The Completeness Theorems

14° Let n be any integer and let ν be any positive number. Let us introduce the function $k_{n, \nu}$, defined on the interval $[0,1]$ as follows:

$$
k_{n, \nu}(r)=J_{n}(\nu r) \quad(0 \leq r \leq 1)
$$

By relation (9):

$$
\begin{equation*}
r^{2} k_{n, \nu}^{\circ \circ}(r)+r k_{n, \nu}^{\circ}(r)+\left(\nu^{2} r^{2}-n^{2}\right) k_{n, \nu}(r)=0 \tag{11}
\end{equation*}
$$

In turn, let λ and μ be any positive numbers. By relation (11), we find that:

$$
\frac{d}{d r}\left(r k_{n, \lambda}^{\circ}(r) k_{n, \mu}(r)-r k_{n, \lambda}(r) k_{n, \mu}^{\circ}(r)\right)=-\left(\lambda^{2}-\mu^{2}\right) r k_{n, \lambda}(r) k_{n, \mu}(r)
$$

Hence, for any positive integers p and q :

$$
\left(\lambda_{n, p}^{2}-\lambda_{n, q}^{2}\right) \int_{0}^{1} J_{n}\left(\lambda_{n, p} r\right) J_{n}\left(\lambda_{n, q} r\right) r d r=0
$$

Consequently, if $p \neq q$ then:

$$
\begin{equation*}
2 \int_{0}^{1} J_{n}\left(\lambda_{n, p} r\right) J_{n}\left(\lambda_{n, q} r\right) r d r=0 \tag{12}
\end{equation*}
$$

By relation (9), we find that:

$$
2 x\left(J_{n}(x)\right)^{2}=\frac{d}{d x}\left(x^{2}\left(J_{n}^{\circ}(x)\right)^{2}+\left(x^{2}-n^{2}\right)\left(J_{n}(x)\right)^{2}\right)
$$

By relation (5), if $n \neq 0$ then $J_{n}(0)=0$. Hence, for each positive number λ :

$$
2 \int_{0}^{\lambda}\left(J_{n}(x)\right)^{2} x d x=\lambda^{2}\left(J_{n}^{\circ}(\lambda)\right)^{2}+\left(\lambda^{2}-n^{2}\right)\left(J_{n}(\lambda)\right)^{2}
$$

Setting $\lambda=\lambda_{n, p}$, making the change of variables $x=\lambda_{n, p} r$, and applying relation (8), we find that:

$$
\begin{equation*}
2 \int_{0}^{1}\left(J_{n}\left(\lambda_{n, p} r\right)\right)^{2} r d r=\left(J_{n+1}\left(\lambda_{n, p}\right)\right)^{2} \tag{13}
\end{equation*}
$$

15° Finally, let us introduce the assembly of functions $K_{n, p}$, defined on the interval $[0,1]$ as follows:

$$
\begin{equation*}
K_{n, p}(r)=\frac{1}{J_{n+1}\left(\lambda_{n, p}\right)} J_{n}\left(\lambda_{n, p} r\right) \quad\left(n \in \mathbf{Z}, \quad p \in \mathbf{Z}^{+}, \quad 0 \leq r \leq 1\right) \tag{14}
\end{equation*}
$$

Now relation (11) stands as follows:

$$
\begin{equation*}
r^{2} K_{n, \nu}^{\circ}(r)+r K_{n, \nu}^{\circ}(r)+\left(\nu^{2} r^{2}-n^{2}\right) K_{n, \nu}(r)=0 \tag{15}
\end{equation*}
$$

From relations (11) and (12), we obtain the following basic relations:

$$
2 \int_{0}^{1} K_{n, p}(r) K_{n, q}(r) r d r= \begin{cases}0 & \text { if } p \neq q \tag{16}\\ 1 & \text { if } p=q\end{cases}
$$

Theorem A
16° Let \mathbf{E} be the complex linear space consisting of all complex valued functions defined and continuous on $[0,1]$. Let \mathbf{E} be supplied with the following Inner Product:

$$
\left.《 f_{1}, f_{2}\right\rangle \equiv 2 \int_{0}^{1} f_{1}(r) \overline{f_{2}(r)} r d r \quad\left(f_{1}, f_{2} \in \mathbf{E}\right)
$$

and the corresponding Integral Norm:

$$
\langle f\rangle\rangle\left.^{2} \equiv\left\langle\langle f, f\rangle=2 \int_{0}^{1}\right| f(r)\right|^{2} r d r \quad(f \in \mathbf{E})
$$

In this context, we contend that, for each integer n, the assembly:

$$
K_{n, p} \quad\left(p \in \mathbf{Z}^{+}\right)
$$

is a Complete Orthonormal Family in E. For the proof, see Watson.
17° Let us explain what our contention means. By relations (16), we have:

$$
\left.《 K_{n, p}, K_{n, q}\right\rangle= \begin{cases}0 & \text { if } p \neq q \tag{17}\\ 1 & \text { if } p=q\end{cases}
$$

