DYNAMICAL SYSTEMS / RANDOM PROCESSES

Thomas Wieting
Reed College, 2006
1° Let X be a set, let \mathcal{A} be a borel algebra of subsets of X, and let μ be a normalized measure defined on \mathcal{A}. One refers to the ordered triple:

$$
(X, \mathcal{A}, \mu)
$$

as a (normalized) measure space, but sometimes as a probability space. Let T be a borel mapping carrying X to itself for which μ is invariant:

$$
T_{*}(\mu)=\mu
$$

One refers to the ordered quadruple:

$$
(X, \mathcal{A}, \mu, T)
$$

as an (abstract) dynamical system.
2° Now let:

$$
(X, \mathcal{A}, \mu)
$$

be a probability space and let:

$$
f_{0}, f_{1}, f_{2}, \ldots, f_{j}, \ldots
$$

be a sequence of (real-valued) borel functions defined on X. One may just as well present the foregoing sequence as a (borel) mapping F carrying X to $\mathbf{R}^{\mathbf{N}}$, defined as follows:

$$
F(x):=\left(f_{0}(x), f_{1}(x), f_{2}(x), \ldots, f_{j}(x), \ldots\right) \quad(x \in X)
$$

Obviously, one may recover the sequence:

$$
f_{0}, f_{1}, f_{2}, \ldots, f_{j}, \ldots
$$

from the mapping F by applying the projections:

$$
p_{j}(t):=t_{j} \quad\left(t=\left(t_{0}, t_{1}, t_{2}, \ldots, t_{j}, \ldots\right) \in \mathbf{R}^{\mathbf{N}}\right)
$$

carrying $\mathbf{R}^{\mathbf{N}}$ to \mathbf{R}. Thus:

$$
f_{j}=p_{j} \cdot F \quad(j \in \mathbf{N})
$$

One refers to the ordered quadruple:

$$
(X, \mathcal{A}, \mu, F)
$$

as a random process. The various borel functions in the sequence:

$$
f_{0}, f_{1}, f_{2}, \ldots, f_{j}, \ldots
$$

are the random variables comprising the random process. For each nonnegative integer j, one defines the marginal distribution for f_{j} as follows:

$$
\nu_{j}:=\left(f_{j}\right)_{*}(\mu)
$$

Of course:

$$
\nu_{j}
$$

is a normalized measure on \mathbf{R}. One says that the random process is identically distributed (id) iff all the marginal distributions coincide:

$$
\nu_{j}:=\nu_{0} \quad(j \in \mathbf{N})
$$

For any finite strictly increasing sequence:

$$
j_{1}<j_{2}<j_{3}<\cdots<j_{n}
$$

of nonnegative integers, one defines the joint marginal distribution as follows:

$$
\nu_{j_{1} j_{2} \cdots j_{n}}:=\left(f_{j_{1}} \times f_{j_{2}} \times \cdots \times f_{j_{n}}\right)_{*}(\mu)
$$

Of course:

$$
\nu_{j_{1} j_{2} \cdots j_{n}}
$$

is a normalized measure on (the borel algebra comprised of the borel subsets of) \mathbf{R}^{n}. One says that the random process is stationary iff, for any finite strictly increasing sequence:

$$
j_{1}<j_{2}<j_{3}<\cdots<j_{n}
$$

of nonnegative integers and for any positive integer k :

$$
\nu_{j_{1} j_{2} \cdots j_{n}}=\nu_{k_{1} k_{2} \cdots k_{n}}
$$

where:

$$
k_{1}:=j_{1}+k, k_{2}:=j_{2}+k, \ldots, k_{n}:=j_{n}+k
$$

In due course, we will reformulate this formidably abstract condition in more comprehensible "geometric" terms. Taking n to be 1 , one can readily check that if the random process is stationary then it is identically distributed.

One says that the random process is independent iff, for any finite strictly increasing sequence:

$$
j_{1}<j_{2}<j_{3}<\cdots<j_{n}
$$

of nonnegative integers:

$$
\nu_{j_{1} j_{2} \cdots j_{n}}=\prod_{m=1}^{n} \nu_{j_{m}}
$$

One can readily check that if the random process is independent and identically distributed (iid) then it is stationary. One sometimes refers to an iid random process as a bernoulli process.
3° Let:

$$
(X, \mathcal{A}, \mu, T)
$$

be a dynamical system and let: h
be a (real-valued) borel function defined on X. One defines the corresponding random process:

$$
(X, \mathcal{A}, \mu, F)
$$

as follows:

$$
\begin{equation*}
f_{j}:=h \cdot T^{j} \tag{1}
\end{equation*}
$$

Clearly:

$$
F(x)=\left(h\left(T^{0}(x)\right), h\left(T^{1}(x)\right), h\left(T^{2}(x)\right), \ldots, h\left(T^{j}(x)\right), \ldots\right) \quad(x \in X)
$$

