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1 Introduction

01◦ We will describe a procedure for solving Maxwell’s Equations in terms
of the Fourier Transform, applied not to the time and frequency variables but
to the position vector and wave vector variables underlying the electric and
magnetic fields. Our objective is to show that Maxwell’s Equations can be
cast as an Ordinary Differential Equation in the Hilbert Space:

L2(R3, m) ⊗ C3

composed of functions defined on R3 with values in C3. In the foregoing
expression, m denotes lebesgue measure, normalized as follows:

m(dr) =
1

(2π)3/2
dr

2 Notation

02◦ We will represent wave vectors and position vectors in R3 as follows:

p =


 u

v
w


 , q =


x

y
z




We will denote time by t. We adopt natural units, measuring time and length
in centimeters (cm), so that velocity is dimensionless. We fix the unit of time
by requiring that c = 1. Under these conventions, we can take p and q to be
dual vectors for the exponential pairings:

exp(±ip • q)

which figure in the Fourier Transform. We take charge to be dimensionless
and we fix the unit of charge so that Maxwell’s Equations may stand in the
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spare form displayed in article 8◦. Consequently, we measure the components
of the electric and magnetic fields in reciprocal square centimeters and the
components of the Fourier Transforms of these fields in centimeters.

03◦ We will represent the electric and magnetic fields by functions:

Q◦ =


X◦

Y ◦

Z◦


 , Q• =


X•

Y •

Z•




defined on R×R3 with values in R3; the electric and magnetic charge densities
by functions:

T ◦, T •

defined on R × R3 with values in R; and the electric and magnetic current
densities by functions:

K◦ =


 D◦

E◦

F ◦


 , K• =


D•

E•

F •




defined on R×R3 with values in R3. Usually, one presumes that T • = 0 and
K• = 0. However, these functions lend symmetry to Maxwell’s Equations
and, for the present project, they do no harm.

04◦ Now let us interpret the superscripts ◦ and • as markers for the real and
imaginary parts of numbers in C and of vectors in C3. We obtain our primary
array of functions:

Q = Q◦ + iQ• =


X◦ + iX•

Y ◦ + iY •

Z◦ + iZ•


 =


 X

Y
Z




T = T ◦ + iT •

K = K◦ + iK• =


D◦ + iD•

E◦ + iE•

F ◦ + iF •


 =


D

E
F




defined on R × R3 with values in C3, C, and C3, respectively. Let us refer
to Q as the electromagnetic field .

05◦ The foregoing notations stand in sharp contrast to common practice.
We represent the electric and magnetic fields as the real and imaginary parts
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of a complex vector field. Moreover, we denote the electric and magnetic
fields not by E and B but by Q◦ and Q•. In defense, let us observe that,
with regard to the Fourier Transform, soon to follow, our notations yield a
pleasing symmetry.

06◦ Let us apply the Fourier Transform to Q, T , and K:

(1)
P(t,p) =

∫
R3

exp(−ip • q)Q(t,q)m(dq)

Q(t,q) =
∫
R3

exp(+ip • q)P(t,p)m(dp)

(2)
S(t,p) =

∫
R3

exp(−ip • q)T (t,q)m(dq)

T (t,q) =
∫
R3

exp(+ip • q)S(t,p)m(dp)

(3)
J(t,p) =

∫
R3

exp(−ip • q)K(t,q)m(dq)

K(t,q) =
∫
R3

exp(+ip • q)J(t,p)m(dp)

We obtain our secondary array of functions:

P = P◦ + iP• =


 U◦ + iU•

V ◦ + iV •

W ◦ + iW •


 =


 U

V
W




S = S◦ + iS•

J = J◦ + iJ• =


 A◦ + iA•

B◦ + iB•

C◦ + iC•


 =


 A

B
C




defined on R × R3 with values in C3, C, and C3, respectively.

