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Chapter 0 OBJECTIVES AND PREREQUISITES

Objectives

1◦ Differential Equations state relations between functions and their deriva-
tives. They provide a base for the analysis of Physical Systems. For illustra-
tions, we point to the ubiquitous Potential Equation:

(S) −ψ◦◦(x) + V (x)ψ(x) = 0

which figures in Quantum Mechanics. We also point to the classical Equations
of Newton governing Celestial Mechanics:

(N)

m1r
◦◦
1 (t) =

∑
j �=1

mjm1

ρj1(r(t))2
rj(t)− r1(t)

ρj1(r(t))

m2r
◦◦
2 (t) =

∑
j �=2

mjm2

ρj2(r(t))2
rj(t)− r2(t)

ρj2(r(t))

...

mnr
◦◦
n (t) =

∑
j �=n

mjmn

ρjn(r(t))2
rj(t)− rn(t)

ρjn(r(t))

(0 < ρ(r(t)))

and of Maxwell governing Electrodynamics:

(M)

(∇ •B)(t, x, y, z) = 0

Bt(t, x, y, z) + (∇×E)(t, x, y, z) = 0

(∇ •E)(t, x, y, z) = T (t, x, y, z)

−Et(t, x, y, z) + (∇×B)(t, x, y, z) = K(t, x, y, z)

One should note that (S) is a simple equation while (N) and (M) are systems
of equations.

2◦ For equations (S) and (N), we have signaled differentiation with respect
to the variables x and t by the superscript ◦. For the significance of the
various symbols, see Chapters 2 and 4. For equation (M), we have signaled
differentiation with respect to the variable t by the subscript t and we have
signaled the action of the divergence and the curl in conventional manner.
The variables E, B, T , and K denote the electric field, the magnetic field, the
charge density, and the current density, respectively.

3◦ The functions which figure in a Differential Equation may depend upon
one variable or upon many. In the former case, one refers to the equation as an
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Ordinary Differential Equation (ODE), in the latter, as a Partial Differential
Equation (PDE). Clearly, (M) is partial while (S) and (N) are ordinary.

4◦ It may happen that the family of functions which satisfy a Differential
Equation form a linear space. We mean to say that, for any number c and
for any solutions F , F ′, and F ′′ of the equation, cF and F ′ + F ′′ are also
solutions. Clearly, (S) is linear. The homogeneous case of (M) (in which, by
definition, T = 0 and K = 0) is also linear.

Prerequisites

5◦ For smooth progress through the following Chapters, readers should be
familiar with:

(•) the basic methods of multivariable calculus

(•) power series’

(•) the concepts of linear space, matrix, and linear mapping

Notation

6◦ We employ the following notation:

Z : the integers

Q : the rationals

R : the reals

C : the complex numbers
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Chapter 1 FUNDAMENTAL THEORY

Introduction

1◦ In this chapter, we present the basic form for Ordinary Differential Equa-
tions (ODEs) and we prove the Fundamental Theorem. As an example, we
describe the Lotka/Volterra Equation from mathematical biology. By simple
adaptations, we show that the basic form incorporates all the forms of ordinary
differential equations which arise in practice. To illustrate the adaptations,
we describe several common examples from mathematical physics.

Autonomous First Order Ordinary Differential Equations

2◦ Let n be a positive integer. Let V be an open subset of Rn and let F be
a mapping carrying V to Rn. Let w be a member of V , let s be a number in
R, let J be an open interval in R containing s, and let γ be a differentiable
mapping carrying J to Rn for which γ(J) ⊆ V . One says that γ is an integral

curve for F passing through w at time s iff:

(◦) γ◦(t) = F (γ(t)) (t ∈ J)

(•) γ(s) = w

One refers to relation (◦) as the Ordinary Differential Equation (ODE) defined
by (the Velocity Field) F and to relation (•) as an Initial Condition. One says
that the ODE is Autonomous because F does not depend explicitly upon the
time t and one says that it is First Order because nothing more than γ and
γ◦ figure in it.

F (γ(t))

γ(t)

Integral Curve
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3◦ One may express the relations (◦) and (•) in coordinates as follows:

(◦)

γ◦1 (t) = F1(γ1(t), γ2(t), . . . , γn(t))

γ◦2 (t) = F2(γ1(t), γ2(t), . . . , γn(t))

...

γ◦n(t) = Fn(γ1(t), γ2(t), . . . , γn(t))

(t ∈ J)

(•)

γ1(0) = w1

γ2(0) = w2

...

γk(0) = wn

Often, one adopts informal notation, such as the following:

(◦) x◦ = F (x) or

x◦1 = F1(x1, x2, . . . , xn)

x◦2 = F2(x1, x2, . . . , xn)

...

x◦n = Fn(x1, x2, . . . , xn)

In such cases, one identifies the mapping γ with the vector variable x, which
depends (implicitly) on t.

The Fundamental Theorem

4◦ The Fundamental Theorem for Autonomous First Order ODEs asserts
that, for each number s in R and for each member w of V , there exists an
integral curve γ̂ for F passing through w at time s such that, for any integral
curve γ for F passing through w at time s, γ is a restriction of γ̂. That is,
the domain J of γ is a subset of the domain Ĵ of γ̂ and, for each t in J ,
γ(t) = γ̂(t). One refers to γ̂ as the maximum integral curve for F passing
through w at time s.

Proof of the Fundamental Theorem

5◦ We hasten to add that the Fundamental Theorem requires an hypothesis,
which constrains the rate of change of F . Specifically, one requires that, for
each member w of V , there are positive numbers r and c such that Br(w) ⊆ V
and such that, for any members x and y of Br(w):

|F (x) − F (y)| ≤ c |x− y|
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(In this context, we take Br(w) to stand for the subset of Rn consisting of
all members z such that |z − x| ≤ r.) It would be necessary that F be
continuous. It would be sufficient that F be continuously differentiable, but
the more general requirement is useful.

6◦ Let us prove the theorem. For that purpose, we will apply the Con-
traction Mapping Theorem for complete metric spaces. Let s be a number in
R, let w be a member of V , let J be an open interval in R, and let γ be a
continuous mapping carrying J to Rn for which γ(J) ⊆ V . Obviously, γ is
an integral curve for F passing through w at time s iff:

(∗) γ(t) = w +

∫ t

s

F (γ(u))du (t ∈ J)

One should see in the foregoing relation a suggestion of a fixed point.

7◦ Let r, b, and c be positive numbers such that Br(w) ⊆ V and such that,
for any members x, y, and z of Br(w):

|F (x)| ≤ b and |F (y)− F (z)| ≤ c |y − z|

Let σ be a positive number such that σb ≤ r and σc < 1. Let X be the family:

X := M
(
(s− σ, s+ σ), Br(w)

)
composed of all continuous mappings α carrying (s− σ, s+ σ) to Br(w). We
may supply X with the uniform metric m, as follows:

m(α1, α2) := sup{|α1(t)− α2(t)| : s− σ < t < s+ σ}

where α1 and α2 are any mappings in X. By common knowledge, X is
complete. For each α in X, let β be the mapping carrying (s − σ, s + σ)
to Rn, defined as follows:

β(t) := w +

∫ t

s

F (α(u))du (s− σ < t < s+ σ)

One can easily verify that β is in X. Having done so, one may introduce the
mapping F carrying X to itself, defined as follows:

F(α) := β (α ∈ X)

One can easily verify that F is a contraction mapping. In fact, for any mem-
bers α1 and α2 of X, one can show that:

m(F(α1),F(α2)) ≤ σcm(α1, α2)
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Consequently, by the Contraction Mapping Theorem, there is precisely one
γ in X such that F(γ) = γ. Obviously, γ is an integral curve for F passing
through w at time s. The domain of γ is (s− σ, s + σ).

8◦ By careful application of the foregoing result, one may proceed to prove
the mature form of the Fundamental Theorem. Let us sketch the steps. First,
one must prove that, for any number s in R, for any open intervals J1 and
J2 in R, and for any integral curves γ1 and γ2 for F with domains J1 and J2,
respectively, if s ∈ J1 ∩ J2 and if γ1(s) = γ2(s) then there is a positive real
number τ such that (s−τ, s+τ) ⊆ J1∩J2 and such that the restrictions of γ1
and γ2 to (s−τ, s+τ) coincide. Second, one must prove that, for any number
s in R, for any member w of V , for any open intervals J1 and J2 in R, and
for any integral curves γ1 and γ2 for F with domains J1 and J2, respectively,
if s ∈ J1 ∩J2 and if γ1(s) = γ2(s) then the restrictions of γ1 and γ2 to J1 ∩J2
coincide. Finally, one may prove the Fundamental Theorem. That is, one
may prove that, for any number s in R and for any member w of V , there is
a maximum integral curve γ for F passing through w at time s.

9◦ Just as well, we might set q = (1/2)r, we might select ρ so that ρb ≤ q
and ρc < 1, and we might replace w by any member v of Bq(w). The foregoing
argument would remain valid. We would obtain a fixed point γ for F. Of
course, γ would be an integral curve for F passing through v at time s, with
domain (s− ρ, s+ ρ). We may infer that:

D := (s− ρ, s+ ρ)×Bq(w) ⊆ ∆

One refers to D as a Flow Box for F .

The Flow

10◦ Let w be a member of V . Let γw be the maximum integral curve for F
passing through w at time 0 and let Jw be the domain of γw. One defines the
flow domain ∆ for F as follows:

∆ := { (t, w) ∈ R× V : w ∈ V, t ∈ Jw }
By the preceding article, it is plain that ∆ is an open subset of R × V . In
turn, one defines the flow mapping γ for F , carrying ∆ to V , as follows:

γ(t, w) := γw(t) ((t, w) ∈ ∆)

11◦ For any real number t, one may introduce the (open) subset Vt of V
consisting of all members w for which (t, w) ∈ ∆ and one may define the
mapping:

γt(w) := γ(t, w) (w ∈ Vt)
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carrying Vt to V . The mappings γt and γw emphasize different aspects of the
flow mapping γ, by fixing t while w varies and by fixing w while t varies.

Escape to the Boundary

12◦ Let x be a member of V and let γx be the maximal integral curve for F
passing through x at time 0, with domain:

Jx = (ax, bx) (−∞ ≤ ax < 0 < bx ≤ ∞)

We say that γx future escapes to the boundary of V iff, for each compact
subset M of V , there is some τ in Jx such that:

γx([τ, bx)) ∩M = ∅

Let us assume that bx <∞. We contend that γx future-escapes to the bound-
ary of V .

13◦ Let us suppose, to the contrary, that there is a compact subset M of V
such that, for each τ in Jx, γx([τ, bx)) ∩M 
= ∅. Hence, we may introduce an
increasing sequence:

t1 < t2 < · · · < tj < · · · ↑ bx

in Jx, converging to bx, such that, for each index j, γx(tj) ∈ M . Since M is
compact, we may apply the Bolzano/Weierstrass Theorem. In effect, we may
take the sequence:

γx(t1), γx(t2), . . . , γx(tj), . . .

in M to be convergent:

γx(tj) −→ w, w ∈M

With reference to article 9◦, we may introduce positive numbers q and ρ such
that:

(−ρ, ρ)×Bq(w) ⊆ ∆

Obviously, for each y in Bq(w), (−ρ, ρ) ⊆ Jy. That is, the maximal integral
curve γy for F passing through y at time 0 must be defined at least on the
open interval (−ρ, ρ).

14◦ Let j be an index such that:

bx − tj < ρ and γx(tj) ∈ Bq(w)
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Let τ = tj and let y = γx(τ). Let δ be the mapping carrying (ax, τ + ρ) to
Rk, defined as follows:

δ(t) :=

{
γx(t) if ax < t < bx
γy(t− τ) if τ − ρ < t < τ + ρ

One can easily verify that δ is an integral curve for F passing through x at
time 0. However, bx < τ + ρ, in contradiction with the definition of γx. We
infer that our supposition is untenable. Therefore, if bx < ∞ then γx future
escapes to the boundary of V .

15◦ Of course, one may, in similar manner, formulate the concept of past
escape to the boundary of V and one may prove that if −∞ < ax then γx
past escapes to the boundary of V .

Convergence

16◦ We say that γx is future convergent iff there is a member y of V such
that:

lim
t→bx

γx(t) = y

We refer to y as the future limit of γx. Let us assume that γx is future
convergent. We contend that bx = ∞ and that F (y) = 0.

17◦ To prove the first contention, we simply note that:

M := γx([0, bx)) ∪ {y}

is a compact subset of V . Consequently, γx does not future escape to the
boundary of V . By the foregoing discussion, bx = ∞.