The foregoing relations express the condition that the assembly be an orthonormal family. (In this context, note that the functions $K_{n, p}$ are real valued.) For such a family, we may compute the Fourier Coefficients for the various functions in \mathbf{E} :

$$
c_{n, p} \equiv\left\langle\left\langle f, K_{n, p}\right\rangle=2 \int_{0}^{1} f(r) \overline{K_{n, p}(r)} r d r \quad\left(f \in \mathbf{E}, p \in \mathbf{Z}^{+}\right)\right.
$$

We assert that:

$$
\begin{equation*}
\lim _{q \rightarrow \infty}\left\langle\left\langle f-\sum_{p=1}^{q} c_{n, p} K_{n, p}\right\rangle=0 \quad(f \in \mathbf{E})\right. \tag{18}
\end{equation*}
$$

For the proof, see Watson. The foregoing assertion expresses the condition that the assembly be complete.
18° Just to be clear, let us write the basic relation (16) in fully rounded form:

$$
\lim _{q \rightarrow \infty} 2 \int_{0}^{1}\left|f(r)-\sum_{p=1}^{q} c_{n, p} K_{n, p}(r)\right|^{2} r d r=0
$$

In practice, one writes the relation rather informally:

$$
f=\sum_{p=1}^{\infty} c_{n, p} K_{n, p}
$$

One refers to the series as the Fourier Series for f.
19° For suitably restricted functions f, one can show that the series converges to f not only under the Integral Norm, as stated in relation (16), but also under the Uniform Norm:

$$
\lim _{q \rightarrow \infty}\left\|f-\sum_{p=1}^{q} c_{n, p} K_{n, p}\right\|=0
$$

Theorem B

20° From Theorem A, we obtain another theorem, which supports our analysis of the Kettle Drum. To that end, let us introduce an assembly of functions $H_{n, p}$, defined on the unit disk $\boldsymbol{\Delta}$ in \mathbf{R}^{2} as follows:

$$
H_{n, p}(x, y)=K_{n, p}(r) e^{i n \theta} \quad\left(n \in \mathbf{Z}, \quad p \in \mathbf{Z}^{+}, \quad x^{2}+y^{2} \leq 1\right)
$$

Of course:

$$
x=r \cos (\theta), \quad y=r \sin (\theta)
$$

In this context, one should note, once again, that if $n \neq 0$ then $K_{n, p}(0)=0$.
21° Let \mathbf{F} be the complex linear space consisting of all complex valued functions defined and continuous on $\boldsymbol{\Delta}$. Let \mathbf{F} be supplied with the following Inner Product:

$$
\left\langle w_{1}, w_{2}\right\rangle \equiv \frac{1}{\pi} \iint_{\boldsymbol{\Delta}} w_{1}(x, y) \overline{w_{2}(x, y)} d x d y \quad\left(w_{1}, w_{2} \in \mathbf{F}\right)
$$

and the corresponding Integral Norm:

$$
\left\langle\left.\langle w\rangle^{2} \equiv\left\langle\langle w, w\rangle=\frac{1}{\pi} \iint_{\boldsymbol{\Delta}}\right| w(x, y)\right|^{2} d x d y \quad(w \in \mathbf{F})\right.
$$

In this context, we contend that the assembly:

$$
H_{n, p} \quad\left(n \in \mathbf{Z}, \quad p \in \mathbf{Z}^{+}\right)
$$

is a Complete Orthonormal Family in F. For the proof, one requires the foregoing Theorem A and the fundamental Theorem of Stone.
22° Now we may compute the Fourier Coefficients for the various functions in \mathbf{F} :

$$
\begin{aligned}
& c_{n, p} \equiv\left\langle\left\langle w, H_{n, p}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} 2 \int_{0}^{1} w(r, \theta) \overline{H_{n, p}(r)} r d r d \theta\right. \\
&\left(w \in \mathbf{F}, \quad n \in \mathbf{Z}, \quad p \in \mathbf{Z}^{+}\right)
\end{aligned}
$$

We obtain:

$$
\begin{equation*}
\lim _{|\ell| \rightarrow \infty} \lim _{q \rightarrow \infty}\left\langle\left\langle w-\sum_{n=-\ell}^{\ell} \sum_{p=1}^{q} c_{n, p} H_{n, p}\right\rangle=0 \quad(w \in \mathbf{F})\right. \tag{19}
\end{equation*}
$$

Just to be clear, let us write the basic relation (17) in fully rounded form:

$$
\lim _{|\ell| \rightarrow \infty} \lim _{q \rightarrow \infty} \frac{1}{\pi} \int_{-\pi}^{\pi} \int_{0}^{1}\left|w(r, \theta)-\sum_{n=-\ell}^{\ell} \sum_{p=1}^{q} c_{n, p} H_{n, p}(r)\right|^{2} r d r d \theta=0
$$