07◦ One should view all the foregoing functions as curves parametrized by
time. The position occupied by such a curve at time t is itself a function
defined on R3, with values in C or C3.
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3 Maxwell’s Equations Transformed

08◦ Under the foregoing notational design, we can state Maxwell’s Equations
as follows:

(4) (∇ •Q)(t,q) = T (t,q)

(5) −∂

∂t
Q(t,q) − i (∇× Q)(t,q) = K(t,q)

From these equations, we obtain the Continuity Equation:

(6)
∂

∂t
T (t,q) + (∇ • K)(t,q) = 0

By relation (1):

(∇ • Q)(t,q) =
∫
R3

exp(+ip • q) ip • P(t,p)m(dp)

By relation (2), we infer that the first of Maxwell’s Equations and the following
equation are equivalent:

(7) ip • P(t,p) = S(t,p)

By relation (1):

(∇× Q)(t,q) =
∫
R3

exp(+ip • q) ip× P(t,p)m(dp)

By relation (3), we infer that the second of Maxwell’s Equations and the
following equation are equivalent:

(8)
∂

∂t
P(t,p) = p× P(t,p) − J(t,p)

Let us recast the foregoing equation as follows:

(9)
∂

∂t
P(t,p) = ΠP(t,p) − J(t,p)

where Π is the antisymmetric matrix defined by p:

Π =


 0 −w v

w 0 −u
−v u 0




By the methods of Ordinary Linear Differential Equations, we can recast the
equation once more:

(10) P(t,p) = exp(tΠ)
(
P(0,p) −

∫ t

0

exp(−sΠ)J(s,p)ds
)

This equation sets the base for our analysis of Maxwell’s Equations, soon to
follow.
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09◦ By relation (3):

(∇ • K)(t,q) =
∫
R3

exp(+ip • q)ip • J(t,p)m(dp)

By relation (2), we infer that the Continuity Equation and the following equa-
tion are equivalent:

(11)
∂

∂t
S(t,p) + ip • J(t,p) = 0

We can recast the foregoing equation as follows:

(12) S(t,p) = S(0,p) −
∫ t

0

ip • J(s,p)ds

10◦ Equations (7) and (8) comprise our reformulation of Maxwell’s Equations
and equation (11) our reformulation of the Continuity Equation.

11◦ We contend now that if P, S, and J satisfy equations (8) and (11) and
if they satisfy equation (7) at time 0:

ip • P(0,p) = S(0,p)

then they satisfy equation (7) for all time t. This implication will play an
important role in the following section. To prove the implication, we note
that:

exp(tΠ)

is a rotation and that:
exp(tΠ)p = p

For a discussion of these facts, see article 15◦. We also note that equations
(8) and (10) are equivalent and that equations (11) and (12) are equivalent.
Now we find that:

ip • P(t,p) = ip •
[
exp(tΠ)

(
P(0,p) −

∫ t

0

exp(−sΠ)J(s,p)ds
)]

= ip •
(
P(0,p) −

∫ t

0

exp(−sΠ)J(s,p)ds
)

= S(0,p) −
∫ t

0

ip • J(s,p)ds

= S(t,p)

5



4 The Procedure

12◦ We begin with the functions T and K. They are the charge and current
densities. We assume that they satisfy the Continuity Equation (6):

(13)
∂

∂t
T (t,q) + (∇ • K)(t,q) = 0

We apply the Fourier Transform to define the functions S and J. Now S and
J satisfy equation (11):

(14)
∂

∂t
S(t,p) + ip • J(t,p) = 0

We proceed to define the function P, as follows. First, we introduce values
for P at time 0:

P(0,p)

subject to equation (7) at time 0:

(15) ip • P(0,p) = S(0,p)

To complete the procedure, we give full definition to P by applying equation
(10):

(16) P(t,p) = exp(tΠ)
(
P(0,p) −

∫ t

0

exp(−sΠ)J(s,p)ds
)

Of course, P and J satisfy equation (8). We appeal to article 11◦ to infer that
P and S satisfy equation (7) for all time t.

13◦ Now let Q be the function of which P is the Fourier Transform. By
design, we find that Q, T , and K satisfy Maxwell’s Equations.

14◦ The values for Q at time 0:

Q(0,q)

meet the following condition, equivalent to condition (15):

(17) (∇ • Q)(0,q) = T (0,q)

The foregoing equation is Gauss’ Equation. We conclude that the various
solutions of Maxwell’s Equations correspond precisely to the various solutions
of Gauss’ Equation. Of course, one must first set the charge and current
densities.
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15◦ Now let p and G be any vectors in R3. We plan to apply the following
basic relation:

p × (p × G) = (p • G)p − (p • p)G

Let us introduce the notation:

p̂ =
1
p
p =


 û

v̂
ŵ


 (p =

√
p • p)

We find that:
G = Gρ + Gτ

where:

(18)
Gρ = (p̂ • G)p̂

Gτ = −p̂× (p̂ × G)

Clearly, p and Gρ are collinear while p and Gτ are orthogonal. We will refer
to Gρ and Gτ as the radial and transversal components of G with respect to
p. In turn, let us introduce the notation:

Π̂ =
1
p
Π =


 0 −ŵ v̂

ŵ 0 −û
−v̂ û 0




Clearly:
Π̂G = p̂ × G

and:
−Π̂3 = Π̂

Hence:
I + Π̂2 and − Π̂2

are orthogonal projections with ranges Rp and (Rp)⊥. It follows that:

(19)
Gρ = (I + Π̂2)G

Gτ = −Π̂2G

Now one can easily check that, for each time t:

(20)

exp(tΠ)G = exp(pt Π̂)G

=
[
(I + Π̂2) + cos(pt)(−Π̂2) + sin(pt)Π̂

]
G

= Gρ + cos(pt)Gτ + sin(pt)Π̂Gτ
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Clearly, Gρ, Gτ , and Π̂Gτ = p̂ × Gτ comprise a right handed orthogonal
frame and Gτ and Π̂Gτ have the same length. Hence:

exp(tΠ)

is a rotation. The unit vector p̂ defines the directed axis of the rotation and
the real number pt defines in radian measure the counterclockwise angle of
the rotation. Obviously:

exp(tΠ)p = p

16◦ Let G be any vector in C3:

G = G◦ + iG•

By applying the foregoing relations separately to G◦ and G•, we confirm the
relations for G itself.

17◦ Using the radial/transversal resolution of vectors, we can refine our pro-
cedure for solving Maxwell’s Equations. First, we specify S arbitrarily:

S(t,p)

and we specify Jτ arbitrarily:
Jτ (t,p)

but we specify Jρ so that it satisfies equation (11):

(21) Jρ(t,p) =
i

p

∂

∂t
S(t,p)p̂

In this way, we set the charge and current densities. Second, we specify Pτ

at time 0 arbitrarily:
Pτ (0,p)

but we specify Pρ so that it satisfies equation (7):

(22) Pρ(t,p) = − i

p
S(t,p)p̂

By equation (10):

(23) Pτ (t,p) = exp(tΠ)
(
Pτ (0,p) −

∫ t

0

exp(−sΠ)Jτ (s,p)ds
)

we complete the description of S, J, and P.
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18◦ We can summarize our procedure for solving Maxwell’s Equations in the
following diagram:

S(t,p), Jτ (t,p), Pτ (0,p)

(�)





�

Jρ(t,p) =
i

p

∂

∂t
S(t,p)p̂

Pρ(t,p) = − i

p
S(t,p)p̂

Pτ (t,p) = exp(tΠ)
(
Pτ (0,p) −

∫ t

0

exp(−sΠ)Jτ (s,p)ds
)

19◦ Of course, we can recover Q from P:

Q(t,q) = Q1(t,q) + Q2(t,q)

where:

(24)
Q1(t,q) =

∫
R3

exp(+ip • q)Pρ(t,p)m(dp)

Q2(t,q) =
∫
R3

exp(+ip • q)Pτ (t,p)m(dp)

5 The Energy Equation

20◦ Let T and K be the charge and current densities, satisfying, as usual,
the Continuity Equation:

∂

∂t
T (t,q) + (∇ • K)(t,q) = 0

Let Q be the corresponding electromagnetic field, related to T and K by
Maxwell’s Equations:

(∇ • Q)(t,q) = T (t,q)

−∂

∂t
Q(t,q) − i(∇× Q)(t,q) = K(t,q)
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We compute as follows:

∂

∂t
(Q◦ • Q◦ + Q• • Q•)

=
∂

∂t
(Q • Q̄)

= Q • ∂

∂t
Q̄ +

∂

∂t
Q • Q̄

= Q • [−K̄ + i(∇× Q̄)] + [−K− i(∇× Q)] • Q̄

= −[Q • K̄ + K • Q̄] + i[Q • (∇× Q̄) − (∇× Q) • Q̄]
= −[Q • K̄ + K • Q̄] − i∇ • (Q × Q̄)
= −2(Q◦ • K◦ + Q• • K•) − 2∇ • (Q◦ × Q•)

to obtain the Energy Equation:

(∗) ∂

∂t
E + H + ∇ • Π = 0

where:
E =

1
2
(Q◦ • Q◦ + Q• •Q•)

is the energy density of the electromagnetic field Q, where:

H = Q◦ • K◦ + Q• • K•

is the joule heat density per unit time, and where:

Π = Q◦ × Q•

is the energy flux density, that is, the poynting vector .

