THE THEOREM OF FUBINI IN TWO DIMENSIONS

Let J be a block in \mathbf{R}^{2} :

$$
J=[a, b] \times[c, d]
$$

and let f be a real-valued function defined and bounded on J. For each number y in $[c, d]$, let f_{y} be the real-valued function defined on $[a, b]$ as follows:

$$
f_{y}(x)=f(x, y)
$$

where x is any number in $[a, b]$. We asssume that:
(•) $\quad f$ is integrable over J
and that:
(\bullet) for each number y in $[c, d], f_{y}$ is integrable over $[a, b]$
Let g be the real-valued function defined on $[c, d]$, as follows:

$$
g(y)=\int_{a}^{b} f_{y}(x) d x
$$

where y is any number in $[c, d]$. We will prove that g is integrable over $[c, d]$ and that:

$$
\begin{equation*}
\iint_{J} f(x, y) d x d y=\int_{c}^{d} g(y) d y=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y \tag{○}
\end{equation*}
$$

One refers to this result as the Theorem of Fubini. We begin the proof by introducing an arbitrary positive real number ϵ. Since f is integrable over J, we can introduce a partition:

$$
P=P_{1} \times P_{2}
$$

where:

$$
\begin{array}{ll}
P_{1}: & a=u_{0}<u_{2}<\cdots<u_{m}=b \\
P_{2}: & c=v_{0}<v_{2}<\cdots<v_{n}=d
\end{array}
$$

such that:

$$
U(f, P)-L(f, P)<\epsilon
$$

Of course:

$$
L(f, P) \leq \iint_{J} f(x, y) d x d y \leq U(f, P)
$$

Let k be any index $(0 \leq k<n)$ and let y be any number in $\left[v_{k}, v_{k+1}\right]$. We have:

$$
\begin{aligned}
\sum_{j=0}^{m-1} L_{j k}(f, P)\left(u_{j+1}-u_{j}\right) & \leq \sum_{j=0}^{m-1} L_{j}\left(f_{y}, P_{1}\right)\left(u_{j+1}-u_{j}\right) \\
& \leq \int_{a}^{b} f_{y}(x) d x=g(y) \\
& \leq \sum_{j=0}^{m-1} U_{j}\left(f_{y}, P_{1}\right)\left(u_{j+1}-u_{j}\right) \\
& \leq \sum_{j=0}^{m-1} U_{j k}(f, P)\left(u_{j+1}-u_{j}\right)
\end{aligned}
$$

so:

$$
\sum_{j=0}^{m-1} L_{j k}(f, P)\left(u_{j+1}-u_{j}\right) \leq L_{k}\left(g, P_{2}\right)
$$

and:

$$
U_{k}\left(g, P_{2}\right) \leq \sum_{j=0}^{m-1} U_{j k}(f, P)\left(u_{j+1}-u_{j}\right)
$$

Hence:

$$
\begin{aligned}
L(f, P) & =\sum_{k=0}^{n-1} \sum_{j=0}^{m-1} L_{j k}(f, P)\left(u_{j+1}-u_{j}\right)\left(v_{k+1}-v_{k}\right) \\
& \leq \sum_{k=0}^{n-1} L_{k}\left(g, P_{2}\right)\left(v_{k+1}-v_{k}\right) \\
& =L\left(g, P_{2}\right) \\
& \leq U\left(g, P_{2}\right) \\
& =\sum_{k=0}^{n-1} U_{k}\left(g, P_{2}\right)\left(v_{k+1}-v_{k}\right) \\
& \leq \sum_{k=0}^{n-1} \sum_{j=0}^{m-1} U_{j k}(f, P)\left(u_{j+1}-u_{j}\right)\left(v_{k+1}-v_{k}\right) \\
& =U(f, P) \\
& <L(f, P)+\epsilon
\end{aligned}
$$

Since ϵ is arbitrary, we conclude that g is integrable over $[c, d]$ and that (\circ) is true. ///