18◦ In picturesque terms, one may say that if an integral curve future con-
verges to a member of V then it must take infinitely long to do so.

19◦ To prove the second contention, we argue by contradiction. Let us sup-
pose that F (y) 
= 0. Let q = (1/2)|F (y)|. Let r be a positive number such
that Br(y) ⊆ V and such that, for each member z of Br(y), F (z) ∈ Bq(F (y)).
Let τ be a number in Jx such that γx([τ, bx)) ⊆ Br(y). We find that, for each
number t in (τ, bx):

1

t− τ
(γx(t)− γx(τ)) =

1

t− τ

∫ t

τ

F (γx(u))du ∈ Bq(F (y))

Hence:
(1/2)(t− τ)|F (y)| ≤ |γx(t)− γx(τ)|
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It follows that γx([τ, bx)) is unbounded, in contradiction with our assumption
that γx is future convergent. We infer that our supposition is untenable.
Hence, F (y) = 0. Therefore, if γx is future convergent then bx = ∞ and
F (y) = 0, where y is the future limit of γx.

20◦ Of course, one may, in similar manner, formulate the concept of past
convergence and one may prove that if γx is past convergent then ax = −∞
and F (y) = 0, where y is the past limit of γx.

21◦ One refers to a member y of V for which F (y) = 0 as a critical point for
F .

Predator/Prey

22◦ Let a, b, c, and d be positive numbers. Let F be the mapping carrying
R+ ×R+ to R2, defined as follows:

F (x1, x2) = (cx1 − dx1x2, bx1x2 − ax2) (0 < x1, 0 < x2))

The ODE defined by F is the ODE of Lotka and Volterra:

(◦) x◦1 = cx1 − dx1x2

x◦2 = bx1x2 − ax2
(0 < x1, 0 < x2)

It serves to model the population dynamics of Prey (x1) and Predator (x2).
Note that:

F (x1, x2) = (0, 0) iff x1 =
a

b
and x2 =

c

d

Let h be the function defined as follows:

h(x1, x2) := bx1 − a log(x1) + dx2 − c log(x2) (0 < x1, 0 < x2)

One can easily verify that:

(∇h)(x1, x2) • F (x1, x2) = 0 (0 < x1, 0 < x2)

Let γ be an integral curve for F:

γ(t) = (x1(t), x2(t)) (t ∈ J)

By the orthogonality relation just noted, it is plain that the function:

h(x1(t), x2(t)) (t ∈ J)
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is constant. Consequently, γ(J) is a subset of one of the level sets for h.
For a sketch of the level sets for h, see the following figure. Obviously, the
population pair:

(w1, w2) = (
a

b
,
c

d
)

is critical. By interpreting the sketch, we find that, in general, the population
pairs (x1, x2) evolve cyclically, in counterclockwise direction.

1 2 3 4

1

2

3

4

Phase Portrait for Predator/Prey

Approximate Solutions of ODEs

23◦ Let n be a positive integer. Let V be an open subset of Rn and let F
be a mapping carrying V to Rn. Let τ be a positive number. Let δ be a
(piecewise continuously) differentiable mapping carrying the interval [0, τ ] to
Rn for which γ(J) ⊆ V . Let ε be a nonnegative number. We say that δ is an
ε-approximate integral curve for F iff:

(ε) ‖δ◦(t)− F (δ(t))‖ ≤ ε (0 ≤ t ≤ τ)

24◦ For the (finitely many) values of t at which δ◦ admits a saltus, we mean
to require that the foregoing inequality holds true for both the left and the
right hand derivatives of δ.
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25◦ Let us assume that there is a positive number c such that:

|F (x) − F (y)| ≤ c |x− y| ((x, y) ∈ V × V )

Under the assumption just stated, one can show that, for any ε′-approximate
integral curve δ′ for F and for any ε′′-approximate integral curve δ′′ for F :

‖δ′(t)− δ′′(t)‖ ≤ ‖δ′(0)− δ′′(0)‖ect + ε

c
(ect − 1) (0 ≤ t ≤ τ)

where ε = ε′ + ε′′.

26◦ It may happen that δ′′ is a true integral curve for F (so that ε′′ = 0)
and that δ′(0) = δ′′(0). In such a case, we find that:

‖δ′(t)− δ′′(t)‖ ≤ ε′

c
(ect − 1) (0 ≤ t ≤ τ)

By the foregoing inequality, one may calculate the order of accuracy in the
method of Runge and Kutta for designing approximate integral curves. We
describe the method as follows.

The Method of Runge/Kutta

27◦ In the foregoing context, let us select a member w of V . Let n be a
(large) positive integer and let σ := τ/n. Let:

0 =: t0 < σ =: t1 < 2σ =: t2 < . . . < nσ =: tn = τ

be the partition of [ 0, τ ] into n equal steps. One defines the Runge-Kutta
sequence inductively as follows:

y0 : = w

z1 : = F (yj−1)

z2 : = F (yj−1 +
σ

2
z1)

z3 : = F (yj−1 +
σ

2
z2)

z4 : = F (yj−1 + σz3)

yj : = yj−1 +
σ

6
(z1 + 2z2 + 2z3 + z4)

(1 ≤ j ≤ n)

Now one may define the polygonal curve δ as follows:

δ(t) := yj−1 +
1

σ
(t− tj−1)(yj − yj−1) (1 ≤ j ≤ n, tj−1 ≤ t ≤ tj)

11



This curve δ is the Runge-Kutta approximation to the integral curve γ for F
passing through w at time 0. It turns out that:

sup {|δ(t)− γ(t)| : 0 ≤ t ≤ τ} ∼ O(σ4)

Reduction of Non-Autonomous First Order ODEs

28◦ Let n be a positive integer. Let V be an open subset of R1+n. Let F be
a mapping carrying V to Rn and let F be the mapping carrying V to R1+n,
defined in terms of F as follows:

F (u, x) := (1,F(u, x)) ((u, x) ∈ V )

Let (s, w) be any member of V . Now we may consider the Non-Autonomous
First Order Ordinary Differential Equation defined by F :

(◦∗) x◦(t) = F(t, x(t))

subject to the initial condition:

(•∗) x(s) = w

and we may consider the Autonomous First Order Ordinary Differential Equa-
tion defined (as usual) by F :

(◦) u◦(t) = 1

x◦(t) = F(u(t), x(t))

subject to the following special form of the initial condition:

(•) (u(s), x(s)) = (s, w)

Obviously, x satisfies equation (◦∗) iff (u, x) satisfies equation (◦), since the
conditions u◦(t) = 1 and u(s) = s force u(t) = t. Moreover, the initial
conditions for x match. Hence, the integral curves for F may be obtained
from certain of the integral curves for F .

29◦ Of course, we must justify application of the Fundamental Theorem to
equation (◦). To that end, we assume that, for each member (s, w) of V , there
are positive numbers r and c such that (s − r, s + r) × Br(w) ⊆ V and such
that, for each number t in (s−r, s+r) and for any members x and y in Br(w):

|F(t, x) −F(t, y)| ≤ c|x− y|
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This condition for F provides just what is needed. It implies that:

|F (t, x) − F (t, y)| ≤ c|x− y|

which, in light of the special form of the initial condition, proves sufficient to
justify application of the Fundamental Theorem.

Reduction of Autonomous Second Order ODEs

30◦ Let n be a positive integer. Let V be an open subset of R2n. Let F be
a mapping carrying V to Rn and let F be the mapping carrying V to R2n,
defined in terms of F as follows:

F (x, y) := (y,F(x, y)) ((x, y) ∈ V )

Let s be any number in R and let (w,w◦) be any member of V . Now we may
consider the Autonomous Second Order ODE defined by F :

(◦◦) x◦◦(t) = F(x(t), x◦(t))

subject to the initial condition:

(••) (x(s), x◦(s)) = (w,w◦)

and we may consider the Autonomous First Order ODE defined (as usual) by
F :

(◦) x◦(t) = y(t)

y◦(t) = F(x(t), y(t))

subject (as usual) to the initial condition:

(•) (x(s), y(s)) = (w,w◦)

Obviously, x satisfies equation (◦◦) iff (x, x◦) satisfies equation (◦). Moreover,
the initial conditions for x and x◦ match. Hence, the integral curves for F
may be obtained from the integral curves for F .

31◦ To justify application of the Fundamental Theorem, we assume that,
for any member (w,w◦) of V , there are positive numbers r and c such that
Br(w) ×Br(w

◦) ⊆ V and such that, for any members (x′, y′) and (x′′, y′′) of
Br(w)×Br(w

◦):

|F(x′, y′)−F(x′′, y′′)| ≤ c |(x′, y′)− (x′′, y′′)|

One can easily check that the Fundamental Theorem would apply to equation
(◦), hence to equation (◦◦).
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The Simple Pendulum

32◦ Let 
 (the length of the pendulum) and g (the acceleration due to gravity
at the surface of the Earth) be positive numbers. Let ω =

√
g/
. One refers to

ω as the natural frequency of the pendulum. Let F be the mapping carrying
R2 to R, defined as follows:

F(θ, v) = −ω2sin(θ) ((θ, v) ∈ R2)

and let F be the corresponding mapping carrying R2 to R2:

F (θ, v) = (v,−ω2sin(θ)) ((θ, v) ∈ R2)




θ

Simple Pendulum

Now equations (◦◦) and (◦) take the form:

(◦◦) θ◦◦(t) = −ω2sin(θ(t))

(◦) θ◦(t) = v(t)

v◦(t) = −ω2sin(θ(t))

Let h (the energy per unit mass) be the function defined as follows:

h(θ, v) =
1

2
v2 − ω2cos(θ) ((θ, v) ∈ R2)

One can easily verify that ∇h and F are orthogonal on R2:

(∇h)(θ, v) • F (θ, v) = 0 (θ, v) ∈ R2)
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Let γ be an integral curve for F:

γ(t) = (θ(t), θ◦(t)) (t ∈ J)

By the orthogonality relation just noted, it is plain that the function:

h(θ(t), θ◦(t)) (t ∈ J)

is constant. Consequently, γ(J) is a subset of one of the level sets for h. For
a sketch of the level sets for h, see Figure 3. By interpreting the sketch, one
can describe the relation between the initial conditions and the form of the
corresponding integral curves.

�3 �2 �1 0 1 2 3

�2

�1

0

1

2

v

θ

Phase Portrait for Simple Pendulum

Newton

33◦ Let M (the mass of the Sun) and G (the gravitational constant) be
positive numbers. Let F be the mapping carrying V = (R3\{0})×R3 to R3,
defined as follows:

F(x, v) = −GM|x|3 x ((x, v) ∈ V )

and let F be the corresponding mapping carrying V to R3 ×R3:

F (x, v) = (v,−GM|x|3 x) ((x, v) ∈ V )
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Now equations (◦◦) and (◦) take the form:

(◦◦) x◦◦(t) = − GM

|x(t)|3 x(t)

(◦)
x◦(t) = v(t)

v◦(t) = − GM

|x(t)|3 x(t)

Equation (◦◦) is the simplest form of the Gravitational Equation of Newton.

34◦ Let h (the energy per unit mass) be the function defined as follows:

h(x, v) =
1

2
|v|2 − GM

|x| ((x, v) ∈ V )

One can easily check that ∇h and F are orthogonal on V :

(∇h)(x, v) • F (x, v) = 0 ((x, v) ∈ V )

Let γ be an integral curve for F :

γ(t) = (x(t), x◦(t)) (t ∈ J)

By the orthogonality relation just noted, it is plain that the function:

h(x(t), x◦(t)) =
1

2
|x◦(t)|2 − GM

|x(t)| (t ∈ J)

is constant.

Lorentz

35◦ Let m (the mass of a particle) and q (the charge) be positive numbers.
Let U be an open subset of R3 and let V = U × R3 be the corresponding
open subset of R6 = R3 ×R3. Let E (the electric field) and B (the magnetic
field) be mappings carrying U to R3. Let F be the mapping carrying V to
R3, defined as follows:

F(x, y) =
q

m
(E(x) + y ×B(x)) ((x, y) ∈ V )

Now equations (◦◦) and (◦) take the form:

(◦◦) x◦◦(t) =
q

m
(E(x(t)) + x◦(t)×B(x(t)))
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(◦)
x◦(t) = y(t)

y◦(t) =
q

m
(E(x(t)) + y(t)×B(x(t)))

One refers to equation (◦◦) as the Lorentz Force Equation. It defines the
motion of a charged particle in an electromagnetic field.

