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1 Introduction

1◦ The object of this booklet is to introduce the subject of probability
theory by means of examples. In the beginning, the examples and the rele-
vant computations will be quite easy; in the end, quite hard. The examples
involve nothing more than finite sets and the computations require nothing
more than basic arithmetic. Hence, to understand these matters, one need
have no special preparation. But one must bring forward that cheerfully im-
placable attitude of mind which, in general, characterizes the serious study of
Mathematics.

2◦ There are two special features of this booklet which we hope will stimu-
late interest. The first involves a paradox in the interpretation of (conditioned)
probability, described in Section 6. The second involves an application to the
“real world” of weaving, described in Section 7.

3◦ Note that the articles are numbered consecutively, for ready reference.
The articles labelled j◦ compose the text; the articles labelled k• compose the
problem set.
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2 The Idea of Probability

4◦ We all know how to use such sentences as the following, in ordinary
conversation:

(•) She is more likely than he to solve the problem.
(•) I am virtually certain to attend Oregon State University.
(•) The odds on rolling a seven with two fair dice are 1 to 5.
(•) My chances of winning the lottery are nil.

In each case (though in different ways), we apply the intuitive idea of prob-
ability. However, it is very difficult to put forward a sharp definition of this
intuitively familiar term. Fortunately, we may study and apply probability
theory without such a definition. In the fashion of modern Mathematics,
we invoke the basic components of set theory to build a model of the idea
of probability about which we can make precise statements and prove useful
theorems. Of course, one is free to argue that a given model is inadequate and
one is free to propose another. Models are judged by the criteria of elegance
and utility.

We plan to describe a very simple model of the idea of probability, which
involves just finitely many possible events .

5◦ With due respect, let us note that the first general, precise model of the
idea of probability was put forward by the celebrated Russian mathematician
A. Kolmogoroff. His work was translated into German:

Grundbegriffe der Wahrsheinlichkeitsrechnung

and communicated to the Western World in 1933. We plan to describe the
simpler aspects of Kolmogoroff’s model.

6◦ Let X be a finite set. We will refer to the various subsets A of X as
events . To each event A, let us assign a real number P (A). We will refer to
P (A), at this point rather cryptically, as the probability of A. We require that
the following conditions be met:

(•) for each event A, 0 ≤ P (A) ≤ 1
(•) P (∅) = 0 and P (X) = 1
(•) for any events A′ and A′′, if A′ ∩ A′′ = ∅ then P (A′ ∪ A′′) =

P (A′) + P (A′′)

We will refer to the foregoing assembly, composed notably of the finite set
X and the probability function P defined on the subsets of X , as a finite
probability space.
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7• Let the number of members of X be n. Explain why the number of
events must be 2n.

8◦ Let x be any member of X . In practice, one identifies x with the event
{x} composed of the single member x. One refers to x as an elementary event .
By the required conditions for P , it is plain that, for each event A, P (A) is
the sum of the probabilities corresponding to the elementary events which are
contained in A:

P (A) =
∑
x∈A

P (x)

Therefore, we may describe a finite probability space simply by displaying the
elementary events and the corresponding probabilities, in something like the
following manner:

x1, x2, x3, . . . , xn

p1, p2, p3, . . . , pn

where:
pj := P (xj) (1 ≤ j ≤ n)

That will be our usual practice.

9◦ Of course, we require flexible notation to make interesting displays. For
example, let us describe the bernoulli trial space, a finite probability space
for which the elementary events are:

0, 1

and the corresponding probabilities are:

p0, p1

where p0 and p1 are any real numbers for which 0 ≤ p0 ≤ 1, 0 ≤ p1 ≤ 1, and
p0 + p1 = 1. Why? One interprets 0 as failure and 1 as success .

10◦ Let us describe the dice roll space, an example which will figure in many
subsequent articles. The elementary events are:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)
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and the corresponding probabilities are:

p(1,1) p(1,2) p(1,3) p(1,4) p(1,5) p(1,6)

p(2,1) p(2,2) p(2,3) p(2,4) p(2,5) p(2,6)

p(3,1) p(3,2) p(3,3) p(3,4) p(3,5) p(3,6)

p(4,1) p(4,2) p(4,3) p(4,4) p(4,5) p(4,6)

p(5,1) p(5,2) p(5,3) p(5,4) p(5,5) p(5,6)

p(6,1) p(6,2) p(6,3) p(6,4) p(6,5) p(6,6)

More succinctly, the elementary events are:

(j, k) (1 ≤ j ≤ 6, 1 ≤ k ≤ 6)

and the corresponding probabilities are:

p(j,k) (1 ≤ j ≤ 6, 1 ≤ k ≤ 6)

We require that:

0 ≤ p(j,k) ≤ 1 (1 ≤ j ≤ 6, 1 ≤ k ≤ 6)

and that:
6∑

j=1

6∑
k=1

p(j,k) = 1

Why? For any indices j (1 ≤ j ≤ 6) and k (1 ≤ k ≤ 6), one interprets (j, k)
as the outcome following the roll of two dice in which the first die comes up
j and the second die comes up k. For fair dice, one would expect:

p(j,k) = 1/36 (1 ≤ j ≤ 6, 1 ≤ k ≤ 6)

Why?