21◦ We interpret the Energy Equation as follows. Let Ω be any closed
bounded region in R3 and let Σ be the surface of Ω. By Gauss’ Theorem:

(∗) −∂

∂t

∫ ∫ ∫
Ω

E(q)dq =
∫ ∫ ∫

Ω

H(q)dq +
∫ ∫

Σ

Π(σσ) • dσσ

We conclude that the rate of decrease of electromagnetic energy in the region
Ω equals the sum of the rate at which such energy dissipates as heat in Ω and
the rate at which it flows out of Ω through Σ.

6 The Source Free Case

22◦ Now one may examine various special cases of electric and magnetic fields
defined by various additional conditions on Q, T and K. For instance, one
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might require that Q• = 0 and K = 0, hence that Q◦ and T be independent of
time t. That would be the electrostatic case. Let us consider the fundamental
source free case, defined by the conditions:

T (t,q) = 0, K(t,q) = 0

Just as well:
S(t,p) = 0, J(t,p) = 0

We specify Pτ at time 0 arbitrarily:

Pτ (0,p)

subject of course to the now familiar condition:

p • Pτ (0,p) = 0

By the diagram (�) and by equation (20), we obtain:

(25)

Pρ(t,p) = 0

Pτ (t,p) = exp(ptΠ̂)Pτ (0,p)

= cos(pt)Pτ (0,p) + sin(pt)Π̂Pτ (0,p)

At this point, let us dismiss the subscript τ from the symbol Pτ and let us
commit to remember that Pρ = 0 and that Pτ = P.

23◦ The foregoing relations provide a vivid picture of the Fourier Transform
P of the electromagnetic field Q, absent sources. For each wave vector p and
for any time t, the real and imaginary parts of the vector:

P(t,p) = P◦(t,p) + iP•(t,p)

lie perpendicular to the directed axis defined by p̂. As t increases, they rotate
counterclockwise about that axis at constant frequency:

1
2π

p

However, P◦(t,p) and P•(t,p) are not necessarily perpendicular. Moreover,
they do not necessarily have the same length.
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P◦

P•

Figure 1

24◦ Let us now develop an equally vivid picture of the electromagnetic field
Q itself. To that end, we introduce the transverse plane waves W(p) of which
Q is comprised.

25◦ Let p be any wave vector and let W(p) be the function defined on R×R3

with values in C3, as follows:

W(p)(t,q) = exp(+ip • q)P(t,p)

Of course, one assembles Q by integrating such plane waves over the space of
wave vectors p:

(26) Q(t,q) =
∫
R3

W(p)(t,q)m(dp)

26◦ It may(!) happen that:

(27) Π̂P(0,p) = −iP(0,p)

which is to say that:

(28)
Π̂P◦(0,p) = +P•(0,p)

Π̂P•(0,p) = −P◦(0,p)

Now p̂, P◦(0,p), and P•(0,p) form a right handed orthogonal frame and
P◦(0,p) and P•(0,p) have the same length. By equation (25):

(29)

W(p)(t,q) = exp(+ip • q)(cos(pt) − i sin(pt))P(0,p)

= exp(−i (pt− p • q))P(0,p)

= (cos(φ) − i sin(φ))(P◦(0,p) + iP•(0,p))
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where:
φ = pt − p • q = p(t − p̂ • q)

We find that:

W(p)(t,q) = W◦(p)(t,q) + iW•(p)(t,q)

where:

(30)
W◦(p)(t,q) = cos(φ)P◦(0,p) + sin(φ)P•(0,p)
W•(p)(t,q) = cos(φ)P•(0,p) − sin(φ)P◦(0,p)

P◦
φ

W•

P•

W◦

Figure 2

For each t, the vectors:
W◦(p)(t,q)
W•(p)(t,q)

are constant on the planes:

p̂ • q = r (r ∈ R)

For each q, the vectors:

W◦(p)(t,q + up̂)
W•(p)(t,q + up̂)

(u ∈ R)

comprise helices winding clockwise(!) in space about the directed axis:

q + Rp̂
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passing through q in the direction defined by p̂. The helices turn counter-
clockwise in time about that axis. As a result, an observer would assert that
the helices advance with speed 1 in the direction defined by p̂. One can see
this conclusion most clearly by examining a carpenter’s auger.