Reduction of Non-Autonomous Second Order ODEs

36◦ Let n be a positive integer. Let V be an open subset of R1+2n. Let F be
a mapping carrying V to Rn and let F be the mapping carrying V to R1+2n,
defined in terms of F as follows:

F (u, x, y) := (1, y,F(u, x, y)) ((u, x, y) ∈ V )

Let (s, w,w◦) be any member of V . Let us consider the Non-Autonomous
Second Order Ordinary Differential Equation defined by F :

(◦◦∗) x◦◦(t) = F(t, x(t), x◦(t))

subject to the initial condition:

(••∗) (x(s), x◦(s) = (w,w◦)

and the Autonomous First Order Ordinary Differential Equation defined (as
usual) by F :

(◦)
u◦(t) = 1

x◦(t) = y(t)

y◦(t) = f(u(t), x(t), y(t))

subject to the (specialized) initial condition:

(•) (u(s), x(s), y(s)) = (s, w,w◦)

Obviously, x satisfies equation (◦◦∗) iff (u, x, x◦) satisfies equation (◦), since
the conditions u◦(t) = 1 and u(s) = s force u(t) = t. Of course, the initial
conditions for x and x◦ match. Hence, the integral curves for F may be
obtained from certain of the integral curves for F .

37◦ To justify application of the Fundamental Theorem, one need only review
the foregoing cases.
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The Damped Forced Pendulum

38◦ Let q (the damping parameter), ω (the natural frequency), f (the forcing
amplitude), and ν (the drive frequency) be positive constants. Let F be the
mapping carrying R3 to R, defined as follows:

F(u, θ, v) := −qv − ω2sin(θ) + fcos(νt) ((u, θ, v) ∈ R3)

and let F be the corresponding mapping carrying R3 to R3:

F (u, θ, v) := (1, v,−qv − ω2sin(θ) + fcos(νt)) ((u, θ, v) ∈ R3)

Now equations (◦◦∗) and (◦) take the form:

(◦◦∗) θ◦◦(t) = −qθ◦(t)− ω2sin(θ(t)) + f cos(νt)

(◦)
u◦(t) = 1

θ◦(t) = v(t)

v◦(t) = −qv(t)− ω2sin(θ(t)) + f cos(νu(t))

The integral curves for the forced damped pendulum provide a rich setting
for the study of Chaotic Dynamics.

18



Chapter 2 SECOND ORDER LINEAR THEORY

Introduction

1◦ Let us consider the special case of First Order Linear ODEs. (For con-
venience of expression, we have dropped the adjective NonAutonomous .) We
present just the basic definitions and facts. Then, by a simple adaptation,
we concentrate upon the primary case of interest: the Second Order Linear
ODEs in one variable (n = 1).

First Order Linear ODEs

2◦ Let n be a positive integer. Let I be an open interval in R and let
V = I×Rn be the corresponding open subset of R1+n. Let F be a continuous
mapping carrying V to Rn such that, for each number t in I, F is linear in
the variable member x of Rn. In effect, we may present F as a matrix with
n rows and n columns and with entries mjk which are continuous functions
of t:

F(t,



x1
x2
...
xn


) = F(t)



x1
x2
...
xn


 =



m11(t) m12(t) · · · m1n(t)
m21(t) m22(t) · · · m2n(t)

...
...

...
...

mn1(t) mn2(t) · · · mnn(t)






x1
x2
...
xn




The ODE defined by F stands as follows:

(◦∗)

γ◦1 (t) = m11(t)γ1(t) +m12(t)γ2(t) + · · · +m1n(t)γn(t)

γ◦2 (t) = m21(t)γ1(t) +m22(t)γ2(t) + · · · +m2n(t)γn(t)

...

γ◦k(t) = mn1(t)γ1(t) +mn2(t)γ2(t) + · · · +mnn(t)γn(t)

(t ∈ I)

The initial condition stands as usual:

(•∗)

γ1(s) = w1

γ2(s) = w2

...

γn(s) = wn

where s is a number in I and where w is a member of Rn.
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3◦ We may abbreviate the foregoing relations as follows:

(◦∗) γ◦(t) = F(t)γ(t) (t ∈ I)

(•∗) γ(s) = w

4◦ Let us pause to verify that the Fundamental Theorem applies to F . To
that end, let u and v be numbers in R such that [u, v ] ⊆ I. Let c be a number
in R such that, for any indices j and k (1 ≤ j, k ≤ n) and for any number t
in [u, v ]:

|mjk(t)| ≤ c

One can easily verify that, for any number t in [u, v ] and for any members x
and y of Rn:

|F(t)(x − y)| ≤ c|x− y|
Now article 29◦ in Chapter 1 justifies application of the Fundamental Theo-
rem.

5◦ The foregoing observation yields a bonus. It shows that the domains of
the various maximum integral curves for F must equal I. In fact, a counter
instance γ would fail, in past or in future, to escape to the boundary of I×Rn,
in contradiction with our discussion of these matters in articles 12◦, 13◦, 14◦,
and 15◦ in Chapter 1.

6◦ Let us denote by G the family of all maximum integral curves for F . We
will refer to such curves as solutions of (◦∗). Obviously, G is a linear space
over R. We mean to say that, for any solutions γ, γ′, and γ′′ in G and for
any number c in R, cγ and γ′ + γ′′ are also solutions in G.

7◦ Let Λ be the mapping carrying G to Rn, defined as follows:

Λ(γ) = γ(s) (γ ∈ G)

Obviously, Λ is linear. By the Fundamental Theorem, it is bijective. We infer
that Λ is a linear isomorphism. Hence, the linear space G, consisting of all
solutions γ of (◦∗), is n-dimensional.

8◦ The primary objective for a study of the Linear Theory is to describe a
useful basis:

β1, β2, . . . , βn

of solutions in G.
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Second Order Linear ODEs in One Variable

9◦ Let us turn to our objective. Let I be an open interval in R and let
V = I × R2 be the corresponding open subset of R1+2. Let p0 and p1 be
continuous functions defined on I. Let F be the mapping carrying V to R2,
defined as follows:

F(t,

(
x1
x2

)
) =

(
0 1

−p0(t) −p1(t)
)(

x1
x2

)
((t, x) ∈ V )

Obviously, F is a special case of the general form introduced in article 2◦,
where:

F(t) =

(
0 1

−p0(t) −p1(t)
)

The ODE defined by F stands as follows:

(◦∗) γ◦1 (t) = γ2(t)

γ◦2 (t) = −p0(t)γ1(t)− p1(t)γ2(t)
(t ∈ I)

and the initial condition takes the form:

(•∗) γ1(0) = w

γ2(0) = w◦

where s is a number in I and where w and w◦ are members of R.

10◦ Let us replace γ1 by f and let us restate equations (◦∗) and (•∗) as
follows:

(◦◦∗) f◦◦(t) + p1(t)f
◦(t) + p0(t)f(t) = 0 (t ∈ I)

(••∗) f(s) = w, f◦(s) = w◦

In this way, we obtain the conventional form for Second Order Linear ODEs
in one variable.

11◦ For flexibility, we now encourage the values of our functions to be com-
plex. By doing so, we lose nothing and we gain much. We continue to take
the values of t to be real but, hereafter, we take the values:

p0(t), p1(t), f(t)

of p0, p1, and f to be complex and, consequently, we take the values of the
initial conditions w and w◦ to be complex as well.
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12◦ Now the family G of all solutions of (◦◦∗) is a linear space over C. The
dimension of G is two.

The Wronskian

13◦ Let h1 and h2 be solutions in G. We mean to describe a condition for
determining whether or not:

h1, h2

is a basis for G. To that end, we form the wronskian of h1 and h2:

w(t) = det

(
h1(t) h2(t)
h◦1(t) h◦2(t)

)
(t ∈ I)

One can easily verify that:

w◦(t) + p1(t)w(t) = 0 (t ∈ I)

It follows that, for each s in I:

w(t) = exp(−p̂1(t))w(s) (t ∈ I)

where p̂1 is the antiderivative for p1 such that p̂1(s) = 0.

14◦ Now it is plain that one or the other of the following two conditions must
hold:

(∗) for each t in I, w(t) = 0

(∗) for each t in I, w(t) 
= 0

We contend that:
h1, h2

is a basis for G iff the second of the foregoing conditions holds.

15◦ To prove the contention, let us introduce a number s in I. We note that
h1 and h2 are linearly dependent iff there exist numbers c1 and c2 in C such
that:

|c1|2 + |c2|2 
= 0 and

(
h1(s) h2(s)
h◦1(s) h◦2(s)

)(
c1
c2

)
=

(
0
0

)

because, by the Fundamental Theorem, the condition just stated means that
c1h1 + c2h2 is identically zero. Now one may complete the proof by routine
observations.
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Homogeneous/NonHomogeneous

16◦ Very often, one encounters the following generalization of the Second
Order Linear ODE in one variable:

(◦◦∗) f◦◦(t) + p1(t)f
◦(t) + p0(t)f(t) = φ(t) (t ∈ I)

The function φ, presumed continuous, provides the new feature. To distin-
guish the old and new forms, one refers to the old form as the Homogeneous
Case and to the new form as the NonHomogeneous Case.

17◦ The Damped Forced Pendulum provides an example. See article 38◦ in
Chaper 1.

18◦ Remarkably, the new is contained in the old. We mean to say that, from
a basis:

h1, h2

of solutions for the Homogeneous Case, one may, by quadrature, construct
a particular solution g of the NonHomogeneous Case. That done, we may
present the general solution of the NonHomogeneous Case as follows:

f = c1h1 + c2h2 + g

where c1 and c2 run through C. This pattern is universal in the study of
Linear Differential Equations.

19◦ One constructs g from h1 and h2 by variation of constants . That is, one
forms a fake linear combination of h1 and h2:

g = u1h1 + u2h2

where the coefficients u1 and u2 are not constants but functions, at the mo-
ment unknown but soon to be determined. Requiring:

(1) u◦1h1 + u◦2h2 = 0

one finds that:
g◦ = u1h

◦
1 + u2h

◦
2

Requiring:

(2) u◦1h
◦
1 + u◦2h

◦
2 = φ

as well, one finds that:
g◦◦ + p1g

◦ + p0g = φ
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To justify the procedure, one must justify the requirements (1) and (2). To
that end, one rewrites the requirements as follows:

(
h1 h2
h◦1 h◦2

)(
u◦1
u◦2

)
=

(
0
φ

)

Since the wronskian w for h1 and h2 never vanishes, one may rewrite the
requirements once again:

(
u◦1
u◦2

)
=

1

w

(
h◦2 −h2

−h◦1 h1

)(
0
φ

)
=
φ

w

(−h2
h1

)

That is:

u◦1 = − φ

w
h2, u◦2 =

φ

w
h1

Now one justifies the procedure by quadrature.

One Solution is Sufficient

20◦ Let h1 be a solution in G such that, for each t in I, h1(t) 
= 0. We plan
to design, by quadrature, another solution h2 such that:

h1, h2

is a basis for G. To that end, we form a multiple of h1:

h2 = uh1

where u is a function specified, in steps, as follows:

(3) q ≡ 2
h◦1
h1

+ 1, v◦ + q v = 0, u◦ ≡ v

We find that h2 is a solution in G. The wronskian for h1 and h2 stands as
follows:

w = det

(
h1 uh1
h◦1 u◦h1 + uh◦1

)
= h1(u

◦h1 − uh◦1)

Given any number s in I, we may set the values v(s) = u◦(s) and u(s) so
that:

u◦(s)h1(s)− u(s)h◦1(s) 
= 0

In this way, we insure that h1 and h2 are linearly independent.
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Simplification of Form

21◦ Let u be a function defined on the interval I such that, for each t in I,
u(t) 
= 0. Let f and g be functions defined on I for which:

(4) f = ug

By routine computation, one can check that f satisfies the equation:

(5) f◦◦ + p1f
◦ + p0f = 0

iff g satisfies the equation:

(6) g◦◦ + q1g
◦ + q0 g = 0

where:

q0 =
1

u
(u◦◦ + p1u

◦ + p0u) and q1 =
1

u
(2u◦ + p1u)

Obviously, we may eliminate q1 from equation (6) by choosing u so that:

u◦ +
1

2
p1u = 0

By this observation and by the foregoing articles of discussion, we may present
the equation:

(�) −ψ◦◦(t) + V (t)ψ(t) = 0

as an encapsulation of the theory of Second Order Linear ODEs in one vari-
able.

22◦ With due respect to Mathematical Physics, we have inserted a significant
minus sign in equation (�), we have replaced g by the ubiquitous symbol ψ,
and we have replaced q0 by the conventional symbol V for what in practice
proves to be a potential function.

