MATHEMATICS 322

DIVERGENCE

Field and Flow

01° Let F be a vector field defined on \mathbf{R}^{3} :

$$
F(x, y, z)=(A(x, y, z), B(x, y, z), C(x, y, z))
$$

Let Γ be the corresponding flow, defined by the Existence/Uniqueness Theorem for Ordinary Differential Equations:

$$
\Gamma(t, x, y, z)=(U(t, x, y, z), V(t, x, y, z), W(t, x, y, z))
$$

By definition:

$$
\Gamma_{t}(t, x, y, z)=F(\Gamma(t, x, y, z))
$$

Moreover:

$$
\Gamma(0, x, y, z)=(x, y, z)
$$

Hence:

$$
U(0, x, y, z)=x, \quad V(0, x, y, z)=y, \quad W(0, x, y, z)=z
$$

Notation

02° We adopt the following notation:

$$
\Gamma(t)(x, y, z)=\Gamma(t, x, y, z)=\Gamma(x, y, z)(t)
$$

so that we may view $\Gamma(x, y, z)$ as the integral curve for F passing through (x, y, z) at $t=0$ and we may view $\Gamma(t)$ as a mapping carrying \mathbf{R}^{3} to itself. Naturally, we may apply similar notational refinements to the functions U, V, and W.
03° By the Uniqueness Theorem, we find that, for any s and t :

$$
\Gamma(s+t)=\Gamma(s) \cdot \Gamma(t)
$$

Transformation of Volume

04° Now let V be a closed bounded region in \mathbf{R}^{3} and let $V(t)$ be the image of V under $\Gamma(t)$:

$$
V(t)=\Gamma(t)(V)
$$

Let $\lambda(V(t))$ stand for the volume of $V(t)$. We plan to compute:

$$
\frac{d}{d t} \lambda(V(t))
$$

By the basic relation for the transformation of integrals, we have:

$$
\begin{aligned}
\lambda(V(t)) & =\iiint_{V(t)} 1 \cdot d x d y d z \\
& =\iiint_{V} \operatorname{det} D \Gamma(t)(u, v, w) \cdot d u d v d w
\end{aligned}
$$

We contend that:

$$
\frac{d}{d t} \lambda(V(t))=\iiint_{V(t)}(\operatorname{div} F)(x, y, z) \cdot d x d y d z
$$

One may rightly refer to the foregoing relation as the Divergence Theorem.
05° For the proof of relation (Δ), we introduce the matrix:

$$
M(t, u, v, w)=D \Gamma(t)(u, v, w)
$$

and we invoke our prior notational conventions. We find that:

$$
\begin{aligned}
\frac{\partial}{\partial t} M(t, u, v, w) & =\frac{\partial}{\partial t} D \Gamma(t)(u, v, w) \\
& =\left(\begin{array}{ccc}
U_{t u}(t, u, v, w) & U_{t v}(t, u, v, w) & U_{t w}(t, u, v, w) \\
V_{t u}(t, u, v, w) & V_{t v}(t, u, v, w) & W_{t w}(t, u, v, w) \\
W_{t u}(t, u, v, w) & W_{t v}(t, u, v, w) & W_{t w}(t, u, v, w)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
U_{u t}(t, u, v, w) & U_{v t}(t, u, v, w) & U_{w t}(t, u, v, w) \\
V_{u t}(t, u, v, w) & V_{v t}(t, u, v, w) & W_{w t}(t, u, v, w) \\
W_{u t}(t, u, v, w) & W_{v t}(t, u, v, w) & W_{w t}(t, u, v, w)
\end{array}\right) \\
& =D \frac{\partial}{\partial t} \Gamma(u, v, w)(t) \\
& =D F(\Gamma(u, v, w)(t)) \\
& =D F(\Gamma(t)(u, v, w)) \\
& =D(F \cdot \Gamma(t))(u, v, w) \\
& =D F(\Gamma(t)(u, v, w)) D \Gamma(t)(u, v, w) \\
& =A(t, u, v, w) M(t, u, v, w)
\end{aligned}
$$

