
MATHEMATICS 322
FOURIER TRANSFORMS

Fourier Transforms

1◦ We present the dual relations between functions and their Fourier Trans-
forms:

α̂(k) ≡ 1
(2π)3/2

∫ ∫ ∫
R3

exp(−ik • r)α(r)dr

α(r) =
1

(2π)3/2

∫ ∫ ∫
R3

exp(+ik • r)α̂(k)dk

In this context, α and α̂ are complex valued functions of the position vector
r ≡ (x, y, z) and of the dual wave vector k ≡ (u, v, w), respectively, in R3.
One refers to α̂ as the Fourier Transform of α and to α itself as the Inverse
Fourier Transform of α̂.

An Example

2◦ The function ν, defined as follows, coincides with its own Fourier Trans-
form:

(∗)
ν(r) ≡ exp(−1

2
r • r)

ν̂(k) = exp(−1
2
k • k)

It is no accident that ν is (essentially) the density function for the Normal
Distribution in Probability Theory.

3◦ Let us prove that ν̂ = ν. Since:

ν(r) ≡ exp(−1
2
x2)exp(−1

2
y2)exp(−1

2
z2)

ν̂(k) = exp(−1
2
u2)exp(−1

2
v2)exp(−1

2
w2)

and:
k • r = ux + vy + wz

we may descend to the one dimensional case. Let h be the function defined
on R as follows:

h(x) ≡ exp(−1
2
x2)
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Let ĥ be the Fourier Transform of h:

ĥ(y) ≡ 1√
2π

∫
R

h(x)exp(−ixy)dx)

We must prove that h and ĥ are the same function: To that end, we note
that there is precisely one function, namely h, which satisfies the First Order
Ordinary Differential Equation:

(◦) f ′(w) + wf(w) = 0

and which meets the initial condition:

(•) f(0) = 1

We contend that ĥ satisfies relations (◦) and (•) as well, so that ĥ = h. To
prove the contention, we make following computations:

ĥ′(y) + yĥ(y) =
i√
2π

exp(−1
2
y2)

∫
R

(−1)(x + iy)exp(−1
2
(x + iy)2)dx

=
i√
2π

exp(−1
2
y2) exp(−1

2
(x + iy)2)

∣∣∣x=+∞

x=−∞
= 0

and:
ĥ(0) =

1√
2π

∫
R

exp(−1
2
x2)dx =

1√
π

∫
R

exp(−w2)dw = 1

Scaling

4◦ Let λ be any positive number. We find that:

β(r) ≡ 1
λ

α(
1
λ
r) =⇒ β̂(k) = α̂(λk)

Translations and Phase Shifts

5◦ Let s be any position vector in R3 and let j be any wave vector in R3.
Obviously:

β(r) ≡ α(r − s) =⇒ β̂(k) = exp(−ik • s)α̂(k)

β(r) ≡ e(+i j • r)α(r) =⇒ β̂(k) = α̂(k − j)
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Conjugation

6◦ We find that:

α∗(r) ≡ α(−r) =⇒ α̂∗(k) = α̂(k)

Consequently, if α∗ = α then α̂ is real valued.

Convolution

7◦ There is a basic relation between Fourier Transforms and Convolutions.
Let α1 and α2 be complex valued functions of the position vector r. We form
a new function α1 ∗ α2, called the convolution of α1 and α2, as follows:

(α1 ∗ α2)(r) ≡ 1
(2π)3/2

∫ ∫ ∫
R3

α1(r − s)α2(s)ds

We have introduced the position vector s ≡ (a, b, c) to represent the variable
of integration. By straightforward computation, one may show that:

(α1 ∗ α2 )̂ (k) = α̂1(k)α̂2(k)

That is, the Fourier Transform of the convolution of α1 and α2 is the product
of the Fourier Transforms of α1 and α2.

Parseval’s Relation

8◦ By straightforward computation, one may prove Parseval’s Relation:

1
(2π)3/2

∫ ∫ ∫
R3

α1(r)α2(r)dr =
1

(2π)3/2

∫ ∫ ∫
R3

α̂1(k)α̂2(k)dk

That is, the Fourier Transform preserves Inner Products.

Rigor

9◦ We must confess that the foregoing relations, symmetric and memorable,
are sometimes true and sometimes false. However, for a very broad class of
functions, called rapidly decreasing, the relations are rigorously true. For
the definition of such functions, we require certain notation. Let m be any
nonnegative integer and let δ ≡ (j, k, �) be any ordered triple of nonnegative
integers. Let d ≡ j + k + �. For each function α, we define:

(Sm,δα)(r) ≡ (1 + r • r)m(
∂d

∂xj∂yk∂z�
α)(r) (r ∈ R3)
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One says that α is rapidly decreasing iff, for each m and for each δ, Sm,δα is
bounded. Let S be the linear space composed of all such functions. One can
show that, for each function α, α ∈ S iff α̂ ∈ S. Consequently, the Fourier
Transform carries S bijectively to itself. It is linear and it preserves Inner
Products.