Sturm Separation

23◦ Let h1 and h2 be linearly independent solutions of equation (�). Let
there be numbers s′ and s′′ in I such that s′ < s′′ and such that h2(s

′) = 0
and h2(s

′′) = 0. We contend that there must be some number t in I such that
s′ < t < s′′ and such that h1(t) = 0.
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24◦ Of course, we may assume that the zeros s′ and s′′ of h2 are successive,
so that, for each number t in I, if s′ < t < s′′ then h2(t) 
= 0. Hence:

h◦2(s
′)h◦2(s

′′) < 0

Since the wronskian w for h1 and h2 never vanishes, we find that h1(s
′)h◦2(s

′)
and h1(s

′′)h◦2(s′′) must have the same sign. Hence:

h1(s
′)h1(s′′) < 0

Consequently, there must be some number t in I such that s′ < t < s′′ and
such that h1(t) = 0.

Sturm Comparison

25◦ Now let us consider two instances of equation (�):

−ψ◦◦
1 (t) + V1(t)ψ1(t) = 0

−ψ◦◦
2 (t) + V2(t)ψ2(t) = 0

Let s′ and s′′ be numbers in I for which s′ < s′′. Let us assume that, for each
number t in I, if s′ < t < s′′ then:

V1(t) ≤ V2(t)

and let us assume that there is some number s in I such that s′ < s < s′′ and:

V1(s) < V2(s)

Let h1 be a nontrivial solution of the first of the foregoing equations and let
h2 be a nontrivial solution of the second. Let us assume that h2(s

′) = 0 and
h2(s

′′) = 0. We contend that there must be some number t in I such that
s′ < t < s′′ and such that h1(t) = 0.

26◦ Again, we may assume that the zeros s′ and s′′ of h2 are successive, so
that, for each number t in I, if s′ < t < s′′ then h2(t) 
= 0, indeed, 0 < h2(t), so
that 0 < h◦2(s′) and h◦2(s′′) < 0. In turn, let us suppose that, for each number
t in I, if s′ < t < s′′ then h1(t) 
= 0, indeed, 0 < h1(t), so that 0 ≤ h1(s

′) and
0 ≤ h1(s

′′). Finally, ignoring the fact that h1 and h2 are solutions of distinct
equations, let us form the wronskian w and compute its derivative:

w = h1h
◦
2 − h2h

◦
1, w◦ = (V2 − V1)h1h2
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27◦ Now we find that:

(∗) 0 ≤ w(s′) and w(s′′) ≤ 0

(∗) for each number t in I, if s′ < t < s′′ then 0 ≤ w◦(t)
(∗) there is some number t in I such that s′ < t < s′′ and 0 ≤ w◦(t)

These conclusions are mutually contradictory. It follows that our prior suppo-
sition is false. Hence, there must be some number t in I such that s′ < t < s′′

and such that h1(t) = 0.

Power Series Solutions

28◦ At this point, we replace the interval I by an open disk ∆ in the complex
plane C. We take the center of ∆ to be 0 and the radius to be a positive
number r, perhaps ∞. We consider complex valued functions defined on ∆.
In fact, we concentrate upon functions defined by power series’.

29◦ Let p0, p1, and p2 be any power series’ convergent in ∆, subject to the
condition that, for each z in ∆, p2(z) 
= 0. In certain significant contexts, soon
to follow, we will describe the power series’ f , convergent in ∆, for which:

p2(z)f
◦◦(z) + p1(z)f

◦(z) + p0(z)f(z) = 0

Just as well:

(◦◦) f◦◦(z) +
p1(z)

p2(z)
f◦(z) +

p0(z)

p2(z)
f(z) = 0

Constant Coefficients

30◦ Let us consider first the case of Constant Coefficients, in which the given
power series’ p0, p1, and p2 are constants. Of course, p2 
= 0. The equation
(◦◦) now takes the following form:

(C) p2f
◦◦(z) + p1f

◦z) + p0f(z) = 0

31◦ Let ζ be any complex number. For a solution f in G, we propose the
following power series:

f(z) = exp(ζz)

Clearly:

p2f
◦◦(z) + p1f

◦z) + p0f(z) = (p2ζ
2 + p1ζ + p0)exp(ζz)
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Hence, f is a solution in G iff ζ is a zero of the following Quadratic Equation:

p2z
2 + p1z + p0 = 0

The Quadratic Formula yields the following zeros:

ζ1 =
1

2p2
(−p−

√
(p21 − 4p0p2) ), ζ2 =

1

2p2
(−p+

√
(p21 − 4p0p2) )

If ζ1 
= ζ2 then we put forward the following solutions in G:

h1(z) = exp(ζ1z), h2(z) = exp(ζ2z)

The wronskian for h1 and h2 is:

(ζ2 − ζ1)exp((ζ1 + ζ2)z)

Hence, h1 and h2 compose a basis for G.

32◦ If ζ1 = ζ2 then we put forward the following solutions in G:

h1(z) = exp(ζz), h2(z) = z exp(ζz)

where ζ = ζ1 = ζ2. The wronskian proves to be:

exp(2ζz) 
= 0

Hence, h1 and h2 compose a basis for G.

33◦ For the special case:

(C) f◦◦(z) + ω2f(z) = 0 (0 < ω)

we find the following basis of solutions in G:

f1(z) = exp(−iωz), f2(z) = exp(+iωz)

Hermite

34◦ Now let us consider the case of Hermite:

(H) f◦◦(z)− 2z f◦(z) + λf(z) = 0
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where λ is any complex number. The solutions figure in the Quantum Theory
of Simple Harmonic Motion. For a solution f to (H), we propose a power
series with undetermined coefficients:

f(z) =
∞∑
j=0

cjz
j

We find that:

f◦◦(z)−2z f◦(z) + λf(z)

=
∞∑
j=2

j(j − 1)cjz
j−2 − 2z

∞∑
j=1

jcjz
j−1 + λ

∞∑
j=0

cjz
j

=

∞∑
k=0

(k + 2)(k + 1)ck+2z
k −

∞∑
k=0

2kckz
k +

∞∑
j=0

λckz
k

=

∞∑
k=0

[
(k + 2)(k + 1)ck+2 − (2k − λ)ck

]
zk

Hence, f is a solution to (H) iff the following recursion relation holds:

ck+2 =
1

(k + 1)(k + 2)
(2k − λ)ck

where k is any nonnegative integer. Obviously, one can specify the initial
coefficients c0 and c1 arbitrarily. The rest are then determined. By the Ratio
Test, one finds that the radius of convergence for the corresponding power
series f is ∞.

35◦ Let λ = 2
, where 
 is a nonnegative integer. One can show that there
is a polynomial H�, within constant multiple uniquely defined, which is a
solution to (H). Note that the degree of H� is 
. Note that if 
 is odd then
H� is odd, while if 
 is even then H� is even. One refers to H� as the Hermite
Polynomial of degree 
. Let us display H0, H1, H2, H3, and H4:
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36◦ In turn, let us consider the case of Legendre:

(L′) (1− z2)f◦◦(z)− 2z f◦(z) + λf(z) = 0

where λ is any complex number. The solutions figure in the Equation of
Laplace and the theory of Spherical Harmonics. For a solution f to (L′), we
propose a power series with undetermined coefficients:

f(z) =

∞∑
j=0

cjz
j

We find that:

(1− z2)f◦◦(z)− 2z f◦(z) + λf(z)

= (1− z2)

∞∑
j=2

j(j − 1)cjz
j−2 − 2z

∞∑
j=1

jcjz
j−1 + λ

∞∑
j=0

cjz
j

=

∞∑
k=0

(k + 2)(k + 1)ck+2z
k −

∞∑
k=0

k(k − 1)ckz
k −

∞∑
k=0

2kckz
k +

∞∑
j=0

λckz
k

=
∞∑
k=0

[
(k + 2)(k + 1)ck+2 − (k(k + 1)− λ)ck

]
zk
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Hence, f is a solution to (L′) iff the following recursion relation holds:

ck+2 =
1

(k + 1)(k + 2)
(k(k + 1)− λ)ck

where k is any nonnegative integer. Obviously, one can specify the initial
coefficients c0 and c1 arbitrarily. The rest are then determined. By the Ratio
Test, one finds that, typically, the radius of convergence for the corresponding
power series f is 1.

37◦ Let λ = 
(
 + 1), where 
 is a nonnegative integer. One can show that
there is a polynomial L′

�, within constant multiple uniquely defined, which is
a solution to (L′). Note that the degree of L′

� is 
. Note that if 
 is odd then
L′
� is odd, while if 
 is even then L′

� is even. One refers to L′
� as the Legendre

Polynomial of degree 
. Let us display L′
0, L

′
1, L

′
2, L

′
3, and L

′
4:
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Laguerre

38◦ Let us consider the case of Laguerre:

(L′′) zf◦◦(z) + (1− z)f◦(z) + λf(z) = 0
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where λ is any complex number. The solutions figure in the Quantum Theory
of the Hydrogen Atom. For a solution f to (L′′), we propose a power series
with undetermined coefficients:

f(z) =
∞∑
j=0

cjz
j

We find that:

zf◦◦(z)+(1− z)f◦(z) + λf(z)

= z
∞∑
j=2

j(j − 1)cjz
j−2 + (1− z)

∞∑
j=1

jcjz
j−1 + λ

∞∑
j=0

cjz
j

=

∞∑
k=0

(k + 1)kck+1z
k +

∞∑
k=0

(k + 1)ck+1z
k −

∞∑
k=0

kckz
k +

∞∑
j=0

λckz
k

=

∞∑
k=0

[
(k + 1)2ck+1 − (k − λ)ck

]
zk

Hence, f is a solution to (L′′) iff the following recursion relation holds:

ck+1 =
1

(k + 1)2
(k − λ)ck

where k is any nonnegative integer. In this notable case, one can freely specify
the initial coefficient c0 but no other. The rest are then determined. By the
Ratio Test, one finds that the radius of convergence for the corresponding
power series f is ∞.

39◦ We hasten to note that one can design another solution to (L′′) by other
methods.

40◦ Let λ = 
, where 
 is a nonnegative integer. One can show that the so-
lution L′′

� to (L′′), within constant multiple uniquely defined, is a polynomial.
Note that the degree of L′′

� is 
. One refers to L′′
� as the Laguerre Polynomial

of degree 
. Let us display L′′
0 , L

′′
1 , L

′′
2 , L

′′
3 , and L

′′
4 :

32



1 2 3 4

-3

-2

-1

1

2

Laguerre

Bessel

41◦ Finally, let us consider the celebrated case of Bessel:

(B) z2f◦◦(z) + z f◦(z) + (z2−λ2)f(z) = 0

where λ is any complex number. The solutions figure in the theory of the
Wave Equation and in many other contexts. Let u and v be the real and
imaginary parts of λ:

λ = u+ iv

Of course, we may assume that:

(0 ≤ u) and ((u = 0) =⇒ (0 ≤ v))

For a solution f to (B), we propose a function of the following peculiar form:

(◦) f(z) = zε
∞∑
j=0

cjz
j

where ε is any complex number. We intend that:

zε = exp(ε log(z))
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and that z be restricted to the principal domain F of the logarithm function.
Without loss of generality, we may assume that:

c0 
= 0

By a pattern of computation now familiar, we find that:

z2f◦◦(z) + z f◦(z) + (z2−λ2)f(z)

= zε

{
(ε2−λ2)c0 + ((1 + ε)2−λ2)c1z +

∞∑
k=2

[
((k + ε)2−λ2)ck + ck−2

]
zk

}

Hence, f is a solution to (B) iff the following relations hold:

(•)
(ε2 − λ2)c0 = 0

((1 + ε)2 − λ2)c1 = 0

((k + ε)2−λ2)ck + ck−2 = 0

where k is any integer for which 2 ≤ k. Obviously:

ε = ±λ

Let K be the subset of Z+ consisting of all positive integers k such that:

(k + ε)2 − λ2 = k(k + 2ε) = 0

Of course, either K = ∅ or K 
= ∅. Let us assume first that K = ∅. In this
case, we may select any two nonzero complex numbers c′0 and c′′0 , to obtain
the following two solutions f± to (B):

f−(z) = z−λ
∞∑
k=0

c′kz
k, f+(z) = zλ

∞∑
k=0

c′′kz
k

where:
c′1 = 0

c′k = − 1

k(k − 2λ)
c′k−2

and:
c′′1 = 0

c′′k = − 1

k(k + 2λ)
c′′k−2
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and where k is any integer for which 2 ≤ k. Neither f− nor f+ is a constant
multiple of the other. Now let us consider the alternate case, in which K 
= ∅.
Let 
 be any member of K. We find that:

ε = −λ, 
+ ε = λ

hence, that:
2λ = 


Relations (•) force the following chain of equalities:

. . . , c�−6 = 0, c�−4 = 0, c�−2 = 0

If 
 is even then the chain terminates at c0, contradicting our initial condition
that c0 
= 0. If 
 is odd then the chain terminates at c1, without conflict.
Hence, we may select any nonzero complex number c′�, to obtain the following
solution f− to (B):

f−(z) = z−λ
∞∑
k=�

c′kz
k

where:
c′�+1 = 0

c′k = − 1

k(k − 2λ)
c′′k−2

where k is any integer for which 
+ 2 ≤ k. However:

f−(z) = z−λ+�
∞∑
k=�

c′kz
k−�

= zλ
∞∑
n=0

c′�+nz
n

and:
1

k(k − 2λ)
=

1

n(n+ 2λ)

where k = 
+n. Hence, f− merely reproduces the solution f+ to (B) obtained
by setting ε = λ and selecting a nonzero complex number c′′0 :

f+(z) = zλ
∞∑
k=0

c′′kz
k

where:
c′′1 = 0

c′′k = − 1

k(k + 2λ)
c′′k−2
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and where k is any integer for which 2 ≤ k.