11◦ Let us describe the magnetic string space, based upon three atoms:

• • •

each of which can be oriented (so to speak) downward or upward. For this
finite probability space, the elementary events are:

↓↓↓ ↓↓↑ ↓↑↓ ↓↑↑ ↑↓↓ ↑↓↑ ↑↑↓ ↑↑↑

and the corresponding probabilities are:

p↓↓↓ p↓↓↑ p↓↑↓ p↓↑↑ p↑↓↓ p↑↓↑ p↑↑↓ p↑↑↑
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Of course, we impose the usual requirements on the probabilities.
With patience, one may develop the magnetic string space for (not nec-

essarily three but for) any finite number of atoms. In realistic applications
(to thermodynamics), the number is enormous.

12◦ Now let X be a finite probability space and let P be the associated
probability function defined on the subsets of X . Let A be any event. That
is, let A be any subset of X . Naturally, we expect to be able to say that A
occurs (or that it does not) and that P (A) is the probability that A occurs.
The foregoing examples will help to interpret these expressions.

In the first case, we imagine that an Arbitrator (let him be Bernoulli)
flips a coin, for which the outcome x is either 0 (tails, failure) or 1 (heads,
success). In the second case, we imagine that a Croupier rolls two dice. The
outcome x = (j, k) indicates which of the faces of the two dice came up. In
the last case, we imagine that Nature assembles the magnetic string: by a
complex interplay of forces, the particular outcome x emerges.

In general, we imagine that Tyche, the goddess of Chance, reaches into
the set X and draws out a member, let it be x, at random, then returns the
member to the set right away.

In any case, we say that A “occurs” iff x ∈ A.

13◦ Now we say that P (A) is the probability that an elementary event x,
chosen at random in X , is contained in A. Responsibility for the choice of
x lies with Tyche. We presume that if Tyche makes many such choices, one
after the other “independently,” she will do so in such a way that:

P (A) ≈ M

N

where N is the total number of her choices and where M is the number of her
choices which lie in A.

14◦ One may clarify the foregoing rather obscure commentary by studying
one of the fundamental theorems of Probability Theory, the Strong Law of
Large Numbers. But that is a matter for another day.

15◦ Again let X be a finite probability space and let P be the associated
probability function defined on the subsets of X . Let A be any event. Let:

x1, x2, x3, . . . , xn

be the elementary events and let:

p1, p2, p3, . . . , pn
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be the corresponding probabilities. In many interesting cases, the various
elementary events are equally likely, which is to say that:

p1 = p2 = p3 = · · · = pn = 1/n

In such cases:
P (A) =

m

n

where m is the number of members of A. One says that P (A) is the ratio of
the number m of “favorable” elementary events to the number n of all possible
elementary events.

For finite probability spaces X in which the elementary events are equally
likely, the computation of the probability of a (general) event A reduces to
problems in counting, specifically, the problems of counting the numbers of
members of X and A. However, such counting problems can be very compli-
cated. We will devote the next section to a discussion of some of the basic
principles of counting, which will prove useful in subsequent computations of
probabilities.

16• For the case of the dice roll, assume that the elementary events are
equally likely and compute the probability that the Croupier rolls a seven.

17• For the case of the magnetic string with three atoms, assume that the
elementary events are equally likely. Assign to each elementary event x an
integer H equal to the difference between the number of upward oriented
atoms and the number of downward oriented atoms. Note that the values of
H can be −3, −1, 1, and 3 but none other. Calculate the probabilities of
occurence for each of the values of H .

18• Recently, a monkey purchased a typewriter with 13 keys:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +,×, =

He understood nothing of the meaning of the symbols but he soon found that
he enjoyed typing. Repeatedly, he typed strings of symbols, such as:

6 6 1 = and 9 = 0 0 ××

In time, he fell into the practice of typing only strings of length five. Pre-
sume that he continues the practice. Calculate the probability that, on any
particular instance of typing, the monkey types a “true equation,” such as:

4 + 5 = 9

6



3 Counting Principles

19◦ Let X ′ and X ′′ be any finite sets. Let X ′ × X ′′ be the product of the
two sets X ′ and X ′′. The members of X ′ × X ′′ are the ordered pairs:

(x′, x′′)

where x′ is any member of X ′ and where x′′ is any member of X ′′. Clearly,
if the number of members of X ′ is n′ and if the number of members of X ′′ is
n′′ then the number of members of X ′ ×X ′′ is n′ × n′′. This statement is the
Product Principle.

