HYPERBOLIC TRIANGLES

Thomas Wieting Reed College, 2010

1° We plan to describe the construction, by straightedge and compass, of certain geodesic triangles in the hyperbolic plane.

2° Let us begin by explaining the relevant terminology. First, the *hyperbolic* plane is the circular disk **H** in the Cartesian plane \mathbf{R}^2 , composed of all points (x, y) for which:

 $x^2 + y^2 < 1$

Second, the *hyperbolic lines* in \mathbf{H} are the intersections with \mathbf{H} of circles in \mathbf{R}^2 which meet the boundary of \mathbf{H} at right angles. We shall refer to such circles as *hypercircles*.

Figure 1

By elementary argument, one can prove that, for any two distinct points in \mathbf{H} , there is precisely one hypercircle C in \mathbf{R}^2 such that both points are contained in C.

 3° The *geodesic arcs* in **H** are the subarcs of hypercircles which join two distinct points in **H**. Finally, the *geodesic triangles* in **H** are triangles, formed in manner familiar, for which the three edges are geodesic arcs.

 4° Now let p and q be any positive integers for which:

(*)
$$4 < (p-2)(q-2)$$

Let α , β , and γ be the angular measures defined as follows:

$$\alpha = \frac{\pi}{p}, \quad \beta = \frac{\pi}{q}, \quad \gamma = \frac{\pi}{2}$$

By (*), we find that:

$$\alpha + \beta + \gamma < \pi$$

Let T be the geodesic triangle in **H** for which the measures of the vertex angles are α , β , and γ . By the Laws of Cosines and Sines in hyperbolic geometry, the vertex angles of T determine the edges. In the following figure, we display T in standard position and we label the vertices of T by A, B, and C, in correspondence with the measures α , β , and γ of the vertex angles.

Figure 2: p=8, q=3

5° Let us describe a method for *constructing* T. To that end, we introduce the angular measure δ , defined as follows:

$$\delta = \pi - (\alpha + \beta + \gamma) = \frac{\pi}{2} - (\alpha + \beta)$$

In turn, we produce the diagram:

Figure 3

by the following steps. We draw the "horizontal" line passing through the points A and Z, where A is the center of \mathbf{H} and where Z is a remote point in the exterior of \mathbf{H} . We construct the point F on the boundary of \mathbf{H} so that the measure of the angle $\angle ZAF$ is α . We construct the point H on the line segment \overline{AZ} so that the measure of the angle $\angle AFH$ is $\beta + \gamma$. Of course, the measure of the angle $\angle AHF$ is δ . We draw the circle (in red), for which the center is H and for which the line segment \overline{HF} is a radius. We draw the circle (in blue), for which the line segment \overline{AH} is a diameter. We obtain the points E, G, I, and J. Obviously, the measure of the angle $\angle AIH$ is γ .

 6° At this point, the triangles $\triangle AFH$ and $\triangle AIH$ and the red and blue circles are the good effects of our work. Now we complete the construction by *contracting* these triangles and circles so that, in particular, the point I coincides with the point E.

Figure 4

We can achieve this effect simply by constructing the point D on the line segment \overline{AH} so that the measure of the angle $\angle AED$ is γ . Proceeding mechanically, we draw the hypercircle (in red), for which the center is D and for which the line segment \overline{DE} is a radius. We draw the circle (in blue), for which the line segment \overline{AD} is a diameter. Finally, we mark the points B and C of intersection of the hypercircle with the line segments \overline{AF} and \overline{AH} , respectively. Clearly, the triangles $\triangle ABD$ and $\triangle AED$ are similar to the triangles $\triangle AFH$ and $\triangle AIH$, respectively. In this way, we obtain the geodesic triangle T for which the vertices are A, B, and C and for which the measures of the corresponding vertex angles are α , β , and γ , respectively.

 7° We do not attempt to design a shortcut, by presuming, in error, that the critical point *D* lies on the line segment \overline{IJ} .

 8° One can implement the foregoing construction of a geodesic triangle by straightedge and compass iff the vertex angles of the triangle are constructible. It is the same to say that the positive integers p and q are of the form:

$$2^k \pi_1 \pi_2 \cdots \pi_\ell$$

where k and ℓ are nonnegative integers and where:

$$\pi_1, \pi_2, \ldots, \pi_\ell$$

are distinct Fermat primes. The latter are those which are prime among integers of the form:

 $2^{n} + 1$

where n is a positive integer. Actually, such an integer is prime only if n is itself a power of 2. Currently:

$$2^{2^0} = 3, \ 2^{2^1} = 5, \ 2^{2^2} = 17, \ 2^{2^3} = 257, \ 2^{2^4} = 65537$$

are known to be Fermat primes, while:

$$2^{2^5}, \ 2^{2^6}, \ 2^{2^7}, \ 2^{2^8}, \ 2^{2^9}, \ 2^{2^{10}}, \ 2^{2^{11}}, \ 2^{2^{12}}$$

are known to be composite.

 9° $\,$ The cases which figure in the Circle Limit Series of M. C. Escher are the following:

$$(p,q) = (6,4)$$
 and $(p,q) = (8,3)$