HYPERBOLIC TRIANGLES

Thomas Wieting
Reed College, 2010
1° We plan to describe the construction, by straightedge and compass, of certain geodesic triangles in the hyperbolic plane.
2° Let us begin by explaining the relevant terminology. First, the hyperbolic plane is the circular disk \mathbf{H} in the Cartesian plane \mathbf{R}^{2}, composed of all points (x, y) for which:

$$
x^{2}+y^{2}<1
$$

Second, the hyperbolic lines in \mathbf{H} are the intersections with \mathbf{H} of circles in \mathbf{R}^{2} which meet the boundary of \mathbf{H} at right angles. We shall refer to such circles as hypercircles.

Figure 1
By elementary argument, one can prove that, for any two distinct points in \mathbf{H}, there is precisely one hypercircle C in \mathbf{R}^{2} such that both points are contained in C.
3° The geodesic arcs in \mathbf{H} are the subarcs of hypercircles which join two distinct points in \mathbf{H}. Finally, the geodesic triangles in \mathbf{H} are triangles, formed in manner familiar, for which the three edges are geodesic arcs.
4° Now let p and q be any positive integers for which:

$$
\begin{equation*}
4<(p-2)(q-2) \tag{*}
\end{equation*}
$$

Let α, β, and γ be the angular measures defined as follows:

$$
\alpha=\frac{\pi}{p}, \quad \beta=\frac{\pi}{q}, \quad \gamma=\frac{\pi}{2}
$$

By (*), we find that:

$$
\alpha+\beta+\gamma<\pi
$$

Let T be the geodesic triangle in \mathbf{H} for which the measures of the vertex angles are α, β, and γ. By the Laws of Cosines and Sines in hyperbolic geometry, the vertex angles of T determine the edges. In the following figure, we display T in standard position and we label the vertices of T by A, B, and C, in correspondence with the measures α, β, and γ of the vertex angles.

Figure 2: $\mathrm{p}=8, \mathrm{q}=3$
5° Let us describe a method for constructing T. To that end, we introduce the angular measure δ, defined as follows:

$$
\delta=\pi-(\alpha+\beta+\gamma)=\frac{\pi}{2}-(\alpha+\beta)
$$

In turn, we produce the diagram:

Figure 3
by the following steps. We draw the "horizontal" line passing through the points A and Z, where A is the center of \mathbf{H} and where Z is a remote point in the exterior of \mathbf{H}. We construct the point F on the boundary of \mathbf{H} so that the measure of the angle $\angle Z A F$ is α. We construct the point H on the line segment $\overline{A Z}$ so that the measure of the angle $\angle A F H$ is $\beta+\gamma$. Of course, the measure of the angle $\angle A H F$ is δ. We draw the circle (in red), for which the center is H and for which the line segment $\overline{H F}$ is a radius. We draw the circle (in blue), for which the line segment $\overline{A H}$ is a diameter. We obtain the points E, G, I, and J. Obviously, the measure of the angle $\angle A I H$ is γ.
6° At this point, the triangles $\triangle A F H$ and $\triangle A I H$ and the red and blue circles are the good effects of our work. Now we complete the construction by contracting these triangles and circles so that, in particular, the point I coincides with the point E.

Figure 4
We can achieve this effect simply by constructing the point D on the line segment $\overline{A H}$ so that the measure of the angle $\angle A E D$ is γ. Proceeding mechanically, we draw the hypercircle (in red), for which the center is D and for which the line segment $\overline{D E}$ is a radius. We draw the circle (in blue), for which the line segment $\overline{A D}$ is a diameter. Finally, we mark the points B and C of intersection of the hypercircle with the line segments $\overline{A F}$ and $\overline{A H}$, respectively. Clearly, the triangles $\triangle A B D$ and $\triangle A E D$ are similar to the triangles
$\triangle A F H$ and $\triangle A I H$, respectively. In this way, we obtain the geodesic triangle T for which the vertices are A, B, and C and for which the measures of the corresponding vertex angles are α, β, and γ, respectively.
7° We do not attempt to design a shortcut, by presuming, in error, that the critical point D lies on the line segment $\overline{I J}$.
8° One can implement the foregoing construction of a geodesic triangle by straightedge and compass iff the vertex angles of the triangle are constructible. It is the same to say that the positive integers p and q are of the form:

$$
2^{k} \pi_{1} \pi_{2} \cdots \pi_{\ell}
$$

where k and ℓ are nonnegative integers and where:

$$
\pi_{1}, \pi_{2}, \ldots, \pi_{\ell}
$$

are distinct Fermat primes. The latter are those which are prime among integers of the form:

$$
2^{n}+1
$$

where n is a positive integer. Actually, such an integer is prime only if n is itself a power of 2 . Currently:

$$
2^{2^{0}}=3,2^{2^{1}}=5,2^{2^{2}}=17,2^{2^{3}}=257,2^{2^{4}}=65537
$$

are known to be Fermat primes, while:

$$
2^{2^{5}}, 2^{2^{6}}, 2^{2^{7}}, 2^{2^{8}}, 2^{2^{9}}, 2^{2^{10}}, 2^{2^{11}}, 2^{2^{12}}
$$

are known to be composite.
9° The cases which figure in the Circle Limit Series of M. C. Escher are the following:

$$
(p, q)=(6,4) \quad \text { and } \quad(p, q)=(8,3)
$$