20• Explain how the Product Principle figures in the solution of article 18•.

21• Apply the Product Principle to solve the following Birthday Problem.
Let m be any positive integer. Imagine selecting m people at random. Explain
why the number:

Qm :=
365 × (365 − 1) × · · · × (365 − m + 1)

365m

equals the probability that no two of the selected people have the same birth-
day. Of course:

Pm := 1 − Qm

equals the probability that some two of the selected people have the same
birthday. Calculate:

P2, P3, P4, . . .

until you find the first value of m for which:

1
2

< Pm

The point of the Birthday Problem is that the discovered value of m is sur-
prisingly small.

The following display shows a Mathematica program for computing the
required numbers, and a table of the first forty of the numbers.
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jm=39;
BQ={1};
Do[{xx=Take[BQ,-1],yy=xx*(365-jj)/365;BB=Append[BQ,yy],
BQ=BB},
{jj,jm}];
BR=1-N[BQ];
BP=Table[{jj,BR[[jj]]},{jj,jm+1}];
TableForm[BP]

1 0.

2 0.00273973

3 0.00820417

4 0.0163559

5 0.0271356

6 0.0404625

7 0.0562357

8 0.0743353

9 0.0946238

10 0.116948

11 0.141141

12 0.167025

13 0.19441

14 0.223103

15 0.252901

16 0.283604

17 0.315008

18 0.346911

19 0.379119

20 0.411438

21 0.443688

22 0.475695

23 0.507297

24 0.538344

25 0.5687

26 0.598241

27 0.626859

28 0.654461

29 0.680969

30 0.706316

31 0.730455

32 0.753348

33 0.774972

34 0.795317

35 0.814383

36 0.832182

37 0.848734

38 0.864068

39 0.87822

40 0.891232
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22◦ Let X be any finite set and let n be the number of members of X . For
example, let n = 3 and let the members of X be the following:

u, v, w

In the foregoing display, we have listed the members of X in an apparent
order: first, u; second, v; third, w. Just as well, we could have listed the
members of X in various other apparent orders:

u, w, v v, u, w v, w, u w, u, v w, v, u

By the Product Principle, there are 3! := 3 × 2 × 1 such ordered lists. Why?
In the general case, the number of ordered lists of the members of X is:

n! := n × (n − 1) × · · · × 2 × 1

This statement is the Ordered List Principle.

23• Compute 2!, 3!, 4!, 5!, and so forth, to develop a sense of the rapid
growth of the factorials n!.

24◦ Let X be any finite set and let n be the number of members of X . Let
j be an integer for which 0 ≤ j ≤ n. Among the subsets Y of X , there are
some which contain j members. We plan to determine the number of such
j-member subsets.

To form a j-member subset Y of X , we first select any one of the n
members of X . We then select any one of the remaining n− 1 members of X .
We continue until we have made a full run of j selections. By the Product
Principle, the number of such runs is:

n × (n − 1) × (n − 2) × · · · × (n − j + 1)

Of course, each such run determines a j-member subset Y of X . However, two
such runs may determine the same j-member subset Y of X because the runs
determine the subsets as ordered lists. To obtain the number of j-member
subsets Y of X , we must divide the number of runs by j!:

(
n
j

)
:=

n × (n − 1) × (n − 2) × · · · × (n − j + 1)
j × (j − 1) × · · · 2 × 1

=
n!

j! × (n − j)!

Hence, the number of j-member subsets Y of X is the binomial coefficient :
(

n
j

)
=

n!
j! × (n − j)!

This statement is the Selection Principle.
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For ease of expression, one reads the foregoing binomial coefficient as “n
choose j.”

25◦ The notational conventions:

0! := 1 and 1! := 1

cover the slightly ambiguous cases in which j equals 0, 1, n− 1, or n and lead
to correct values for the number of j-member subsets Y of X .

26• For the case of the magnetic string with twelve atoms, assume that the
elementary events are equally likely. Assign to each elementary event x an
integer H equal to the difference between the number of upward oriented
atoms and the number of downward oriented atoms. Note that the values of
H can be −12, −10, . . ., 10, and 12 but none other. Calculate the probability
that H equals −10 or 4.

27◦ Finally, let us describe the Placement Principle. We will lapse now into
picturesque terms, designed to suggest the broad range of possible applications
for this principle.

Let j and k be any positive integers. We imagine k indistinguishable
objects and j distinguishable boxes. To be explicit, we assume that the boxes
are labelled in a specific order:

1, 2, 3, . . . , j

We plan to count the number of ways by which one may place the objects in
the boxes.

