
MATHEMATICS 322
DIVERGENCE

Field and Flow

01◦ Let F be a vector field defined on R3:

F (x, y, z) = (A(x, y, z), B(x, y, z), C(x, y, z))

Let Γ be the corresponding flow, defined by the Existence/Uniqueness Theo-
rem for Ordinary Differential Equations:

Γ(t, x, y, z) = (U(t, x, y, z), V (t, x, y, z),W (t, x, y, z))

By definition:
Γt(t, x, y, z) = F (Γ(t, x, y, z))

Moreover:
Γ(0, x, y, z) = (x, y, z)

Hence:
U(0, x, y, z) = x, V (0, x, y, z) = y, W (0, x, y, z) = z

Notation

02◦ We adopt the following notation:

Γ(t)(x, y, z) = Γ(t, x, y, z) = Γ(x, y, z)(t)

so that we may view Γ(x, y, z) as the integral curve for F passing through
(x, y, z) at t = 0 and we may view Γ(t) as a mapping carrying R3 to itself.
Naturally, we may apply similar notational refinements to the functions U ,
V , and W .

03◦ By the Uniqueness Theorem, we find that, for any s and t:

Γ(s+ t) = Γ(s) · Γ(t)

Transformation of Volume

04◦ Now let V be a closed bounded region in R3 and let V (t) be the image
of V under Γ(t):

V (t) = Γ(t)(V )
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Let λ(V (t)) stand for the volume of V (t). We plan to compute:

d

dt
λ(V (t))

By the basic relation for the transformation of integrals, we have:

λ(V (t)) =

∫∫∫
V (t)

1 · dxdydz

=

∫∫∫
V

detDΓ(t)(u, v, w) · dudvdw

We contend that:

(∆)
d

dt
λ(V (t)) =

∫∫∫
V (t)

(div F )(x, y, z) · dxdydz

One may rightly refer to the foregoing relation as the Divergence Theorem.

05◦ For the proof of relation (∆), we introduce the matrix:

M(t, u, v, w) = DΓ(t)(u, v, w)

and we invoke our prior notational conventions. We find that:

∂

∂t
M(t, u, v, w) =

∂

∂t
DΓ(t)(u, v, w)

=


 Utu(t, u, v, w) Utv(t, u, v, w) Utw(t, u, v, w)

Vtu(t, u, v, w) Vtv(t, u, v, w) Wtw(t, u, v, w)
Wtu(t, u, v, w) Wtv(t, u, v, w) Wtw(t, u, v, w)




=


 Uut(t, u, v, w) Uvt(t, u, v, w) Uwt(t, u, v, w)

Vut(t, u, v, w) Vvt(t, u, v, w) Wwt(t, u, v, w)
Wut(t, u, v, w) Wvt(t, u, v, w) Wwt(t, u, v, w)




= D
∂

∂t
Γ(u, v, w)(t)

= DF (Γ(u, v, w)(t))

= DF (Γ(t)(u, v, w))

= D(F · Γ(t))(u, v, w)
= DF (Γ(t)(u, v, w))DΓ(t)(u, v, w)

= A(t, u, v, w)M(t, u, v, w)

where:
A(t, u, v, w) = DF (Γ(t)(u, v, w))
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By common knowledge:

(•) detM(t, u, v, w) = exp
(∫ t

0

trA(s, u, v, w)ds
)
detM(0, u, v, w)

while, in our case:
detM(0, u, v, w) = 1

Hence:

d

dt
λ(V (t))

=

∫∫∫
V

∂

∂t
detDΓ(t)(u, v, w) · dudvdw

=

∫∫∫
V

∂

∂t
exp (

∫ t

0

tr(DF (Γ(s)(u, v, w))ds) · dudvdw

=

∫∫∫
V

exp (

∫ t

0

tr(DF (Γ(s)(u, v, w))ds) tr(DF (Γ(t)(u, v, w)) · dudvdw

=

∫∫∫
V

detDΓ(t)(u, v, w) tr(DF (Γ(t)(u, v, w)) · dudvdw

=

∫∫∫
V

(div F )(Γ(t)(u, v, w))detDΓ(t)(u, v, w) · dudvdw

=

∫∫∫
V (t)

(div F )(x, y, z) · dxdydz

06◦ Let us defend relation (•). To that end, we simplify the notation:

(∗) d

dt
M(t) = A(t)M(t)

In turn, we introduce the standard basis for R3:

E1 =


 1

0
0


 , E2 =


 0

1
0


 , E3 =


 0

0
1


 ,

Obviously:
detM(t) = det (M(t)E1 M(t)E2 M(t)E3 )

By relation (∗), we find that:

d

dt
detM(t) = trA(t)detM(t)
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Now relation (•) follows by application of the simplest of results in the theory
of first order linear Ordinary Differential Equations.

The Lorenz Field

07◦ As a prime example, we introduce the following vector field, specifically,
the Lorenz field:

L(x, y, z) = (−σx+ σy, rx − y − xz, −bz + xy)

where σ = 10, b = 8/3 and r = 28. Straightway, we note that:

(div L)(x, y, z) = −σ − 1− b = −41/3

In turn, we find that:

d

dt
λ(V (t)) = −ρ λ(V (t)) (ρ = σ + 1 + b)

Consequently:
λ(V (t)) = e−ρ tλ(V (0))

We infer that:
λ(Σ) = 0

where Σ is the Future Limit Set, that is, the Attractor, for L:

Σ =
⋂
0≤s

clo (
⋃
s≤t

Γ(t)(E)

and where E is a carefully designed ellipsoid such that:

(•) E is future absorbing, which is to say that, for each (x, y, z) in R3,
there exists t in R such that 0 ≤ t and such that Γ(t)(x, y, z) lies in E

(•) E is future invariant , which is to say that, for each (x, y, z) in E
and for any t in R, if 0 ≤ t then Γ(t)(x, y, z) lies in E
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