Analysis/Algebra

10◦ By inspection, we find that:

(
∂

∂x
α)(r) =

1
(2π)3/2

∫ ∫ ∫
R3

iuexp(+ik • r)α̂(k)dk

so that:
(
∂

∂x
α)̂ (k) = iuα̂(k)

Similarly:

(
∂

∂y
α)̂ (k) = iv α̂(k)

(
∂

∂z
α)̂ (k) = iwα̂(k)

Symmetrically:

(
∂

∂u
α̂)(k) =

1
(2π)3/2

∫ ∫ ∫
R3

1
i
xexp(−ik • r)α(r)dr

so that:
(
1
i
xα)̂ (k) = (

∂

∂u
α̂)(k)

Similarly:

(
1
i
yα)̂ (k) = (

∂

∂v
α̂)(k)

(
1
i
zα)̂ (k) = (

∂

∂w
α̂)(k)

In the last three relations, we have used certain obvious but awkward notations
for the products with α of the coordinate variables x, y, and z, regarded as
functions.

11◦ In general:

(
∂d

∂xj∂yk∂z�
α)̂ (k) = idujvkw�α̂(k)

((
1
i
)dxjykz�α)̂ (k) = (

∂d

∂uj∂vk∂w�
α̂)(k)
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The following special case is important:

(!) (�α)̂ (k) = (
∂2

∂x2
α +

∂2

∂y2
α +

∂2

∂z2
α)̂ (k) = −(u2 + v2 + w2)α̂(k)

Uncertainty

12◦ Let α be a normalized function:

1
(2π)3/2

∫ ∫ ∫
R3

|α(r)|2dr = 1

By Parseval’s Relation, α̂ is normalized as well:

1
(2π)3/2

∫ ∫ ∫
R3

|α̂(k)|2dk = 1

Regarding |α|2 and |α̂|2 as probability densities, let us introduce certain of
the corresponding Second Moments:

m2
x ≡ 1

(2π)3/2

∫ ∫ ∫
R3

x2|α(r)|2dr

m2
y ≡ 1

(2π)3/2

∫ ∫ ∫
R3

y2|α(r)|2dr

m2
z ≡ 1

(2π)3/2

∫ ∫ ∫
R3

z2|α(r)|2dr

m̂2
u ≡ 1

(2π)3/2

∫ ∫ ∫
R3

u2|α̂(k)|2dk

m̂2
v ≡ 1

(2π)3/2

∫ ∫ ∫
R3

v2|α̂(k)|2dk

m̂2
w ≡ 1

(2π)3/2

∫ ∫ ∫
R3

w2|α̂(k)|2dk

We contend that:

(∗)

1
4
≤ m2

xm̂2
u

1
4
≤ m2

ym̂2
v

1
4
≤ m2

zm̂
2
w
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13◦ Let us introduce, formally, the conventional notation for the Inner Prod-
uct:

〈〈 β1, β2 〉〉 ≡ 1
(2π)3/2

∫ ∫ ∫
R3

β1(r)β2(r)dr

In turn, let us introduce the operators Qx and Px:

(Qxα)(r) ≡ xα(r), (Pxα)(r) ≡ 1
i

d

dx
α(r)

One can easily check that the operators are Symmetric:

〈〈 Qxβ1, β2 〉〉 = 〈〈 β1, Qxβ2 〉〉, 〈〈 Pxβ1, β2 〉〉 = 〈〈 β1, Pxβ2 〉〉

Now, for any real number a, we find that:

0 ≤ 〈〈 (Qx +
1
i
aPx)α, (Qx +

1
i
aPx)α 〉〉

= 〈〈 Qxα, Qxα 〉〉 + 〈〈 1
i
aPxα, Qxα 〉〉 + 〈〈 Qxα,

1
i
aPxα 〉〉 + +〈〈 1

i
aPxα,

1
i
aPxα 〉〉

= 〈〈 Q2
xα, α 〉〉 + a〈〈 1

i
(QxPx − PxQx)α, α 〉〉 + a2〈〈 P 2

xα, α 〉〉

Obviously, 〈〈 Q2
xα, α 〉〉 = m2

x. Moreover, by the relations in article 10◦ and by
Parseval’s Relation, 〈〈 P 2

xα, α 〉〉 = 〈〈 Pxα, Pxα 〉〉 = m̂2
u. Finally:

1
i
(QxPx − PxQx)α(r) =

1
i

[
x

1
i

d

dx
α(r) − 1

i

d

dx
(xα(r))

]
= α(r)

We infer that, for any real number a:

0 ≤ m2
x + a + a2m̂2

u

By the Quadratic Formula, we conclude that:

1
4
≤ m2

xm̂2
u

Similarly:
1
4
≤ m2

ym̂2
v

1
4
≤ m2

zm̂
2
w
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