For example, let j = 5 and let k = 12. Consider the following string of
zeros and ones:

1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1

We interpret the foregoing string as a complete description of a particular way
by which one may place the 12 indistinguishable objects in the 5 distinguish-
able boxes, as follows. We shall place 3 objects in the first box, 4 objects in
the second box, 1 object in the third box, 0 objects in the fourth box, and 4
objects in the fifth box. Why?

How shall the following strings be interpreted:

1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0

1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1

?
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Clearly, the number of ways by which one may place 12 indistinguishable
objects in 5 distinguishable boxes equals the number of such strings.

To count the number of such strings, we note first that each string has
length 5 − 1 + 12 and contains (in varying positions) 5 − 1 zeros and 12
ones. Now let us consider the (finite) set X composed (for simplicity) of the
following 5 − 1 + 12 members:

a b c d e f g h i j k l m n o p

We interpret the string:

1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1

as a complete description of a 12-subset Y of X , as follows. With regard to
the array:

a b c d e f g h i j k l m n o p
1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1

we shall take a member of X to be a member of Y iff that member lies above
a one in the array. Hence, the (12) members of Y are the following:

a b c e f g h j m n o p

Clearly, the number of such strings equals the number of 12-member subsets
Y of X . By the Selection Principle, that number is:

(
5 − 1 + 12

12

)

Now, by generalization, we conclude that the number of ways by which
one may place k indistinguishable objects in j distinguishable boxes equals:

(
j − 1 + k

k

)
=

(j − 1 + k)!
(j − 1)! × k!

This statement is the Placement Principle.

28• An old and successful gambler has 10 million dollars and 6 sons. In his
will, he directs his lawyer to bequeath his millions to his sons in the following
way. His lawyer shall construct a (large) roulette wheel with:

3003 =
(

15
10

)
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slots. The slots shall be marked with strings composed of 5 zeros and 10 ones
so that the slots and strings stand in bijective correspondence. The lawyer
shall set the roulette wheel in motion and, in the usual fashion, cast a marble
into the wheel. He shall determine the slot in which the marble comes to rest.
The corresponding string shall determine the assignment of the millions to
the sons. How?

What is the probability that each son receives at least one million? What
is the probability that the youngest (that is, the sixth) son receives half the
fortune?

By the way, the gambler had initially instructed his lawyer to bequeath
his millions to his sons in the following way. The lawyer shall roll ten fair dice.
He shall assign to the first (that is, to the eldest) son, the number of millions
equal to the number of ones which come up; to the second son, the number
of millions equal to the number of twos which come up; and so forth. But his
lawyer pointed out to him that the outcomes would not be equally likely. He
confessed that he did not know how to calculate the probabilities for such a
procedure and so could not assess whether or not the prodecure was “fair.”
Explain his reasoning.

To calculate probabilities under the latter procedure, one requires not
just binomial but multinomial coefficients. We will discuss this matter infor-
mally in the class meetings.

4 Random Variables

29◦ Let X be a finite probability space and let P be the associated proba-
bility function defined on the subsets of X . Let Y be a finite set and let F be
a mapping carrying X to Y . We mean to say that F is some sort of “rule”
which assigns to each member x of X a corresponding member F (x) of Y . By
analogy with the familiar concept of function (for which the values are real
numbers), we refer to F (x) as the value of F at x.

We refer to F as a random variable defined on X with values in Y .

30◦ Now let us apply X , P , Y , and F to define a probability function Q on
the subsets of Y . In this way, we obtain a new finite probability space Y .

The design of Q is very natural. Let B be any subset of Y . We imagine
that Tyche draws out a member x from X at random. We inquire whether
F (x) ∈ B. If so, we say that B “occurs.” We wish to compute the probability
that B occurs. To that end, let A be the subset of X composed of all members
x for which F (x) ∈ B. By the foregoing observations, we are led to define
Q(B) to be P (A).

One usually denotes the set A by F−1(B). With this notation, we may
formally define the probability function Q as follows:

Q(B) := P (F−1(B))
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where B is any subset of Y . In the archaic terms of yesteryear, one refers to
Q as the distribution of the random variable F .

31◦ In practice, we begin with a finite probability space X for which the ele-
mentary events are equally likely, introduce a random variable F , and obtain
a new finite probability space Y . Many interesting finite probability spaces
arise in this manner.

32• With reference to article 26•, show that one may interpret H as a random
variable defined on the magnetic string space (with twelve atoms). The set Y
would be composed of the following elementary events:

−12, −10, −8, −6, −4, −2, 0, 2, 4, 6, 8, 10, 12

For problem 26•, Q(−10) and Q(4) were computed. Finish the problem by
computing the complete probability function Q, that is, the distribution of
H .