42◦ One can distinguish the cases in which K 
= ∅ and K = ∅ by noting
whether or not 2λ is an integer. In the latter case, one obtains two solutions
f± to (B) of the form (◦), neither a constant multiple of the other. In the
former case, one obtains just one solution f of the form (◦). However, one
can design another solution by other means.

43◦ One can show that the radii of convergence for the power series’ factors
in the various solutions to (B) equal ∞.

44◦ With reference to the foregoing discussion, let us introduce notation for
the Bessel Functions for integral values of λ:

Jλ : J0, J1, J2, J3, J4, . . .

For the first few nonnegative integers λ (0 ≤ λ ≤ 4), let us display the graphs
of these functions:

2 4 6 8 10

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Bessel
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Chapter 3 STURM/LIOUVILLE THEORY

Introduction

1◦ In this chapter, we describe one of the cornerstones of modern analysis:
the eigenvalue problem for Symmetric Second Order Linear Differential Op-
erators. We consider just the case in which the underlying domain is a closed
finite interval. As an application, we obtain a presentation of the theory of
Fourier Series.

Second Order Linear Differential Operators

2◦ Let I be a closed finite interval in R:

I ≡ [a, b ] (a < b)

We shall denote by C0, C1, and C2 the (complex) linear spaces consisting of
all (complex valued) functions defined on I which are continuous, continuously
differentiable, and twice continuously differentiable, respectively.

3◦ By a Second Order Linear Differentiable Operator on I, one means a
(necessarily linear) mapping L carrying C2 to C0 and having the following
form:

L(f) = p2f
◦◦ + p1f

◦ + p0f (f ∈ C2)

where p0, p1, and p2 are functions in C0 and where, for each t in I, p2(t) 
= 0.
The functions p0, p1, and p2 determine and are determined by L.

4◦ Let L be a Second Order Linear Differentiable Operator on I, determined
by the functions p0, p1, and p2, and let N be the kernel of L. By definition, N
is the linear subspace ofC2 consisting of all functions f for which L(f) = 0. By
the general existence/uniqueness theory for Ordinary Differential Equations,
L is surjective and N is two dimensional.

5◦ Now let S be a linear subspace of C2 and let L′ be the restriction of
L to S. We contend that L′ is bijective iff N and S compose a direct sum
decomposition of C2. We mean to say that, for each f in C2, there exist h
in N and f ′ in S such that f = h + f ′. Moreover, for any h1 and h2 in N
and for any f ′

1 and f ′
2 in S, if h1 + f ′

1 = h2 + f ′
2 then h1 = h2 and f ′

1 = f ′
2.

The latter condition means, quite simply, that N ∩ S = {0}. Together, the
conditions mean that every function in C2 can be expressed uniquely as the
sum of a function in N and a function in S.
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6◦ Let us prove the contention. To that end, let us assume that L′ is
bijective. Let f be any function in C2. Since L′ is surjective, there exists
f ′ in S such that L′(f ′) = L(f). Let h ≡ f − f ′. Obviously, h is in N and
f = h+ f ′. In turn, let f be any function in N ∩ S. That is, L′(f) = 0 and
f ∈ S. Since L′ is injective, f = 0. We conclude that N and S compose a
direct sum decomposition of C2.

7◦ Now let us assume that N and S compose a direct sum decomposition
of C2. For convenience of expression, let us refer to this assumption as ∆.
Let g be any function in C0. Since L is surjective, there exists f in C2 such
that L(f) = g. By ∆, there exist h in N and f ′ in S such that f = h + f ′.
Obviously, L′(f ′) = g. Consequently, L′ is surjective. In turn, let f ′ be a
function in S such that L′(f ′) = 0. Obviously, f ′ ∈ N ∩ S. By ∆, f ′ = 0.
Consequently, L′ is injective. We conclude that L′ is bijective.

8◦ Under the conditions just described, the inverse K of L′ would carry
C0 bijectively to S. We plan to study a broad class of linear subspaces S,
defined by Boundary Conditions, for which K admits an elegant description
as a Linear Integral Operator. See Theorem A. Later, we shall concentrate
upon the special cases in which the linear operators L and linear subspaces S
are Symmetric. In such cases, the inverse K of L′ admits detailed analysis in
terms of eigenfunctions and eigenvalues. See Theorem B.

K

L′

L
S

N

C2 C0

Differential/Integral Operators
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Boundary Conditions

9◦ To describe the appropriate linear subspaces S of C2, we proceed as
follows. Let:

σ1, σ
◦
1 , τ1, τ

◦
1 , σ2, σ

◦
2 , τ2, τ

◦
2

be any eight complex numbers. Let S be the linear subspace of C2 consisting
of all functions f which satisfy the following Boundary Conditions:

(BC)
σ1f(a) + σ◦

1f
◦(a) + τ1f(b) + τ◦1 f

◦(b) = 0

σ2f(a) + σ◦
2f

◦(a) + τ2f(b) + τ◦2 f
◦(b) = 0

We hasten to express the foregoing conditions in a more efficient form, as
follows. Let us assemble the foregoing numbers as a matrix:

(
σ1 σ

◦
1 τ1 τ

◦
1

σ2 σ
◦
2 τ2 τ

◦
2

)

and let us denote by m the corresponding linear mapping carrying C4 to C2:

m(



c1
c2
c3
c4


) =

(
σ1 σ

◦
1 τ1 τ

◦
1

σ2 σ
◦
2 τ2 τ

◦
2

)

c1
c2
c3
c4


 (



c1
c2
c3
c4


 ∈ C4)

In turn, let ζ be the Evaluation Mapping carrying C2 to C4:

ζ(f) =



f(a)
f◦(a)
f(b)
f◦(b)


 (f ∈ C2)

Finally, let µ be the composition of m and ζ, carrying C2 to C2:

µ(f) = m(ζ(f))

=

(
σ1 σ

◦
1 τ1 τ

◦
1

σ2 σ
◦
2 τ2 τ

◦
2

)

f(a)
f◦(a)
f(b)
f◦(b)


 (f ∈ C2)

Now we can describe S simply as the kernel of µ. That is, for each f in C2,
f ∈ S iff:

(BC) µ(f) = 0
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10◦ Let S be the linear subspace of C2 defined by the boundary conditions
(BC). We contend that N and S compose a direct sum decomposition of C2

iff, for some (and hence for any) basis {h1, h2} for N:

(MZ) det (µ(h1) µ(h2) ) 
= 0

11◦ Let us assume that N and S compose a direct sum decomposition of
C2. Let {h1, h2} be any basis for N. Let us suppose that condition (MZ)
fails. It would follow that there exist complex numbers c1 and c2 such that
|c1|2 + |c2|2 
= 0 and c1µ(h1) + c2µ(h2) = 0. That is, there exists a function
h in C2, namely, h = c1h1 + c2h2, such that h 
= 0 and h ∈ N ∩ S, in
contradiction with our assumption. Consequently, our supposition must be
false. We conclude that condition (MZ) holds.

12◦ Now let us assume that there is a basis {h1, h2} forN such that condition
(MZ) holds. Let ν be the mapping carrying C2 to C2, defined as follows:

ν(

(
c1
c2

)
) = c1h1 + c2h2 (

(
c1
c2

)
∈ C2)

Obviously, the range of ν is N. The composition µ · ν of ν and µ carries C2

to itself. It takes the form:

(µ · ν)(
(
c1
c2

)
) = (µ(h1) µ(h2) )

(
c1
c2

)
(

(
c1
c2

)
∈ C2)

Since (MZ) holds, µ · ν is bijective. Let f be any function in C2. Let h be
the function ν((µ ·ν)−1(µ(f))). Obviously, h ∈ N. Moreover, µ(f−h) = 0, so
f−h ∈ S. Of course, f = h+(f−h). In turn, let f be a function in N∩S. Let
c be the member of C2 for which ν(c) = f . Of course, (µ · ν)(c) = µ(f) = 0.
Hence, c = 0, so f = 0. We conclude that N and S compose a direct sum
decomposition of C2.

13◦ At this point, let us fix in mind:

(•) a Second Order Linear Differential Operator L on I determined by
the functions p0, p1, and p2 in C0

(•) a linear subspace S of C2 defined by the Boundary Conditions
(BC), subject to the condition (MZ)

By the foregoing discussion, the restriction L′ of L to S is bijective. We plan
to analyze the inverse K of L′.
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Linear Integral Operators

14◦ By a Linear Integral Operator on I, one means a (necessarily linear)
mapping K carrying C0 to itself and having the following form:

K(g)(t) =

∫ b

a

K(t, u)g(u)du (g ∈ C0)

where K is a continuous (complex valued) function defined on I×I. One says
that K defines K.

15◦ Let us pause to verify that the foregoing definition makes sense. We
must show that, for each g in C0, K(g) is in C0 as well. Let g be any function
in C0. Let t be any number in I. Let ε be any positive real number. We
claim that there is a positive real number δ such that, for any ordered pair
(t̄, u) in I × I, if |t̄− t| ≤ δ then |K(t̄, u)−K(t, u)| ≤ ε. Let us suppose that
the claim is false. Under that supposition, we may introduce a sequence:

(t̄1, u1), (t̄2, u2), . . . , (t̄j , uj), . . .

such that, for each positive integer j:

|t̄j − t| ≤ 1

j
and ε < |K(t̄j, uj)−K(t, uj)|

By the Bolzano/Weierstrass Theorem, we may presume that the sequence is
convergent:

(t̄j , uj) −→ (t, ū)

Of course, K is continuous at (t, ū). Consequently:

ε ≤ |K(t, ū)−K(t, ū)|

a contradiction. We infer that the supposition is false.

16◦ Consequently, the claim is true. Let us introduce a positive number δ of
the sort described. Let ‖g‖ be the uniform norm for g on I:

‖g‖ ≡ sup { |g(u)| : a ≤ u ≤ b }

Now we find that, for each t̄ in I, if |t̄− t| ≤ δ then:

|K(g)(t̄)−K(g)(t)| ≤
∫ b

a

|K(t̄, u)−K(t, u)||g(u)|du ≤ ε‖g‖(b− a)

We infer that K(g) is continuous at t. Hence, K(g) is in C0.
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Theorem A

17◦ We contend that there is precisely one K such that K carries C0 to S
and such that L′ and K are inverse to one another. Consequently, given a
function g in C0, we may (in principle) solve the differential equation:

L(?) = g

by integration:
f = K(g)

Moreover, the solution f satisfies the stated boundary conditions. Subject to
those conditions, it is unique.

18◦ One refers to K as the Green Function for L and S.

19◦ Let us prove the contention. To that end, we introduce a basis {h1, h2}
for N. Since the wronskian for {h1, h2} never vanishes on I, we may introduce
functions θ1 and θ2 in C0 such that:

(1)

(
h1 h2
h◦1 h◦2

)(
θ1
θ2

)
=

(
0
p−1
2

)

In turn, let us introduce functions v1, v2, w1, and w2 in C0 subject to the
conditions:

(2)
θ1 = w1 − v1

θ2 = w2 − v2

For now, we require nothing more. Finally, let us define the function K:

K(t, u) =



h1(t) v1(u) + h2(t) v2(u) if t ≤ u

h1(t)w1(u) + h2(t)w2(u) if u ≤ t
((t, u) ∈ I × I)

By relations (1) and (2):

h1(w1 − v1) + h2(w2 − v2) = 0

Hence, the definition of K on the diagonal of I×I is unambiguous. Moreover,
K is continuous on I × I.

