MATHEMATICS 322

FOURIER TRANSFORMS

Fourier Transforms

1° We present the dual relations between functions and their Fourier Transforms:

$$
\begin{aligned}
\hat{\alpha}(\mathbf{k}) & \equiv \frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}} \exp (-i \mathbf{k} \bullet \mathbf{r}) \alpha(\mathbf{r}) d \mathbf{r} \\
\alpha(\mathbf{r}) & =\frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}} \exp (+i \mathbf{k} \bullet \mathbf{r}) \hat{\alpha}(\mathbf{k}) d \mathbf{k}
\end{aligned}
$$

In this context, α and $\hat{\alpha}$ are complex valued functions of the position vector $\mathbf{r} \equiv(x, y, z)$ and of the dual wave vector $\mathbf{k} \equiv(u, v, w)$, respectively, in \mathbf{R}^{3}. One refers to $\hat{\alpha}$ as the Fourier Transform of α and to α itself as the Inverse Fourier Transform of $\hat{\alpha}$.

An Example
2° The function ν, defined as follows, coincides with its own Fourier Transform:

$$
\begin{align*}
\nu(\mathbf{r}) & \equiv \exp \left(-\frac{1}{2} \mathbf{r} \bullet \mathbf{r}\right) \tag{*}\\
\hat{\nu}(\mathbf{k}) & =\exp \left(-\frac{1}{2} \mathbf{k} \bullet \mathbf{k}\right)
\end{align*}
$$

It is no accident that ν is (essentially) the density function for the Normal Distribution in Probability Theory.
$3^{\circ} \quad$ Let us prove that $\hat{\nu}=\nu$. Since:

$$
\begin{aligned}
\nu(\mathbf{r}) & \equiv \exp \left(-\frac{1}{2} x^{2}\right) \exp \left(-\frac{1}{2} y^{2}\right) \exp \left(-\frac{1}{2} z^{2}\right) \\
\hat{\nu}(\mathbf{k}) & =\exp \left(-\frac{1}{2} u^{2}\right) \exp \left(-\frac{1}{2} v^{2}\right) \exp \left(-\frac{1}{2} w^{2}\right)
\end{aligned}
$$

and:

$$
\mathbf{k} \bullet \mathbf{r}=u x+v y+w z
$$

we may descend to the one dimensional case. Let h be the function defined on \mathbf{R} as follows:

$$
h(x) \equiv \exp \left(-\frac{1}{2} x^{2}\right)
$$

Let \hat{h} be the Fourier Transform of h :

$$
\left.\hat{h}(y) \equiv \frac{1}{\sqrt{2 \pi}} \int_{\mathbf{R}} h(x) \exp (-i x y) d x\right)
$$

We must prove that h and \hat{h} are the same function: To that end, we note that there is precisely one function, namely h, which satisfies the First Order Ordinary Differential Equation:

$$
\begin{equation*}
f^{\prime}(w)+w f(w)=0 \tag{०}
\end{equation*}
$$

and which meets the initial condition:

- -

$$
f(0)=1
$$

We contend that \hat{h} satisfies relations (\circ) and (\bullet) as well, so that $\hat{h}=h$. To prove the contention, we make following computations:

$$
\begin{aligned}
\hat{h}^{\prime}(y)+y \hat{h}(y) & =\frac{i}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y^{2}\right) \int_{\mathbf{R}}(-1)(x+i y) \exp \left(-\frac{1}{2}(x+i y)^{2}\right) d x \\
& =\left.\frac{i}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y^{2}\right) \exp \left(-\frac{1}{2}(x+i y)^{2}\right)\right|_{x=-\infty} ^{x=+\infty} \\
& =0
\end{aligned}
$$

and:

$$
\hat{h}(0)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbf{R}} \exp \left(-\frac{1}{2} x^{2}\right) d x=\frac{1}{\sqrt{\pi}} \int_{\mathbf{R}} \exp \left(-w^{2}\right) d w=1
$$

Scaling

4° Let λ be any positive number. We find that:

$$
\beta(\mathbf{r}) \equiv \frac{1}{\lambda} \alpha\left(\frac{1}{\lambda} \mathbf{r}\right) \Longrightarrow \hat{\beta}(\mathbf{k})=\hat{\alpha}(\lambda \mathbf{k})
$$