33• Let X be the dice roll space with equally likely elementary events:

(j, k) (1 ≤ j ≤ 6, 1 ≤ k ≤ 6)

Let Y be the set composed of the following integers:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

and let F be the random variable defined on X as follows:

F (j, k) := j + k (1 ≤ j ≤ 6, 1 ≤ k ≤ 6)

Calculate the distribution Q of F . By article 16•, we already know that
Q(7) = 1/6.

34◦ Now let us describe a particular family of random variables for which
the corresponding distributions are the celebrated binomial distributions.

We begin with the bernoulli trial space X , for which the elementary
events are:

0, 1

and the corresponding probabilities are:

p0, p1

Let n be any positive integer. Let X̄ be the (finite) set composed of all finite
strings of the form:

x̄ := ε1ε2ε3 . . . εn
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where, for each index j (1 ≤ j ≤ n), εj equals either 0 or 1. Of course, the
number of members x̄ of X̄ is n̄ := 2n. We interpret such a string x̄ as a run
of trials. For each index j (1 ≤ j ≤ n), εj if 0 signifies failure and if 1 signifies
success. We define the corresponding probability as follows:

px̄ := pε1 × pε2 × pε3 × · · · × pεn

From these real numbers, we can assemble the probability function P̄ defined
on the subsets of X̄. [ For a review, see article 8◦. ] The resulting probability
space X̄ is the bernoulli n-trial space.

35• Let n = 16. Let x̄ be the following string:

x̄ := 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1

Show that:
px̄ = p4

0 × p12
1

36◦ Now let Ȳ be the following (finite) set of nonnegative integers:

0, 1, 2, . . . , n

Let F̄ be the mapping carrying X̄ to Ȳ which assigns to each x̄ in X̄ the
number of 1s in x̄. We may say that F̄ counts the number of successes in the
run of trials x̄. Let us compute the distribution Q̄ of F̄ .

37◦ Let j be any member of Ȳ . Of course, j is an integer for which 0 ≤ j ≤ n.
Let x̄ be any member of X̄. Obviously, F (x̄) = j iff the number of 1s in
x̄ equals j. By our previous discussion of the Selection Principle and the
Placement Principle, we know that there are:

(
n
j

)

such x̄. Moreover, for any such x̄, we have:

px̄ = pn−j
0 × pj

1

We conclude that:

Q̄(j) =
(

n
j

)
× pn−j

0 × pj
1

38• Let p0 = p1 = 1/2 and let n = 12. Compute the binomial distribution
on the set:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
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Compare your result with the result of article 32•.

39◦ Imagine a coin. Let the coin be weighted in such a way that, when
flipped, the coin shows tails (0) with probability p0 = 1/3 and heads (1) with
probability p1 = 2/3. Imagine a croupier (let him be Bernoulli). Let the
croupier flip the coin 15 times in succession, “independently.” Calculate the
probability that heads shows on 10 of the flips.

40◦ Very often, a random variable takes its values in the set R of real num-
bers. That was true for the random variable H defined on the magnetic string
space with twelve atoms (see article 32•), for the random variable F defined
on the dice roll space (see article 33•), and for the various random variables
F̄ defined on the various bernoulli n-trial spaces just described. For such a
random variable, we can define a particular real number: the expected value,
which provides useful information.

Let X be a finite probability space with probability function P defined
on the subsets of X . Let Y be a (finite) subset of R and let F be a random
variable defined on X with values in Y . One defines the expected value of F
as follows:

E(F ) :=
∑
x∈X

F (x) × P (x)

Of course, for cases in which the elementary events in X are equally likely, we
have:

E(F ) =
1
n
×

∑
x∈X

F (x)

which is the average value of F . We may say that idea of expected value is a
generalization of the idea of average value.

41• Show that:
E(F ) =

∑
y∈Y

y × Q(y)

where Q is the distribution of F .

42• In context of the magnetic string space with twelve atoms, show (deftly)
that:

E(H) = 0

43• Let n be a positive integer. Let p0 and p1 be real numbers for which
0 ≤ p0 ≤ 1, 0 ≤ p1 ≤ 1, and p0 + p1 = 1. Let X̄ be the corresponding
bernoulli n-trial space with probability function P̄ defined on the subsets of
X̄. Let F̄ be the random variable defined on X̄ which “counts the number of
successes.” Show that:

E(F̄ ) = n × p1
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Let us write out the solution to this problem. To do so, we will break
our promise in article 1◦ by applying a trace of the Calculus.