In practice, one writes the relation rather informally:

$$
w=\sum_{n=-\infty}^{\infty} \sum_{p=1}^{\infty} c_{n, p} H_{n, p}
$$

One refers to the series as the Fourier Series for w.
23° For suitably restricted functions w, one can show that the series converges to w not only under the Integral Norm, as stated in relation (17), but also under the Uniform Norm:

$$
\lim _{|\ell| \rightarrow \infty} \lim _{q \rightarrow \infty}\left\|w-\sum_{n=-\ell}^{\ell} \sum_{p=1}^{q} c_{n, p} H_{n, p}\right\|=0
$$

24° One should note that, for each n, p, and θ :

$$
H_{n, p}(1, \theta)=\frac{1}{J_{n+1}\left(\lambda_{n, p}\right)} J_{n}\left(\lambda_{n, p}\right) e^{i n \theta}=0
$$

The Kettle Drum

25° Let us identify the closed unit disk $\boldsymbol{\Delta}$ in \mathbf{R}^{2} with the elastic membrane covering a conventional kettle drum. One may describe the motion of such a membrane by introducing a complex-valued function W defined on $\mathbf{R} \times \boldsymbol{\Delta}$, which satisfies the Wave Equation:
(○) $\quad W_{t t}(t, x, y)=W_{x x}(t, x, y)+W_{y y}(x, y) \quad((t, x, y) \in \mathbf{R} \times \boldsymbol{\Delta})$
For each (t, x, y), (the real or imaginary part of) $W(t, x, y)$ is the vertical displacement at time t of the position (x, y) on the membrane. Of course, W should be of class C^{2}.
26° We require that the boundary of the drum remain fixed:

$$
x^{2}+y^{2}=1 \Longrightarrow W(t, x, y)=0
$$

27° We plan to describe all such functions W in a useful way and to show that every such function W is uniquely determined by the initial values:

$$
W(0, x, y), \quad W_{t}(0, x, y) \quad((x, y) \in \boldsymbol{\Delta})
$$

28° Let us recast the Wave Equation in terms of polar coordinates:

$$
\begin{equation*}
W_{t t}(t, r, \theta)=W_{r r}(t, r, \theta)+\frac{1}{r} W_{r}(t, r, \theta)+\frac{1}{r^{2}} W_{\theta \theta}(t, r, \theta) \tag{○}
\end{equation*}
$$

where:

$$
0<r \leq 1 \quad \text { and } \quad 0 \leq \theta<2 \pi
$$

In turn, let us present W in terms of the orthonormal basis for \mathbf{E} described earlier:

$$
H_{n, p}(r, \theta)=K_{n, p}(r) e^{i n \theta}=\frac{1}{J_{n+1}\left(\lambda_{n, p}\right)} J_{n}\left(\lambda_{n, p} r\right) e^{i n \theta}
$$

We find that:

$$
W(t, r, \theta)=\sum_{n=-\infty}^{\infty} \sum_{p=1}^{\infty} c_{n, p}(t) H_{n, p}(r, \theta)
$$

where:

$$
c_{n, p}(t)=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{1} W(t, r, \theta) \overline{H_{n, p}(r, \theta)} r d r d \theta
$$

Clearly:

$$
W_{t t}(t, r, \theta)=\sum_{n=-\infty}^{\infty} \sum_{p=1}^{\infty} c_{n, p}^{\circ}(t) K_{n, p}(r) e^{i n \theta}
$$

In turn, by relation (15):

$$
\begin{aligned}
W_{r r} & (t, r, \theta)+\frac{1}{r} W_{r}(t, r, \theta)+\frac{1}{r^{2}} W_{\theta \theta}(t, r, \theta) \\
& =\sum_{n=-\infty}^{\infty} \sum_{p=1}^{\infty} c_{n, p}(t)\left(K_{n, p}^{\circ \circ}(r)+\frac{1}{r} K_{n, p}^{\circ}(r)-\frac{n^{2}}{r^{2}} K_{n, p}(r)\right) e^{i n \theta} \\
& =\sum_{n=-\infty}^{\infty} \sum_{p=1}^{\infty}\left(-\lambda_{n, p}^{2}\right) c_{n, p}(t) K_{n, p}(r) e^{i n \theta}
\end{aligned}
$$

Hence, W satisfies the Wave Equation iff:

$$
\begin{equation*}
c_{n, p}^{\circ \circ}(t)+\lambda_{n, p}^{2} c_{n, p}(t)=0 \quad\left(n \in \mathbf{Z}, \quad p \in \mathbf{Z}^{+}, \quad t \in \mathbf{R}\right) \tag{20}
\end{equation*}
$$

29° The initial conditions (\bullet) determine the appropriate solutions of relations (20), as follows:

$$
\begin{aligned}
& c_{n, p}(0)=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{1} W(0, r, \theta) \overline{H_{n, p}(r, \theta)} r d r d \theta \\
& c_{n, p}^{\circ}(0)=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{1} W_{t}(0, r, \theta) \overline{H_{n, p}(r, \theta)} r d r d \theta
\end{aligned}
$$