20◦ Let g be any function in C0 and let f be K(g):

f(t) =

∫ b

a

K(t, u)g(u)du (t ∈ I)
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21◦ We claim that L(f) = g. To prove the claim, let us introduce the
functions:

(3)

γ1(t) =

∫ t

a

w1(u)g(u)du+

∫ b

t

v1(u)g(u)du

γ2(t) =

∫ t

a

w2(u)g(u)du+

∫ b

t

v2(u)g(u)du

(t ∈ I)

By straightforward calculation from the definition:

(4) f(t) = (h1(t) h2(t) )

(
γ1(t)
γ2(t)

)

By relation (2):

(5)
γ◦1 (t) = θ1(t)g(t)

γ◦2 (t) = θ2(t)g(t)

By relations (1), (4), and (5):

(6)

f◦(t) = (h◦1(t) h
◦
2(t) )

(
γ1(t)
γ2(t)

)
+ (h1(t) h2(t) )

(
γ◦1 (t)
γ◦2 (t)

)

= (h◦1(t) h
◦
2(t) )

(
γ1(t)
γ2(t)

)

By relations (1), (5), and (6):

(7)

f◦◦(t) = (h◦◦1 (t) h◦◦2 (t) )

(
γ1(t)
γ2(t)

)
+ (h◦1(t) h

◦
2(t) )

(
γ◦1 (t)
γ◦2 (t)

)

= (h◦◦1 (t) h◦◦2 (t) )

(
γ1(t)
γ2(t)

)
+ p−1

2 (t)g(t)

We note in passing that f must lie in C2. Assembling relations (4), (6), and
(7), we obtain:

L(f) = p0f + p2f
◦ + p2f

◦◦

= (L(h1) L(h2) )

(
γ1(t)
γ2(t)

)
+ p2p

−1
2 g

= g

22◦ We are pleased to find that L(f) = g but, at this point, we cannot show
that f ∈ S. To do so, we must refine our description of the functions v1, v2,
w1, and w2.
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23◦ From relations (3), we find that:

(8)

γ1(a) =

∫ b

a

v1(u)g(u)du

γ2(a) =

∫ b

a

v2(u)g(u)du

γ1(b) =

∫ b

a

w1(u)g(u)du

γ2(b) =

∫ b

a

w2(u)g(u)du

By relations (4) and (6):

(9)



f(a)
f◦(a)
f(b)
f◦(b)


 =



h1(a) h2(a) 0 0
h◦1(a) h◦2(a) 0 0
0 0 h1(b) h2(b)
0 0 h◦1(b) h◦2(b)






γ1(a)
γ2(a)
γ1(b)
γ2(b)




By inspecting relations (8), we see that if (!):

(10)

(
σ1 σ

◦
1 τ1 τ

◦
1

σ2 σ
◦
2 τ2 τ

◦
2

)

h1(a) h2(a) 0 0
h◦1(a) h◦2(a) 0 0
0 0 h1(b) h2(b)
0 0 h◦1(b) h◦2(b)






v1
v2
w1

w2


 =

(
0
0

)

then f ∈ S.

24◦ Let us proceed to describe functions v1, v2, w1, and w2 which meet
condition (10) while preserving the relations (2) described earlier:

(2)
v1 = w1 − θ1

v2 = w2 − θ2

To that end, we apply relations (2) to reform relation (10):

(11)

(
σ1 σ

◦
1 τ1 τ

◦
1

σ2 σ
◦
2 τ2 τ

◦
2

)

h1(a) h2(a) 0 0
h◦1(a) h◦2(a) 0 0
0 0 h1(b) h2(b)
0 0 h◦1(b) h◦2(b)






w1

w2

w1

w2


 =

(
d1
d2

)

where:
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(
d1
d2

)
≡

(
σ1 σ

◦
1 τ1 τ

◦
1

σ2 σ
◦
2 τ2 τ

◦
2

)

h1(a) h2(a) 0 0
h◦1(a) h◦2(a) 0 0
0 0 h1(b) h2(b)
0 0 h◦1(b) h◦2(b)






θ1
θ2
0
0




By careful inspection, we find that relation (11) collapses to the following
simple form:

(12) (µ(h1) µ(h2) )

(
w1

w2

)
=

(
d1
d2

)

By condition (MZ), the matrix:

(µ(h1) µ(h2) )

is invertible. Now it is plain that we can produce functions v1, v2, w1, and
w2 with the required properties.

25◦ Finally, we must show that the Green Function K is unique. To that
end, let us introduce functions K1 and K2 such that both K1 and K2 define
K. We must show that K1 = K2.

26◦ Let Kr
1 and Kr

2 be the real parts and let Ki
1 and Ki

2 be the imaginary
parts of K1 and K2, respectively. Of course, we must show that Kr

1 = Kr
2 and

Ki
1 = Ki

2. Let us suppose that K
r
1 
= Kr

2 . Let (t, v) be a member of I× I such
that Kr

1(t, v) 
= Kr
2 (t, v). Without loss of generality, we might as well suppose

that Kr
1(t, v) < Kr

2(t, v). Under this supposition, we may introduce a positive
number δ such that, for each u in I, if |u − v| ≤ δ then Kr

1 (t, u) < Kr
2(t, u).

Now let us design a function g in C0 such that g is real valued and such that,
for each u in I: 


g(u) = 0 if u ≤ v − δ
0 < g(u) if v − δ < u < v + δ
g(u) = 0 if v + δ ≤ u

Let K(g)(t)r be the real part of K(g)(t). We find that:

K(g)(t)r =

∫ b

a

Kr
1(t, u)g(u)du <

∫ b

a

Kr
2 (t, u)g(u)du = K(g)(t)r

By this contradiction, we infer that our supposition is false. It follows that
Kr

1 = Kr
2 .

27◦ By a similar argument, one may show that Ki
1 = Ki

2. We conclude that
K1 = K2. •

45



The Symmetric Case

28◦ Let us supply C0 with a Geometric Structure, by means of the following
Inner Product:

〈〈 g1, g2 〉〉 ≡ 1

d

∫ b

a

g1(t)ḡ2(t)dt (g1, g2 ∈ C0, d ≡ (b− a))

and the corresponding Integral Norm:

〈〈 g 〉〉 ≡
√
〈〈 g, g 〉〉 (g ∈ C0)

The bar signals complex conjugation. We plan to introduce conditions on L
and S under which the operator L′ is Symmetric, in the sense that:

(SA) 〈〈 L(f1), f2 〉〉 = 〈〈 f1,L(f2) 〉〉 (f1, f2 ∈ S)

To that end, we assume that:

(1) p0, p1, and p2 are real valued

(2) p1 ∈ C1 and p2 ∈ C2

(3) p1 = p◦2

Granted conditions (1), (2), and (3), we can easily verify the Identity of
Lagrange:

(LL) L(f1) f̄2 − f1 L(f2) = B(f1, f2)
◦ (f1, f2 ∈ C2)

where:

(BB) B(f1, f2) = p2(f
◦
1 f̄2 − f1f̄

◦
2 )

In turn, we assume that:

(4) for any f1 and f2 in S, B(f1, f2)
∣∣b
a
= 0

Now we find that, under conditions (1), (2), (3), and (4), L′ is Symmetric:

〈〈 L(f1), f2 〉〉 − 〈〈 f1,L(f2) 〉〉 = 1

d

∫ b

a

[L(f1)(t) f̄2(t)− f1(t)L(f2)(t)]dt

=
1

d

∫ b

a

B(f1, f2)
◦(t)dt

=
1

d
B(f1, f2)

∣∣b
a

= 0
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29◦ We must confess that, while conditions (1), (2), (3), and (4) are sufficient
to imply that L′ is Symmetric, they are far from necessary. However, a full
development of the matter would require a substantial digression.

An Illustration

30◦ For an illustration, let us take the interval I to be [−π, π ], let us define
the operator L by the relation:

L(f) = −f◦◦ + f (f ∈ C2)

and let us set the boundary conditions:

(
1 0 −1 0
0 1 0 −1

)

f(−π)
f◦(−π)
f(π)
f◦(π)


 =

(
0
0

)

That is:
f ∈ S iff f(−π) = f(π) and f◦(−π) = f◦(π)

Obviously, conditions (1), (2), and (3) hold. We introduce the basis:

h1(t) = exp(−t), h2(t) = exp(t), (−π ≤ t ≤ π)

for N and we verify that condition (MZ) holds, as follows:

det

[(
1 0 −1 0
0 1 0 −1

)

h1(−π) h2(−π)
h◦1(−π) h◦2(−π)
h1(π) h2(π)
h◦2(π) h◦2(π)




]

= det

(
exp(π) − exp(−π) exp(−π)− exp(π)

−exp(π) + exp(−π) exp(−π)− exp(π)

)

= 0

In turn, we check that condition (4) holds, as follows:

B(f1,f2)
∣∣π
−π

= p2(f
◦
1 f2 − f1f̄

◦
2 )

π
−π

= −(
f◦
1 (π)f2(π)− f1(π)f̄

◦
2 (π)− f◦

1 (−π)f2(−π) + f1(−π)f̄◦
2 (−π)

)
= 0

where f1 and f2 are any functions in S.
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Eigenvalues and Eigenfunctions

31◦ Let us return to the operator L and the subspace S, subject as usual to
conditions (BC) and (MZ) but subject to conditions (1), (2), (3), and (4) as
well. Let L′ be the restriction of L to S. Of course, L′ carries S bijectively to
C0 and L′ is Symmetric.

32◦ We plan to analyze L′ in terms of the concepts of Eigenvalue and Eigen-
function. Let λ be a complex number. Let Λ be the subset of S consisting of
all functions f for which:

(EV ) L(f) = λf

Clearly, Λ is a linear subspace of S. By the Fundamental Theorem, the
dimension of Λ must be 0, 1, or 2. When the dimension of Λ is at least 1, we
refer to λ as an Eigenvalue for L′, to Λ itself as the Eigenspace for L′ relative
to λ, and to the various functions f in Λ as the Eigenfunctions for L′ relative
to λ.

33◦ By relation (EV ):

λ 〈〈 f, f 〉〉 = 〈〈 λf, f 〉〉 = 〈〈 L(f), f 〉〉 = 〈〈 f,L(f) 〉〉 = 〈〈 f, λf 〉〉 = λ̄ 〈〈 f, f 〉〉

Consequently, eigenvalues for L′ must be real numbers.

The Illustration: Redux

34◦ In context of the foregoing illustration, we seek solutions of the relation:

L(f) = −f◦◦ + f = λf

subject to the boundary conditions:

f(−π) = f(π) and f◦(−π) = f◦(π)

We find:
f(t) = c1exp(−ikt) + c2exp(ikt) (−π ≤ t ≤ π)

where c1 and c2 are any complex numbers and where k is any integer for which
k2 = λ− 1. Consequently, the eigenvalues λ stand as follows:

1, 2, 5, 10, . . .

The dimensions of the corresponding eigenspaces Λ are 1 for λ = 1 and 2 for
the rest.
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Theorem B

35◦ We contend that there are a sequence:

Λ : λ1, λ2, λ3, . . . , λj , . . .

of (nonzero) real numbers and a sequence:

H : h1, h2, h3, . . . , hj , . . .

of functions in S such that:

(B1) for each index j, L(hj) = λjhj

(B2) for any indices k and 
:

〈〈 hk, h� 〉〉 =
{
0 if k 
= 

1 if k = 


(B3) for each index j, |λj | ≤ |λj+1|; moreover, |λj | ↑ ∞
(B4) for each function f in S, the series:

∞∑
j=1

〈〈 f, hj 〉〉hj

converges uniformly to f .

36◦ Before turning to the proof of the theorem, let us emphasize certain
features of the foregoing assertions. By (B2), the terms of H compose an
Orthonormal Family in S. By (B1), the terms of Λ are eigenvalues for L′

and the terms of H are corresponding eigenfunctions. Since L′ is injective,
the terms of Λ must be nonzero. By (B3), the absolute values of the terms
of Λ increase without limit. However, certain terms may occur twice, namely,
those for which the corresponding eigenspace has dimension 2.

37◦ Regarding (B4), let us just say that we will explain the sense of it very
carefully in the following articles.

The Green Function

38◦ For the proof of the theorem, we direct our attention to the inverse K
of L′. We do so because the analysis of integral operators is substantially
simpler than the analysis of differential operators.