Translations and Phase Shifts

5° Let \mathbf{s} be any position vector in \mathbf{R}^{3} and let \mathbf{j} be any wave vector in \mathbf{R}^{3}. Obviously:

$$
\begin{aligned}
\beta(\mathbf{r}) \equiv \alpha(\mathbf{r}-\mathbf{s}) & \Longrightarrow \hat{\beta}(\mathbf{k})=\exp (-i \mathbf{k} \bullet \mathbf{s}) \hat{\alpha}(\mathbf{k}) \\
\beta(\mathbf{r}) \equiv e(+i \mathbf{j} \bullet \mathbf{r}) \alpha(\mathbf{r}) & \Longrightarrow \hat{\beta}(\mathbf{k})=\hat{\alpha}(\mathbf{k}-\mathbf{j})
\end{aligned}
$$

Conjugation
6° We find that:

$$
\alpha^{*}(\mathbf{r}) \equiv \overline{\alpha(-\mathbf{r})} \Longrightarrow \widehat{\alpha^{*}}(\mathbf{k})=\overline{\hat{\alpha}(\mathbf{k})}
$$

Consequently, if $\alpha^{*}=\alpha$ then $\hat{\alpha}$ is real valued.

Convolution

7° There is a basic relation between Fourier Transforms and Convolutions. Let α_{1} and α_{2} be complex valued functions of the position vector \mathbf{r}. We form a new function $\alpha_{1} * \alpha_{2}$, called the convolution of α_{1} and α_{2}, as follows:

$$
\left(\alpha_{1} * \alpha_{2}\right)(\mathbf{r}) \equiv \frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}} \alpha_{1}(\mathbf{r}-\mathbf{s}) \alpha_{2}(\mathbf{s}) d \mathbf{s}
$$

We have introduced the position vector $\mathbf{s} \equiv(a, b, c)$ to represent the variable of integration. By straightforward computation, one may show that:

$$
\left(\alpha_{1} * \alpha_{2}\right)^{\wedge}(\mathbf{k})=\hat{\alpha}_{1}(\mathbf{k}) \hat{\alpha}_{2}(\mathbf{k})
$$

That is, the Fourier Transform of the convolution of α_{1} and α_{2} is the product of the Fourier Transforms of α_{1} and α_{2}.

Parseval's Relation

8° By straightforward computation, one may prove Parseval's Relation:

$$
\frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}} \alpha_{1}(\mathbf{r}) \overline{\alpha_{2}(\mathbf{r})} d \mathbf{r}=\frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}} \hat{\alpha}_{1}(\mathbf{k}) \overline{\hat{\alpha}_{2}(\mathbf{k})} d \mathbf{k}
$$

That is, the Fourier Transform preserves Inner Products.
Rigor
9° We must confess that the foregoing relations, symmetric and memorable, are sometimes true and sometimes false. However, for a very broad class of functions, called rapidly decreasing, the relations are rigorously true. For the definition of such functions, we require certain notation. Let m be any nonnegative integer and let $\delta \equiv(j, k, \ell)$ be any ordered triple of nonnegative integers. Let $d \equiv j+k+\ell$. For each function α, we define:

$$
\left(S^{m, \delta} \alpha\right)(\mathbf{r}) \equiv(1+\mathbf{r} \bullet \mathbf{r})^{m}\left(\frac{\partial^{d}}{\partial x^{j} \partial y^{k} \partial z^{\ell}} \alpha\right)(\mathbf{r}) \quad\left(\mathbf{r} \in \mathbf{R}^{3}\right)
$$

One says that α is rapidly decreasing iff, for each m and for each $\delta, S^{m, \delta} \alpha$ is bounded. Let \mathbf{S} be the linear space composed of all such functions. One can show that, for each function $\alpha, \alpha \in \mathbf{S}$ iff $\hat{\alpha} \in \mathbf{S}$. Consequently, the Fourier Transform carries \mathbf{S} bijectively to itself. It is linear and it preserves Inner Products.