27◦ Let us summarize the matter. Under condition (27), we say that the
transverse plane wave W(p) has negative helicity. It has frequency p/2π and
wave length 2π/p.

28◦ It may(!) happen that:

(31) Π̂P(0,p) = +iP(0,p)

which is to say that:

(32)
Π̂P◦(0,p) = −P•(0,p)

Π̂P•(0,p) = +P◦(0,p)

Now p̂, P•(0,p), and P◦(0,p) form a right handed orthogonal frame and
P•(0,p) and P◦(0,p) have the same length. By equation (25):

(33)

W(p)(t,q) = exp(+ip • q)(cos(pt) + i sin(pt))P(0,p)

= exp(+i (pt + p • q))P(0,p)

= (cos(φ) + i sin(φ))(P◦(0,p) + iP•(0,p))

where:
φ = pt + p • q = p(t + p̂ • q)

We find that:

W(p)(t,q) = W◦(p)(t,q) + iW•(p)(t,q)

where:

(34)
W◦(p)(t,q) = cos(φ)P◦(0,p) − sin(φ)P•(0,p)
W•(p)(t,q) = cos(φ)P•(0,p) + sin(φ)P◦(0,p)
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P•
φ

W◦

P◦

W•

Figure 3

For each t, the vectors:
W◦(p)(t,q)
W•(p)(t,q)

are constant on the planes:

p̂ • q = r (r ∈ R)

For each q, the vectors:

W◦(p)(t,q + up̂)
W•(p)(t,q + up̂)

(u ∈ R)

comprise helices winding counterclockwise(!) in space about the directed axis:

q + Rp̂

passing through q in the direction defined by p̂. The helices turn counter-
clockwise in time about the axis. As a result, an observer would assert that
the helices advance with speed 1 in the direction defined by −p̂.

29◦ Let us summarize the matter. Under condition (31), we say that the
transverse plane wave W(p) has positive helicity. It has frequency p/2π and
wave length 2π/p.

30◦ One can present the general case uniquely as a sum of the foregoing
special cases of negative and positive helicity. Thus:

P(0,p) = P−(0,p) + P+(0,p)
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where:

(35) P−(0,p) =
1
2
(P(0,p) − 1

i
Π̂P(0,p))

(36) P+(0,p) =
1
2
(P(0,p) +

1
i
Π̂P(0,p))

One can easily check that P−(0,p) meets condition (27):

(37) Π̂P−(0,p) = −iP−(0,p)

and that P+(0,p) meets condition (31):

(38) Π̂P+(0,p) = +iP+(0,p)

Hence:
W(p)(t,q) = W−(p)(t,q) + W+(p)(t,q)

where W−(p) and W+(p) are the transverse plane waves of negative and
positive helicity defined by P−(0,p) and P+(0,p):

(39)
W−(p)(t,q) = exp(+ip • q)P−(t,p)

= exp(−i (pt − p • q))P−(0,p)

(40)
W+(p)(t,q) = exp(+ip • q)P+(t,p)

= exp(+i (pt + p • q))P+(0,p)

31◦ With reference to equation (26), we may present the electromagnetic
field Q as a sum of two fields, the first negatively circularly polarized and the
second positively circularly polarized:

(41) Q(t,q) = Q−(t,q) + Q+(t,q)

where:

(42)
Q−(t,q) =

∫
R3

W−(p)(t,q)m(dp)

Q+(t,q) =
∫
R3

W+(p)(t,q)m(dp)
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32◦ For the source free case of Maxwell’s Equations, we find that the Wave
Equation holds:

∂2

∂t2
Q(t,q) − (∆Q)(t,q) = 0

To prove that it is so, we apply the Fourier Transform. By definition:

Q =


 X

Y
Z


 , ∆Q =




∂2

∂x2 X +
∂2

∂y2 X +
∂2

∂z2 X

∂2

∂x2 Y +
∂2

∂y2 Y +
∂2

∂z2 Y

∂2

∂x2 Z +
∂2

∂y2 Z +
∂2

∂z2 Z
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