49



39◦ Let K be the Green Function for L and S. By definition, K defines
K. In our present context, it is plain that K is real valued. Moreover, the
condition (SA) for L′ carries over to K:

(SA) 〈〈 K(g1), g2 〉〉 = 〈〈 g1,K(g2) 〉〉 (g1, g2 ∈ C0)

40◦ For the analysis of K, we require not only the Integral Norm but also
the Uniform Norm. For convenience, let us display them together:

〈〈 g 〉〉 =
√

1

d

∫ b

a

|g(t)|2dt

‖g‖ = sup { |g(t)| : a ≤ t ≤ b }
(g ∈ C0)

Obviously:

(13) 〈〈 g 〉〉 ≤ ‖g‖

41◦ Let ‖K‖ be the uniform norm for K itself:

‖K‖ = sup { |K(t, u)| : (t, u) ∈ I × I }

We contend that, for each function g in C0:

(14) ‖K(g)‖ ≤ d‖K‖〈〈 g 〉〉

Let t be any number in I. To prove the contention, we must prove that:

|K(g)(t)| ≤ d‖K‖〈〈 g 〉〉

To that end, let Kt be the function in C0 defined as follows:

Kt(u) ≡ K(t, u) (u ∈ I)

Obviously:
1

d
K(g)(t) = 〈〈 Kt, ḡ 〉〉

By the Cauchy/Schwarz Inequality and by relation (13), we find that:

1

d
|K(g)(t)| = |〈〈 Kt, ḡ 〉〉| ≤ 〈〈Kt 〉〉 〈〈 ḡ 〉〉 ≤ ‖Kt‖〈〈 ḡ 〉〉 ≤ ‖K‖〈〈 g 〉〉
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42◦ Relation (13) asserts that the uniform norm dominates the integral norm
but relation (14) asserts that, after application of the integral operator K, the
integral norm dominates the uniform norm.

43◦ Now we contend that, for each function g in C0 and for each positive
number ε, there is a positive number δ such that, for any numbers t and t̄ in
I, if |t̄− t| ≤ δ then:

(15) |K(g)(t̄)−K(g)(t)| ≤ d ε 〈〈 g 〉〉
To prove the contention, we need only review article 15◦. In that article,
we find justification for introducing a positive number δ such that, for any
numbers t and t̄ in I, if |t̄− t| ≤ δ then ‖Kt̄ −Kt‖ ≤ ε, so that:

1

d
|K(g)(t̄)−K(g)(t)| = |〈〈 Kt̄ −Kt, ḡ 〉〉|

≤ 〈〈Kt̄ −Kt 〉〉 〈〈 ḡ 〉〉
≤ ‖Kt̄ −Kt‖〈〈 ḡ 〉〉
≤ ε 〈〈 g 〉〉

44◦ At this point, let us apply relations (14) and (15), together with the
celebrated Ascoli/Arzela Theorem, to derive a critical lemma. Let:

G : g1, g2, g3, . . . , gj, . . .

be a sequence in C0 and let:

F : f1, f2, f3, . . . , fj, . . .

be the image sequence defined by K:

fj = K(gj)

Let us assume that G is bounded relative to the integral norm. By relation
(14), we see that F is bounded relative to the uniform norm. Moreover, by
relation (15), we see that the terms of F compose a uniformly equicontinuous
family. We mean to say that, for each positive number ε̄, there is a positive
number δ such that, for any index j and for any numbers t and t̄ in I, if
|t̄− t| ≤ δ then:

|fj(t̄)− fj(t)| ≤ ε̄

These properties of F are precisely the stated hypotheses of the Ascoli/Arzela
Theorem. By that theorem, we obtain a subsequence:

Φ : φ1, φ2, φ3, . . . , φj , . . .

of F such that Φ is convergent in C0 relative to the uniform norm.
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45◦ Let us take a moment to sketch the proof of the Ascoli/Arzela Theorem.
Let D be a countable dense subset of I. Since the sequence F is bounded
relative to the uniform norm, we may apply the Bolzano/Weierstrass Theorem
and the Cantor Diagonal Argument to produce a subsequence:

Φ : φ1, φ2, φ3, . . . , φj , . . .

of F such that, for each u in D, the sequence:

φ1(u), φ2(u), φ3(u), . . . , φj(u), . . .

is convergent in C. We contend that Φ is cauchy, hence convergent in C0

relative to the uniform norm.

46◦ Let ε̄ be any positive number. Since the terms of Φ compose a uniformly
equicontinuous family, we may introduce a positive number δ such that, for
any index j and for any numbers t and t̄ in I, if |t̄− t| ≤ δ then:

|φj(t̄)− φj(t)| ≤ ε̄/3

Since D is dense in I, we may introduce a finite subset D◦ of D such that,
for any number t in I, there is some number u in D◦ such that |t − u| ≤ δ.
In turn, we may introduce an index n such that, for any indices p and q, if
n ≤ p and n ≤ q then, for any number u in D◦, |φp(u)− φq(u)| ≤ ε̄/3.

47◦ Now let p and q be any indices for which n ≤ p and n ≤ q. Let t be any
number in I. Let u be a number in D◦ such that |t− u| ≤ δ. We find that:

|φp(t)− φq(t)| ≤ |φp(t)− φp(u)|+ |φp(u)− φq(u)|+ |φq(u)− φq(t)|
≤ ε̄

Consequently, Φ is cauchy in C0 relative to the uniform norm.

48◦ For the analysis of K, we require one more technical fact. Let T be a
linear subspace of C0. We define the uniform norm and the integral norm for
the restriction of K to T:

‖K‖T ≡ sup { 〈〈K(g) 〉〉 : g ∈ T, 〈〈 g 〉〉 = 1 }
〈〈K 〉〉T ≡ sup { | 〈〈 K(g), g 〉〉 | : g ∈ T, 〈〈 g 〉〉 = 1 }

We contend that the two norms are equal:

(16) ‖K‖T = 〈〈K 〉〉T

This relation plays a basic role in the following argument.
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49◦ To prove the contention, let us note that 〈〈K 〉〉T ≤ ‖K‖T and that, for
each function g in C0, 〈〈K(g) 〉〉 ≤ ‖K‖T 〈〈 g 〉〉 and | 〈〈 K(g), g 〉〉 | ≤ 〈〈K 〉〉T 〈〈 g 〉〉2. In
turn, let g be any function in T for which 〈〈 g 〉〉 = 1. Let f ≡ K(g). Let v be
any nonzero real number and let:

h1 ≡ vg + v−1f

h2 ≡ vg − v−1f

We find that:

〈〈 f 〉〉2 = (1/4)
(〈〈 K(h1), h1 〉〉 − 〈〈 K(h2), h2 〉〉)

≤ (1/4)
(〈〈K 〉〉T 〈〈h1 〉〉2 + 〈〈K 〉〉T 〈〈h2 〉〉2

)
= 〈〈K 〉〉T(1/2)(v2 + v−2〈〈 f 〉〉2

Of course, the infimum for the set:

(1/2)(w + w−1〈〈 f 〉〉2) (0 < w)

of real numbers is 〈〈 f 〉〉. It follows that 〈〈 f 〉〉 ≤ 〈〈K 〉〉T. Hence, ‖K‖T ≤ 〈〈K 〉〉T,
so ‖K‖T = 〈〈K 〉〉T.

50◦ Now we complete our analysis of K by induction. Let T1 = C0 and let
‖K‖1 and 〈〈K 〉〉1 be the corresponding uniform and integral norms, respectively,
for the restriction of K to T1. By relation (16), there must be a sequence:

G : g1, g2, g3, . . . , gj, . . .

in T1 such that, for each index j, 〈〈 gj 〉〉 = 1 and such that the sequence:

| 〈〈 K(g1), g1 〉〉 |, | 〈〈 K(g2), g2 〉〉 |, | 〈〈 K(g3), g3 〉〉 |, . . . , | 〈〈 K(gj), gj 〉〉 |, . . .

converges to ‖K‖1. Of course, we may as well assume that the sequence:

〈〈 K(g1), g1 〉〉, 〈〈 K(g2), g2 〉〉, 〈〈 K(g3), g3 〉〉, . . . , 〈〈 K(gj), gj 〉〉, . . .

itself is convergent:
lim
j→∞

〈〈 K(gj), gj 〉〉 = κ1

where |κ1| = ‖K‖1. Clearly, 0 < |κ1|. For each index j, we have:

0 ≤ 〈〈K(gj)− κ1gj 〉〉2
= 〈〈K(gj) 〉〉2 − 2κ1〈〈 K(gj), gj 〉〉 + κ21〈〈 gj 〉〉2
≤ ‖K‖21 − 2κ1〈〈 K(gj), gj 〉〉 + κ21

= 2κ1
(
κ1 − 〈〈 K(gj), gj 〉〉

)
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Consequently:

(17) lim
j→∞

〈〈K(gj)− κ1gj 〉〉 = 0

Let:
F : f1, f2, f3, . . . , fj, . . .

be the image sequence defined from G by K:

fj = K(gj)

By the Ascoli/Arzela Theorem, we may introduce a subsequence:

Φ : φ1, φ2, φ3, . . . , φj , . . .

of F which is convergent in C0 relative to the uniform norm, hence, relative
to the integral norm as well. Naturally, we may introduce a subsequence:

Ψ : ψ1, ψ2, ψ3, . . . , ψj , . . .

of G such that, for each index j:

K(ψj) = φj

From relation (17), we infer that Ψ is convergent relative to the integral norm.
Let h1 be the limit of Ψ. We conclude that:

K(h1) = κ1h1

Obviously, 〈〈h1 〉〉 = 1.

51◦ Let T2 be the linear subspace of C0 consisting of all functions g which
are orthogonal to h1:

T2 = { g ∈ C0 : 〈〈 g, h1 〉〉 = 0 }

and let ‖K‖2 and 〈〈K 〉〉2 be the corresponding uniform and integral norms,
respectively, for the restriction of K to T2. Imitating the foregoing argument,
we obtain a number κ2 and a function h2 in T2 such that |κ2| = ‖K‖2, such
that:

K(h2) = κ2h2

and such that 〈〈h2 〉〉 = 1. Obviously, 0 < |κ2| ≤ |κ1|.

52◦ Let T3 be the linear subspace of C0 consisting of all functions g which
are orthogonal to h1 and h2:

T3 = { g ∈ C0 : 〈〈 g, h1 〉〉 = 0, 〈〈 g, h2 〉〉 = 0 }
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and let ‖K‖3 and 〈〈K 〉〉3 be the corresponding uniform and integral norms,
respectively, for the restriction of K to T3. Imitating the foregoing argument,
we obtain a number κ3 and a function h3 in T3 such that |κ3| = ‖K‖3, such
that:

K(h3) = κ3h3

and such that 〈〈h3 〉〉 = 1. Obviously, 0 < |κ3| ≤ |κ2| ≤ |κ1|.

53◦ Continuing inductively, we obtain a sequence:

K : κ1, κ2, κ3, . . . , κj, . . .

of (nonzero) real numbers and a sequence:

H : h1, h2, h3, . . . , hj , . . .

of functions in C0 satisfying the relations just described.

54◦ We contend that:

(18) |κj | ↓ 0

Let us suppose to the contrary that there is a positive number ε such that,
for each index j:

ε ≤ |κj |
It would follow that:

〈〈κ−1
j hj 〉〉 ≤ ε−1 and K(κ−1

j hj) = hj

By the Ascoli/Arzela Theorem, we may introduce a subsequence ofH which is
convergent in C0 relative to the uniform norm, hence, relative to the integral
norm as well. However, for any indices j and k, if j 
= k then 〈〈 hj, hk 〉〉 = 0,
so:

〈〈hj − hk 〉〉2 = 2

By this contradiction, we infer that our supposition is false. Hence:

|κj | ↓ 0

55◦ Let us replace the sequence K by the sequence:

Λ : λ1, λ2, λ3, . . . , λj , . . .

of real numbers defined by inversion. That is, for each index j, λj = κ−1
j . Of

course:
L(hj) = λjhj
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56◦ Now we have succeeded in producing sequences Λ and H which meet
conditions (B1), (B2), and (B3) in Theorem B. Let us prove that condition
(B4) holds as well.

57◦ Let f be any function in S. Let g ≡ L(f) so K(g) = f . For each index
k, let gk be the function in C0 defined as follows:

gk ≡ g −
k∑

j=1

〈〈 g, hj 〉〉hj

Let G be the sequence in C0 so defined:

G : g1, g2, g3, . . . , gk, . . .