Analysis/Algebra

10° By inspection, we find that:

$$
\left(\frac{\partial}{\partial x} \alpha\right)(\mathbf{r})=\frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}} i u \exp (+i \mathbf{k} \bullet \mathbf{r}) \hat{\alpha}(\mathbf{k}) d \mathbf{k}
$$

so that:

$$
\left(\frac{\partial}{\partial x} \alpha\right)^{\wedge}(\mathbf{k})=i u \hat{\alpha}(\mathbf{k})
$$

Similarly:

$$
\begin{aligned}
& \left(\frac{\partial}{\partial y} \alpha\right)^{\wedge}(\mathbf{k})=i v \hat{\alpha}(\mathbf{k}) \\
& \left(\frac{\partial}{\partial z} \alpha\right)^{\wedge}(\mathbf{k})=i w \hat{\alpha}(\mathbf{k})
\end{aligned}
$$

Symmetrically:

$$
\left(\frac{\partial}{\partial u} \hat{\alpha}\right)(\mathbf{k})=\frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}} \frac{1}{i} x \exp (-i \mathbf{k} \bullet \mathbf{r}) \alpha(\mathbf{r}) d \mathbf{r}
$$

so that:

$$
\left(\frac{1}{i} x \alpha\right)^{\wedge}(\mathbf{k})=\left(\frac{\partial}{\partial u} \hat{\alpha}\right)(\mathbf{k})
$$

Similarly:

$$
\begin{aligned}
\left(\frac{1}{i} y \alpha\right)^{\wedge}(\mathbf{k}) & =\left(\frac{\partial}{\partial v} \hat{\alpha}\right)(\mathbf{k}) \\
\left(\frac{1}{i} z \alpha\right)^{\wedge}(\mathbf{k}) & =\left(\frac{\partial}{\partial w} \hat{\alpha}\right)(\mathbf{k})
\end{aligned}
$$

In the last three relations, we have used certain obvious but awkward notations for the products with α of the coordinate variables x, y, and z, regarded as functions.
11° In general:

$$
\begin{aligned}
& \left(\frac{\partial^{d}}{\partial x^{j} \partial y^{k} \partial z^{\ell}} \alpha\right)^{\wedge}(\mathbf{k})=i^{d} u^{j} v^{k} w^{\ell} \hat{\alpha}(\mathbf{k}) \\
& \left(\left(\frac{1}{i}\right)^{d} x^{j} y^{k} z^{\ell} \alpha\right)^{\wedge}(\mathbf{k})=\left(\frac{\partial^{d}}{\partial u^{j} \partial v^{k} \partial w^{\ell}} \hat{\alpha}\right)(\mathbf{k})
\end{aligned}
$$

The following special case is important:
$(!) \quad(\triangle \alpha)^{\wedge}(\mathbf{k})=\left(\frac{\partial^{2}}{\partial x^{2}} \alpha+\frac{\partial^{2}}{\partial y^{2}} \alpha+\frac{\partial^{2}}{\partial z^{2}} \alpha\right)^{\wedge}(\mathbf{k})=-\left(u^{2}+v^{2}+w^{2}\right) \hat{\alpha}(\mathbf{k})$

Uncertainty

12° Let α be a normalized function:

$$
\frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}}|\alpha(\mathbf{r})|^{2} d \mathbf{r}=1
$$

By Parseval's Relation, $\hat{\alpha}$ is normalized as well:

$$
\frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}}|\hat{\alpha}(\mathbf{k})|^{2} d \mathbf{k}=1
$$

Regarding $|\alpha|^{2}$ and $|\hat{\alpha}|^{2}$ as probability densities, let us introduce certain of the corresponding Second Moments:

$$
\begin{aligned}
m_{x}^{2} & \equiv \frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}} x^{2}|\alpha(\mathbf{r})|^{2} d \mathbf{r} \\
m_{y}^{2} & \equiv \frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}} y^{2}|\alpha(\mathbf{r})|^{2} d \mathbf{r} \\
m_{z}^{2} & \equiv \frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}} z^{2}|\alpha(\mathbf{r})|^{2} d \mathbf{r} \\
\hat{m}_{u}^{2} & \equiv \frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}} u^{2}|\hat{\alpha}(\mathbf{k})|^{2} d \mathbf{k} \\
\hat{m}_{v}^{2} & \equiv \frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}} v^{2}|\hat{\alpha}(\mathbf{k})|^{2} d \mathbf{k} \\
\hat{m}_{w}^{2} & \equiv \frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}} w^{2}|\hat{\alpha}(\mathbf{k})|^{2} d \mathbf{k}
\end{aligned}
$$