Consider the binomial expansion:

(p0 + p1)n =
n∑

j=0

(
n
j

)
× pn−j

0 × pj
1

where p0 and p1 are for now any real numbers. One can justify the foregoing
expansion by referring to our discussion of counting principles in section 3.
Imagine p0 to be constant. Take the derivative with respect to p1:

n × (p0 + p1)n−1 =
n∑

j=0

j ×
(

n
j

)
× pn−j

0 × pj−1
1

Now consider p0 and p1 to be constrained as follows:

0 ≤ p1 ≤ 1, p0 = 1 − p1

Multiply by p1. Explain why we are finished.

5 Conditioned Probability

44◦ Let X be a finite probability space and let P be the associated proba-
bility function defined on the subsets of X . Let Y and Z be any finite sets
and let F and G be random variables defined on X with values in Y and Z.
Let Q and R be the corresponding distributions of F and G. Let us imagine
that Tyche draws an elementary event, let it be x, at random from X . Let
y := F (x) and z := G(x). Of course, we may proceed to calculate Q(y) and
R(z).

In this section, we will consider a rather subtle and important question.
Given foreknowledge of the value z, how shall we modify our computation of
Q(y)?

45◦ For an example, let us return to the dice roll space X with equally likely
outcomes. The elementary events are the following:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)
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and the corresponding probabilities all equal 1/36. Let Y be the finite set
composed of the integers:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

and let Z be the finite set composed of the integers:

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 20, 24, 25, 30, 36

Let F and G be the random variables defined on X with values in Y and Z,
as follows:

F (j, k) := j + k

G(j, k) := j × k

where (j, k) is any elementary event in X . For a given roll of the dice, we
might ask for the probability that the sum of the faces which come up equals
7, given foreknowledge that the product of the faces which come up equals
12. Common sense suggests this “conditioned” probability should be (not the
previously determined, unconditioned probability 1/6) but 1/2. Why?

46◦ To make the idea of conditioned probability precise requires effort. Let
us proceed carefully.

Let y be any member of Y and let z be any member of Z. With reference
to article 30◦, let F−1(y) be the subset of X composed of all members x for
which F (x) = y and let G−1(z) be the subset of X composed of all members
x for which G(x) = z. By definition, we have:

Q(y) = P (F−1(y))

and:
R(z) = P (G−1(z))

47◦ Let us assume now that the value of G is “foreknown” to be z. It follows
that x, however Tyche may choose it at random, must lie in G−1(z). We are
led to define a new probability function Pz on the subsets of X , as follows:

Pz(A) :=
P (A ∩ G−1(z))

R(z)

where A is any subset of X . We obtain a new probability function Qz defined
on the subsets of Y , namely, the distribution of F relative not to P but to Pz:

Qz(B) := Pz(F−1(B))
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where B is any subset of Y . In particular, for each y in Y :

Qz(y) := Pz(F−1(y))

We refer to Qz(y) as the conditioned probability that the value of F is y,
given that the value of G is z.

48◦ Similarly, let us assume that the value of F is “foreknown” to be y. It
follows that x, however Tyche may choose it at random, must lie in F−1(y).
We are led to define a new probability function Py on the subsets of X , as
follows:

Py(A) :=
P (F−1(y) ∩ A)

Q(y)

where A is any subset of X . We obtain a new probability function Ry defined
on the subsets of Z, namely, the distribution of G relative not to P but to Py:

Ry(C) := Py(G−1(C))

where C is any subset of Z. In particular, for each z in Z:

Ry(z) := Py(G−1(z))

We refer to Ry(z) as the conditioned probability that the value of G is z, given
that the value of F is y.

49◦ Let us give the foregoing definitions a somewhat more pleasing form.
For any y in Y and for any z in Z, let:

Π(y, z) := P (F−1(y) ∩ G−1(z))

Clearly, Π(y, z) is the probability that, for an elementary event x in X chosen
by Tyche at random, the values F (x) and G(x) equal y and z.

50• Verify that, for any y in Y :

Q(y) =
∑
z∈Z

Π(y, z)

and that, for any z in Z:

R(z) =
∑
y∈Y

Π(y, z)
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51◦ By inspection, we find that:

Qz(y) =
Π(y, z)
R(z)

and that:

Ry(z) =
Π(y, z)
Q(y)

52• Apply the foregoing discussion to make precise the common sense con-
clusion in article 45•.

53◦ In context of the foregoing discussion, let us note that, for any y in Y
and for any z in Z:

Qz(y) × R(z) = Π(y, z) = Ry(z) × Q(y)

By this relation and by article 50•, we infer that, for each z in Z, the array:

Ry(z), Q(y) (y ∈ Y )

determines the array:
Π(y, z) (y ∈ Y )

hence the array:
R(z), Qz(y) (y ∈ Y )

Similarly, for each y in Y , the array:

Qz(y), R(z) (z ∈ Z)

determines the array:
Π(y, z) (z ∈ Z)

hence the array:
Q(y), Ry(z) (z ∈ Z)

These observations comprise the celebrated Theorem of Bayes.