We may say that the ordered quintuple:

$$
(X, \mathcal{A}, \mu, T, h)
$$

comprised of the dynamical system:

$$
(X, \mathcal{A}, \mu, T)
$$

and the observable:

$$
h
$$

defines the corresponding random process:

$$
(X, \mathcal{A}, \mu, F)
$$

by means of relation (1). One can readily show that this random process is stationary.
4° Conversely, let:

$$
(X, \mathcal{A}, \mu, F)
$$

be a random process. Let:
ν
be the (normalized) measure defined on (the borel algebra \mathcal{B} comprised of the borel subsets of) $\mathbf{R}^{\mathbf{N}}$ as follows:

$$
\begin{equation*}
\nu:=F_{*}(\mu) \tag{2}
\end{equation*}
$$

Let Σ be the (borel) mapping carrying $\mathbf{R}^{\mathbf{N}}$ to itself, defined as follows:

$$
\begin{align*}
\Sigma(t): & =u \\
& =\left(u_{0}, u_{1}, u_{2}, \ldots, u_{j}, \ldots\right) \quad\left(t=\left(t_{0}, t_{1}, t_{2}, \ldots, t_{j}, \ldots\right) \in \mathbf{R}^{\mathbf{N}}\right) \tag{3}\\
& :=\left(t_{1}, t_{2}, t_{3}, \ldots, t_{j+1}, \ldots\right)
\end{align*}
$$

One can readily show that if the given random process is stationary then ν is invariant for Σ :

$$
\Sigma_{*}(\nu)=\nu
$$

In fact, the relation just stated provides a natural, rather more intuitive view of the condition that the given random process be stationary. We may say that the random process:

$$
(X, \mathcal{A}, \mu, F)
$$

if stationary, defines the dynamical system:

$$
\left(\mathbf{R}^{\mathbf{N}}, \mathcal{B}, \nu, \Sigma\right)
$$

by means of relations (2) and (3). The observable:

$$
p_{0}
$$

completes the picture:

$$
\left(\mathbf{R}^{\mathbf{N}}, \mathcal{B}, \nu, \Sigma, p_{0}\right)
$$

5° We may summarize the foregoing transitions in the following schematic form:

$$
(X, \mathcal{A}, \mu, T, h) \longrightarrow(X, \mathcal{A}, \mu, F) \longrightarrow\left(\mathbf{R}^{\mathbf{N}}, \mathcal{B}, \nu, \Sigma, p_{0}\right)
$$

One should note that:

$$
(X, \mathcal{A}, \mu, T, h)
$$

and:

$$
\left(\mathbf{R}^{\mathbf{N}}, \mathcal{B}, \nu, \Sigma, p_{0}\right)
$$

are closely related, in that the borel mapping F carries X to $\mathbf{R}^{\mathbf{N}}$:

$$
F: X \longrightarrow \mathbf{R}^{\mathbf{N}}
$$

F transforms μ to ν :

$$
F_{*}(\mu)=\nu
$$

F intertwines T and Σ :

$$
\Sigma \cdot F=F \cdot T
$$

and F transforms p_{0} to h :

$$
h=p_{0} \cdot F
$$

6° One may continue the process one more time. The dynamical system:

$$
\left(\mathbf{R}^{\mathbf{N}}, \mathcal{B}, \nu, \Sigma\right)
$$

and the observable:

$$
p_{0}
$$

define the random process:

$$
\left(\mathbf{R}^{\mathbf{N}}, \mathcal{B}, \nu, I\right)
$$

where I is the identity mapping carrying $\mathbf{R}^{\mathbf{N}}$ to itself. The corresponding sequence of random variables for this random process is the sequence of projections:

$$
p_{0}, p_{1}, p_{2}, \ldots, p_{j}, \ldots
$$

The relevant point is that:

$$
p_{j}=p_{0} \cdot \Sigma_{j} \quad(j \in \mathbf{N})
$$

One should note that:

$$
(X, \mathcal{A}, \mu, F)
$$

and:

$$
\left(\mathbf{R}^{\mathbf{N}}, \mathcal{B}, \nu, I\right)
$$

are closely related, in that the borel mapping F carries X to $\mathbf{R}^{\mathbf{N}}$:

$$
F: X \longrightarrow \mathbf{R}^{\mathbf{N}}
$$

F transforms μ to ν :

$$
F_{*}(\mu)=\nu
$$

and F transforms the sequence:

$$
p_{0}, p_{1}, p_{2}, \ldots, p_{j}, \ldots
$$

to the sequence:

$$
f_{0}, f_{1}, f_{2}, \ldots, f_{j}, \ldots
$$

which is to say that:

$$
f_{j}=p_{j} \cdot F \quad(j \in \mathbf{N})
$$