We contend that:
(*)

$$
\begin{aligned}
& \frac{1}{4} \leq m_{x}^{2} \hat{m}_{u}^{2} \\
& \frac{1}{4} \leq m_{y}^{2} \hat{m}_{v}^{2} \\
& \frac{1}{4} \leq m_{z}^{2} \hat{m}_{w}^{2}
\end{aligned}
$$

13° Let us introduce, formally, the conventional notation for the Inner Product:

$$
\left\langle\beta_{1}, \beta_{2}\right\rangle \equiv \frac{1}{(2 \pi)^{3 / 2}} \iiint_{\mathbf{R}^{3}} \beta_{1}(\mathbf{r}) \overline{\beta_{2}(\mathbf{r})} d \mathbf{r}
$$

In turn, let us introduce the operators Q_{x} and P_{x} :

$$
\left(Q_{x} \alpha\right)(\mathbf{r}) \equiv x \alpha(\mathbf{r}), \quad\left(P_{x} \alpha\right)(\mathbf{r}) \equiv \frac{1}{i} \frac{d}{d x} \alpha(\mathbf{r})
$$

One can easily check that the operators are Symmetric:

$$
\left\langle Q_{x} \beta_{1}, \beta_{2}\right\rangle=\left\langle\left\langle\beta_{1}, Q_{x} \beta_{2}\right\rangle, \quad\left\langle P_{x} \beta_{1}, \beta_{2}\right\rangle=\left\langle\left\langle\beta_{1}, P_{x} \beta_{2}\right\rangle\right.\right.
$$

Now, for any real number a, we find that:

$$
\begin{aligned}
0 & \left.\leq 《\left(Q_{x}+\frac{1}{i} a P_{x}\right) \alpha,\left(Q_{x}+\frac{1}{i} a P_{x}\right) \alpha\right\rangle \\
& =\left\langle\left\langle Q_{x} \alpha, Q_{x} \alpha\right\rangle+\left\langle\left\langle\frac{1}{i} a P_{x} \alpha, Q_{x} \alpha\right\rangle+\left\langle\left\langle Q_{x} \alpha, \frac{1}{i} a P_{x} \alpha\right\rangle++\left\langle\left\langle\frac{1}{i} a P_{x} \alpha, \frac{1}{i} a P_{x} \alpha\right\rangle\right.\right.\right.\right. \\
& =\left\langle\left\langle Q_{x}^{2} \alpha, \alpha\right\rangle+a 《 \frac{1}{i}\left(Q_{x} P_{x}-P_{x} Q_{x}\right) \alpha, \alpha\right\rangle+a^{2}\left\langle\left\langle P_{x}^{2} \alpha, \alpha\right\rangle\right.
\end{aligned}
$$

Obviously, $\left\langle\left\langle Q_{x}^{2} \alpha, \alpha\right\rangle=m_{x}^{2}\right.$. Moreover, by the relations in article 10° and by Parseval's Relation, $\left\langle\left\langle P_{x}^{2} \alpha, \alpha\right\rangle=\left\langle\left\langle P_{x} \alpha, P_{x} \alpha\right\rangle=\hat{m}_{u}^{2}\right.\right.$. Finally:

$$
\frac{1}{i}\left(Q_{x} P_{x}-P_{x} Q_{x}\right) \alpha(\mathbf{r})=\frac{1}{i}\left[x \frac{1}{i} \frac{d}{d x} \alpha(\mathbf{r})-\frac{1}{i} \frac{d}{d x}(x \alpha(\mathbf{r}))\right]=\alpha(\mathbf{r})
$$

We infer that, for any real number a :

$$
0 \leq m_{x}^{2}+a+a^{2} \hat{m}_{u}^{2}
$$

By the Quadratic Formula, we conclude that:

$$
\frac{1}{4} \leq m_{x}^{2} \hat{m}_{u}^{2}
$$

Similarly:

$$
\begin{aligned}
& \frac{1}{4} \leq m_{y}^{2} \hat{m}_{v}^{2} \\
& \frac{1}{4} \leq m_{z}^{2} \hat{m}_{w}^{2}
\end{aligned}
$$