54◦ It may happen that foreknowledge of G has no effect upon the distribu-
tion of F and that foreknowledge of F has no effect upon the distribution of
G. In such a case, we say that F and G are independent . Clearly, F and G
are independent iff, for each y in Y and for each z in Z:

Qz(y) = Q(y) and Ry(z) = R(z)
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which is to say that, for each y in Y and for each z in Z:

Π(y, z) = Q(y)R(z)

55• Determine whether or not the random variables F and G in article 45◦

are independent.

56• Would you expect that, for an individual chosen at random, height and
weight would be independent? Height and IQ?

57• Let D be a dread disease and let T be a test by which one presumes to
determine whether or not a given individual has the disease.

Let Y and Z both equal the set composed of the members:

0, 1

and let X := Y ×Z. We may display the members of X in the usual fashion:

(0, 1) (1, 1)
(0, 0) (1, 0)

Let F and G be the mappings carrying X to Y and Z, defined as follows:

F (j, k) := j

G(j, k) := k

where (j, k) is any member of X .
For an individual chosen at random, we imagine that precisely one of

the four “labels” in X applies. Thus, (0, 0) applies if the individual does not
have the disease and tests negative; the label (1, 0) applies if the individual
does have the disease but tests negative; and so forth. Let the probabilities
for these “elementary events” be the following:

P (0, 1) P (1, 1)
P (0, 0) P (1, 0)

These probabilities determine the probability function P defined on the sub-
sets of X . Let Q and R be the corresponding distributions of F and G.

Now let us assume that Q(0) = 0.98, Q(1) = 0.02, R0(1) = 0.04, and
R1(1) = 0.90. Apply the Theorem of Bayes to compute Q1(0). What do these
probabilities “mean”?

Let us write out the solution of this problem.
From Q(0) = 0.98, we infer that, for an individual chosen at random,

the probability that he does not have the disease is 0.98. From Q(1) = 0.02,
we infer that, for an individual chosen at random, the probability that he does
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have the disease is 0.02. Of course, Q(0) + Q(1) = 1. From R0(1) = 0.04, we
infer that, for an individual chosen at random, the probability that he tests
positive, given that he does not have the disease, is 0.04. From R1(1) = 0.90,
we infer that, for an individual chosen at random, the probability that he
tests positive, given that he does have the disease, is 0.90.

For an individual chosen at random, the probability that he does not
have the disease, given that he tests positive, is Q1(0). That is, Q1(0) is the
probability of a false positive, every patient’s nightmare.

Let us compute Q1(0). By articles 50• and 53◦, we have:

Π(0, 1) = R0(1) × Q(0) = 0.04 × 0.98 = 0.0392
Π(1, 1) = R1(1) × Q(1) = 0.90 × 0.02 = 0.0180

hence:
R(1) = Π(0, 1) + Π(1, 1) = 0.0392 + 0.0180 = 0.0572

and therefore:

Q1(0) =
Π(0, 1)
R(1)

=
0.0392
0.0572

≈ 0.6853

The given data are very plausible but the probability of a false positive is very
high. One should bear this point in mind.

Just as well, we can compute the probability Q0(1) of a false negative:

Π(0, 0) = R0(0) × Q(0) = 0.96 × 0.98 = 0.9408
Π(1, 0) = R1(0) × Q(1) = 0.10 × 0.02 = 0.0020

hence:
R(0) = Π(0, 0) + Π(1, 0) = 0.0392 + 0.0180 = 0.9428

and therefore:
Q0(1) =

Π(1, 0)
R(0)

=
0.0020
0.9428

≈ 0.0021

Of course, the consequences of a false negative are potentially far more grave
than the consequences of a false positive. In the design of tests, it is important
to make the former as small as possible.

6 A Paradox

58◦ Let us again consider the dice roll space X with equally likely outcomes.
The elementary events are the following:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)
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and the corresponding probabilities all equal 1/36. For added interest, let us
introduce a Croupier, a Gambler, an Observer, and a circular table neatly
covered with green felt. The Gambler is blind. Imagine the following conver-
sation among the three characters.

Croupier (to the Gambler):
“The dice are fair. I have just rolled them out upon the table. What is the
probability that I rolled a seven?

Gambler:
“There are 6 favorable elementary events and 36 possible elementary events,
so the probability that you rolled a seven is 6/36. I might say 2/12, or even
1/6.

Croupier (to the Gambler):
“Again, I have just rolled the dice out upon the table. What is the probability
that I rolled a seven?

Observer (quietly intervening, in a whisper):
“I see a 5.”

Gambler:
“I cannot deny that I heard the comment. Now there are 2 favorable elemen-
tary events and 11 possible elementary events, so the probability that you
rolled a seven is 2/11.”