where:

$$
A(t, u, v, w)=D F(\Gamma(t)(u, v, w))
$$

By common knowledge:
(•) $\quad \operatorname{det} M(t, u, v, w)=\exp \left(\int_{0}^{t} \operatorname{tr} A(s, u, v, w) d s\right) \operatorname{det} M(0, u, v, w)$
while, in our case:

$$
\operatorname{det} M(0, u, v, w)=1
$$

Hence:

$$
\begin{aligned}
\frac{d}{d t} & \lambda(V(t)) \\
& =\iiint_{V} \frac{\partial}{\partial t} \operatorname{det} D \Gamma(t)(u, v, w) \cdot d u d v d w \\
& =\iiint_{V} \frac{\partial}{\partial t} \exp \left(\int_{0}^{t} \operatorname{tr}(D F(\Gamma(s)(u, v, w)) d s) \cdot d u d v d w\right. \\
& =\iiint_{V} \exp \left(\int_{0}^{t} \operatorname{tr}(D F(\Gamma(s)(u, v, w)) d s) \operatorname{tr}(D F(\Gamma(t)(u, v, w)) \cdot d u d v d w\right. \\
& =\iiint_{V} \operatorname{det} D \Gamma(t)(u, v, w) \operatorname{tr}(D F(\Gamma(t)(u, v, w)) \cdot d u d v d w \\
& =\iiint_{V}(\operatorname{div} F)(\Gamma(t)(u, v, w)) \operatorname{det} D \Gamma(t)(u, v, w) \cdot d u d v d w \\
& =\iiint_{V(t)}(\operatorname{div} F)(x, y, z) \cdot d x d y d z
\end{aligned}
$$

06° Let us defend relation (\bullet). To that end, we simplify the notation:

$$
\begin{equation*}
\frac{d}{d t} M(t)=A(t) M(t) \tag{*}
\end{equation*}
$$

In turn, we introduce the standard basis for \mathbf{R}^{3} :

$$
E_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad E_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad E_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),
$$

Obviously:

$$
\operatorname{det} M(t)=\operatorname{det}\left(M(t) E_{1} \quad M(t) E_{2} \quad M(t) E_{3}\right)
$$

By relation (*), we find that:

$$
\frac{d}{d t} \operatorname{det} M(t)=\operatorname{tr} A(t) \operatorname{det} M(t)
$$

Now relation (\bullet) follows by application of the simplest of results in the theory of first order linear Ordinary Differential Equations.

The Lorenz Field
07° As a prime example, we introduce the following vector field, specifically, the Lorenz field:

$$
L(x, y, z)=(-\sigma x+\sigma y, r x-y-x z,-b z+x y)
$$

where $\sigma=10, b=8 / 3$ and $r=28$. Straightway, we note that:

$$
(\operatorname{div} L)(x, y, z)=-\sigma-1-b=-41 / 3
$$

In turn, we find that:

$$
\frac{d}{d t} \lambda(V(t))=-\rho \lambda(V(t)) \quad(\rho=\sigma+1+b)
$$

Consequently:

$$
\lambda(V(t))=e^{-\rho t} \lambda(V(0))
$$

We infer that:

$$
\lambda(\Sigma)=0
$$

where Σ is the Future Limit Set, that is, the Attractor, for L :

$$
\Sigma=\bigcap_{0 \leq s} c l o\left(\bigcup_{s \leq t} \Gamma(t)(E)\right.
$$

and where E is a carefully designed ellipsoid such that:
(•) E is future absorbing, which is to say that, for each (x, y, z) in \mathbf{R}^{3}, there exists t in \mathbf{R} such that $0 \leq t$ and such that $\Gamma(t)(x, y, z)$ lies in E
(•) E is future invariant, which is to say that, for each (x, y, z) in E and for any t in \mathbf{R}, if $0 \leq t$ then $\Gamma(t)(x, y, z)$ lies in E