Let F be the image sequence:

F : f1, f2, f3, . . . , fk, . . .

defined by K:
fk ≡ K(gk)

We contend that F converges in C0 to 0, relative to the uniform norm. If
that were so, then the series:

∞∑
j=1

〈〈 f, hj 〉〉hj

would converge in C0 to f relative to the uniform norm, because:

f −
k∑

j=1

〈〈 f, hj 〉〉hj = K(g)−
k∑

j=1

〈〈 K(g), hj 〉〉hj

= K(g)−
k∑

j=1

〈〈 g,K(hj) 〉〉hj

= K(g)−
k∑

j=1

〈〈 g, hj 〉〉K(hj)

= K(gk)

= fk

(since K(hj) = κjhj)

These observations form a precise statement of condition (B4).
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58◦ Let us prove the foregoing contention. Obviously, for each index j, if
1 ≤ j ≤ k then 〈〈 gk, hj 〉〉 = 0, so:

〈〈 gk 〉〉2 = 〈〈 g 〉〉2 −
k∑

j=1

|〈〈 g, gj 〉〉|2 ≤ 〈〈 g 〉〉2

In particular, gk must lie in Tk+1 and:

〈〈K(gk) 〉〉 ≤ ‖K‖k+1 〈〈 gk 〉〉 = |κk+1| 〈〈 g 〉〉

By relation (18):

(19) lim
k→∞

〈〈K(gk) 〉〉 = 0

Consequently, F converges in C0 to 0, relative to the integral norm, but that
is not enough.

59◦ We must prove the stronger assertion, namely, that F converges in C0

to 0, relative to the uniform norm. To that end, we invoke a Peculiar but
sometimes useful Principle from the theory of convergence in metric spaces.
It states that:

For every sequence and for every point, the sequence converges to
the point iff, for every subsequence of the given sequence, there is
a subsequence of the subsequence which converges to the point.

Arguing by contradiction, one can prove the principle very easily.

60◦ Let us apply the principle. By the Ascoli/Arzela Theorem, every subse-
quence of F must itself admit a subsequence which is convergent in C0 relative
to the uniform norm. By relation (19), the limit of that sub-subsequence must
be 0. By the Peculiar Principle, F must converge in C0 to 0, relative to the
uniform norm. •

The Sturm/Liouville Problem

61◦ From Theorem B, we see that the analysis of the Symmetric operator
L′ reduces to two steps:

(•) find the eigenvalues λ for L′

(•) for each such λ, find an orthonormal basis of eigenfunctions for the
(at most two dimensional) eigenspace Λ corresponding to λ
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62◦ One should arrange the eigenvalues and eigenfunctions in a reasonable
order, side by side. For example, one might list the eigenvalues in order
of increasing absolute value. When two distinct eigenvalues have the same
absolute value, one might list the negative value first. For the cases (if any)
in which the corresponding eigenspace is two dimensional, one would list the
eigenvalue twice, in order to make room for two corresponding eigenfunctions,
which form a basis for the eigenspace.

63◦ One might wonder whether the list Λ of eigenvalues displayed in Theorem
B is complete. Indeed, let λ be a real number and let f be a function in S
such that f 
= 0 and such that L(f) = λf . Of course, λ 
= 0. By (B4), there
must be some index j such that 〈〈 f, hj 〉〉 
= 0. Let k be such an index. By
simple steps, we find that:

λ 〈〈 f, hk 〉〉 = λk 〈〈 f, hk 〉〉

Hence, λ = λk.

Fourier Series

64◦ Let us continue consideration of the illustration described in articles 30◦

and 34◦. In this case, we may display the eigenfunctions as a bilateral array:

hk(t) = exp(ikt) (k ∈ Z)

For each k in Z, the corresponding eigenvalue is:

λ = 1 + k2

65◦ Theorem B yields the celebrated Theorem of Fourier. For each complex
valued function f defined on the interval [−π, π ], if f is twice continuously
differentiable, if f(−π) = f(π), and if f◦(−π) = f◦(π) then f is the uniform
limit of its Fourier Series:

f(t) =

∞∑
k=−∞

ck exp(ikt)

with Fourier Coefficients:

ck =
1

2π

∫ π

−π

f(t) exp(−ikt)dt
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Chapter 4 FRIEDMANN’S EQUATION

Introduction

1◦ In this chapter, we show that the Equations of Newton governing Ce-
lestial Mechanics admit solutions which serve as models for an Expanding
Universe of material particles. We find that, for certain initial configurations,
the particles may expand and contract in concert. Remarkably, the corre-
sponding time dependent scale factor must satisfy the celebrated Equation of
Friedmann, the same equation which figures in Modern Cosmology.

The Equations of Newton

2◦ Let n be a positive integer (3 ≤ n) and let j and k be generic positive
integers for which 1 ≤ j ≤ n and 1 ≤ k ≤ n. Let us introduce the following
notation:

0 < mj

rj = (r1j , r
2
j , r

3
j )

r = (r1, r2, . . . , rn)

ρjk(r) = ‖rj − rk‖
ρ(r) = min

j �=k
ρjk(r)

Let Λ be any number inR. Let us introduce the following Autonomous Second
Order ODE, in the 3n variables r:

(N)

m1r
◦◦
1 =

∑
j �=1

mjm1

ρj1(r)2
rj − r1
ρj1(r)

+
1

3
Λm1r1

m2r
◦◦
2 =

∑
j �=2

mjm2

ρj2(r)2
rj − r2
ρj2(r)

+
1

3
Λm2r2

...

mnr
◦◦
n =

∑
j �=n

mjmn

ρjn(r)2
rj − rn
ρjn(r)

+
1

3
Λmnrn

(0 < ρ(r))

These are Newton’s Equations, in natural units of measurement, governing a
system of n particles in R3 having masses m1, m2, . . . , mn.

3◦ The particles interact as usual by mutual gravitational attraction but
suffer in addition a cosmological force defined by Λ.

4◦ We imagine that the particles are stars , even galaxies .
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5◦ Let:
s = (s1, s2, . . . , sn)

be any vector in R3n for which 0 < ρ(s). Let J be any open interval in R
such that 0 ∈ J and let S be a function defined on J with values in R+. Let
σ be any number in R. We assume that:

(I) S(0) = 1, S◦(0) = σ

Let r be the function with values in R3n, defined on J as follows:

(∗) r(t) = S(t)s (t ∈ J)

We inquire whether r may satisfy Newton’s Equations (N). We will find that
it can be so, provided that the initial configuration s meets a certain stringent
condition, namely, that it be a Central Configuration, and provided that the
scale factor S meets a certain celebrated Autonomous Second Order ODE,
namely, the Equation of Friedmann.

Central Configurations

6◦ For the function r defined by relation (∗), we may recast equations (N)
as follows:

(S)

S◦◦m1s1 = S−2
∑
j �=1

mjm1

ρj1(s)2
sj − s1
ρj1(s)

+ S
1

3
Λm1s1

S◦◦m2s2 = S−2
∑
j �=2

mjm2

ρj2(s)2
sj − s2
ρj2(s)

+ S
1

3
Λm2s2

...

S◦◦mnsn = S−2
∑
j �=n

mjmn

ρjn(s)2
sj − sn
ρjn(s)

+ S
1

3
Λmnsn

Let us evaluate the foregoing equations (S) at t = 0. We find that there must
exist a certain number τ(s), namely:

τ(s) = S2(0)S◦◦(0)− 1

3
ΛS3(0) = S◦◦(0)− 1

3
Λ

such that:

(C)

∑
j �=1

mjm1

ρj1(s)2
sj − s1
ρj1(s)

= τ(s)m1s1

∑
j �=2

mjm2

ρj2(s)2
sj − s2
ρj2(s)

= τ(s)m2s2

...∑
j �=n

mjmn

ρjn(s)2
sj − sn
ρjn(s)

= τ(s)mnsn
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Under this condition, one says that s is a central configuration, with scale
factor τ(s). It turns out that τ(s) must be negative. See article 18◦.

7◦ Adding equations (C), we find that:

1

µ

∑
j

mjrj = 0 (µ =
∑
j

mj)

Friedmann’s Equation

8◦ Granted equations (C), we may recast equations (S) as an Autonomous
Second Order ODE:

(F) S◦◦ = τS−2 +
1

3
ΛS (0 < S)

where τ = τ(s). Remarkably, equation (F) coincides with the Equation of
Friedmann, derived in modern studies of Cosmology. It also coincides with
Newton’s Equation for radial motion, modified by the cosmological force de-
fined by Λ.

9◦ With reference to article 5◦, we conclude that the function:

(∗) r(t) = S(t)s (t ∈ J)

satisfies Newton’s Equations (N) iff s is a central configuration, with scale
factor τ(s), and S satisfies Friedmann’s Equation (F), where τ = τ(s).

10◦ Let us note that, for each j (1 ≤ j ≤ n):

r◦j (t) = S◦(t)sj =
S◦(t)
S(t)

S(t)sj =
S◦(t)
S(t)

rj(t)

Hence:

r◦j (t) = H(t)rj(t)

Consequently, the velocities of the particles are proportional to their posi-
tions. One may refer to the common factor of proportionality as the Hubble
Parameter:

H(t) =
S◦(t)
S(t)
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11◦ The ODE (F) is equivalent to the following Autonomous First Order
ODE:

(G)
S◦ = T

T ◦ = τS−2 +
1

3
ΛS

12◦ Let h be the function defined as follows:

h(S, T ) =
1

2
T 2 + τS−1 − 1

6
ΛS2 (0 < S, T ∈ R)

We find that:

∇h = (−τS−2 − 1

3
ΛS, T )

Obviously, the vector field which defines (G) and the gradient field ∇h are
orthogonal:

(T, τS−2 +
1

3
ΛS) • (−τS−2 − 1

3
ΛS, T ) = 0

Let γ be a maximum integral curve for (G):

γ(t) = (S(t), T (t)) (t ∈ J)

By the foregoing observation, the function:

h(S(t), T (t)) (t ∈ J)

must be constant. Hence, γ(J) must be a subset of one of the level sets for h.

13◦ For the cases in which 0 < Λ, we find exactly one critical point for (G):

((−3τ

Λ
)1/3, 0)

14◦ By studying the following diagrams of level sets for h, one may visualize
some of the solutions of Friedmann’s Equation. In particular, one may see
scenarios involving “contraction, expansion, capture, and escape.”
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Lagrange Multipliers

15◦ Let us show that central configurations exist. To that end, let us intro-
duce the (negative of the) potential energy function for the system of particles:

U(r) =
∑∑

j<k

mjmk

ρjk(r)
(0 < ρ(r))

63



One can easily verify that:

(∇1U)(r) =
∑
j �=1

mjm1

ρj1(r)2
rj − r1
ρj1(r)

(∇2U)(r) =
∑
j �=2

mjm2

ρj2(r)2
rj − r2
ρj2(r)

...

(∇nU)(r) =
∑
j �=n

mjmn

ρjn(r)2
rj − rn
ρjn(r)

In turn, let us introduce (one half) the moment of inertia function for the
system of particles:

Ω(r) =
1

2

∑
j

mj‖rj‖2

Obviously:
(∇1Ω)(r) = m1r1

(∇2Ω)(r) = m2r2

...

(∇nΩ)(r) = mnrn

In the foregoing relations, ∇k signals the k-th gradient operator:

∇k = (
∂

∂r1k
,
∂

∂r2k
,
∂

∂r3k
)

16◦ Let us introduce an arbitrary vector r∗ in R3n for which 0 < ρ(r∗). Let
W be the corresponding (modified) level set for Ω:

W : Ω(r) = Ω(r∗) (0 < ρ(r))

We contend that there exists a vector s inW at which U achieves its minimum
value on W . We prove the contention as follows. Let u = U(r∗). Of course,
0 < u. For any indices j and k (1 ≤ j < k ≤ n), let εjk be a positive number
such that, for any vector r in W , if ρjk(r) < εjk then u < U(r). Let W̄ be
the subset of W consisting of all vectors r such that, for any indices j and k
(1 ≤ j < k ≤ n), εjk ≤ ρjk(r). Of course, W̄ is compact. Let s be a vector
in W̄ at which U achieves its minimum value on W̄ . By design, U(s) is the
minimum value of U on W .
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17◦ Now we may apply the theory of Lagrange Multipliers to introduce a
number τ(s) in R such that the following equations are satisfied:

(L)

(∇1U)(s) = τ(s)(∇1Ω)(s)

(∇2U)(s) = τ(s)(∇2Ω)(s)

...

(∇nU)(s) = τ(s)(∇nΩ)(s)

Consequently, s is a central configuration.

18◦ Let us note that U is homogeneous of degree −1. We may apply Euler’s
Theorem to obtain: ∑

j

(∇jU)(s) • sj = −U(s)

Obviously: ∑
j

(∇jΩ)(s) • sj = 2Ω(s)

Now, by equation (L), we find that:

2τ(s)Ω(s) = −U(s)

Hence:

τ(s) = −1

2

U(s)

Ω(s)
< 0
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