Croupier (to the Gambler):
“Again, I have just rolled the dice out upon the table. What is the probability
that I rolled a seven?

Observer (quietly intervening, in a whisper):
“I see a 2.”

Gambler:
“I heard that. Again there are 2 favorable elementary events and 11 possible
elementary events, so the probability that you rolled a seven is 2/11.”

Croupier (to the Gambler):
“Again, I have just rolled the dice out upon the table. What is the probability
that I rolled a seven?

Observer (quietly intervening, in a whisper):
“I see a ... cough, cough.”

Gambler:
“I did not hear the comment. But it does not matter. Whatever the comment,
there are now 2 favorable elementary events and 11 possible elementary events,
so the probability that you rolled a seven is 2/11.”

Croupier (to the Gambler):
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“Again, I have just rolled the dice out upon the table. What is the probability
that I rolled a seven?

Observer (quietly intervening, in a whisper):
“No comment.”

Gambler (hesitating):
“There seems to be trouble here.”

7 A Case Study: Woven Fabrics

59◦ In this final section, we will describe an interesting problem which arises
in the study of woven fabrics. The problem can be expressed in the terms
of probability theory. One may try to solve the problem by computing or by
thinking. To this date, the problem is unsolved: the required computation is
massive and the required ratiocination is elusive.

One should consult the brief readable account of the problem in the
article:

“When a fabric hangs together”
Bull. London Math. Soc., 12 (1980) 161-164

by C. R. J. Clapham.

60◦ We may represent a woven fabric as a rectangular array of zeros and
ones, such as the following:

F :

0 1 0 0 0 0 0 1
1 1 1 1 0 1 0 1
0 1 0 1 0 0 0 0
0 1 1 1 1 1 0 1
0 0 0 1 0 1 0 0
0 1 0 1 1 1 1 1
0 0 0 0 0 1 0 1
1 1 0 1 0 1 1 1

The rows in the array represent the weft (horizontal) threads in the fabric and
the columns represent the warp (vertical) threads. For each weft thread and
for each warp thread, the number in the array standing at the intersection of
the two threads indicates which of the two lies over the other. In particular, 0
indicates that the weft thread lies over the warp thread and 1 indicates that
the warp thread lies over the weft thread.

61◦ Now let m and n be any positive integers. Let us imagine a fabric F
having m rows (that is, weft threads) and n columns (that is, warp threads).
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We say that F falls apart iff it is possible to mark certain of the rows in F
and certain of the columns in F so that each of the marked rows lies over all
of the unmarked columns and so that each of the marked columns lies over all
of the unmarked rows. In such a case, the marked rows and columns will “lift
away” from the unmarked rows and columns, with the result that the fabric
falls apart. Of course, we understand that the number p of the marked rows
and the number q of the marked columns meet the conditions 0 ≤ p ≤ m,
0 ≤ q ≤ n, and 0 < p + q < m + n.

62• Show that the fabric displayed in article 60◦ falls apart. To that end,
start with the second column and show that the first, third, fifth, and seventh
rows and the second, fourth, sixth, and eighth columns lift away from the rest.

63◦ Let:
M := {1, 2, 3, . . . , m}

and let:
N := {1, 2, 3, . . . , n}

For each k in M and for each � in N , let:

Fk�

stand for the entry in F standing in the k-th row and the �-th column. For
each k in M , let:

Rk :=
∑
�∈N

Fk�

be the corresponding row sum, and, for each � in N , let:

C� :=
∑
k∈M

Fk�

be the corresponding column sum.
Now let P be any subset of M and let Q be any subset of N . Let p be

the number of members of P and let q be the number of members of Q. Let
the rows corresponding to the members of P be marked and let the columns
corresponding to the members of Q be marked. We contend that the marked
rows and columns lift away from the rest iff:

∑
�∈Q

C� −
∑
k∈P

Rk = q(m − p)

64• Prove the foregoing contention. To do so, introduce:

G :=
∑
k∈P

∑
�∈Q

Fk�
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Then show that:
∑
�∈Q

C� ≤ q(m − p) + G ≤ q(m − p) +
∑
k∈P

Rk

Finally, note that the marked rows and columns lift away from the rest iff:

G =
∑
k∈P

Rk

and: ∑
�∈Q

C� = q(m − p) + G

65◦ We say that the fabric F hangs together iff it does not fall apart. For
the weaver, that is a desirable property of a fabric.

66• Let m and n be any positive integers. Let F be the family of all possible
fabrics F having m rows and n columns. Note that there are:

2m×n

members of F . Imagine a weaver who weaves at random, producing the
various possible fabrics F with equal probability. What is the probability
that the weaver produces a fabric which hangs together?
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