MATHEMATICS 322
DIVERGENCE

Field and Flow
01° Let F be a vector field defined on R3:
F(‘T/‘7 y’ Z) = (A(x7 y’ Z)’ B(‘T/‘7 y’ Z)’ C(‘T/‘7 y’ Z))

Let T be the corresponding flow, defined by the Existence/Uniqueness Theo-
rem for Ordinary Differential Equations:

P(t’ x’ y7 Z) = (U(t7 x? y’ Z)’ V(t7 x? y’ Z)’ W(t7 x? y’ Z))

By definition:
Pt(tvxvya Z) = F(F(t,l‘,y, Z))

Moreover:
[0, 2,y,2) = (2,9, 2)
Hence:
U,z,y,2) =, V(0,z,y,2) =y, W(0,2,y,2) =z
Notation

02° We adopt the following notation:

L(t)(z,y,2) =T(t,2,y,2) =T (2,y,2)(t)
so that we may view I'(x,y, z) as the integral curve for F' passing through
(r,9,2) at t = 0 and we may view I'(t) as a mapping carrying R? to itself.

Naturally, we may apply similar notational refinements to the functions U,
V,and W.

03° By the Uniqueness Theorem, we find that, for any s and t:
I'(s+1t)=T(s) - T'(¢)
Transformation of Volume

04° Now let V be a closed bounded region in R?® and let V (¢) be the image
of V under I'(¢):



Let A(V(¢)) stand for the volume of V(). We plan to compute:

EAV ()

By the basic relation for the transformation of integrals, we have:

= /// 1 dxdydz
V(t)

= // det DT(t)(u, v, w) - dudvdw
%

We contend that:

() PO = [[[ aivr)y. - iy

One may rightly refer to the foregoing relation as the Divergence Theorem.
05° For the proof of relation (A), we introduce the matrix:
M(t,u,v,w) = DT'(t)(u,v,w)

and we invoke our prior notational conventions. We find that:

8—M(?ﬁ, u, v, W) = %DF(t)(u,v,w)

ot
Ui (t,u,v,w) Uy (t,u,v,w)  Upy (t,u, v, w)
= | Viu(t,u,v,w)  Vip(t,u,v,w) Wiy (t, u, v, w)
Wi (t, u,v,w) Wiyt u,v,w) Wiy (E, u, v, w)
U (t,u,v,w)  Upi(t,u,v,w)  Upt(t,u, v, w)
= | Vue(t,u,v,w) V(b u,v,w)  Wi(t, u, v, w)
Wut(t u,v,w)  Wie(t,u,v,w)  Wi(t, u,v,w)

= D F(u v, w)(t)

= DF(F(U w)(t))

=DF(T (t)(u v,w))

= D(F-T(t))(u,v,w)

= DF(T(¢)(u,v,w))DT(t)(u, v, w)
= A(t, u,v, w)M(t,u,v,w)

where:
A(t,u,v,w) = DF(I(¢)(u, v, w))



By common knowledge:
t
(o) det M (t,u,v,w) = exp (/ tr A(s,u, v, w)ds) det M (0, u, v, w)
0

while, in our case:
det M (0, u,v,w) =1

Hence:

EAv @)

/// —det DT'(t)(u, v, w) - dudvdw
v o

=[] Frewr / tr(DF(D(s)(u, v, w))ds) - dudvdu
] e R i) DO i

= // det DT'(t)(u, v, w) tr(DF (T'(t)(u, v, w)) - dudvdw
\%

_ / / | (aiv F)C (0, 0w))det DY) (0,0, 0) - dudvdo
= ///V(t)(div F)(x,y,2) - dedydz

06° Let us defend relation (). To that end, we simplify the notation:
(%) — M(t) = A(t)M(t)

In turn, we introduce the standard basis for R?:

1 0 0
E1: 0 ) E2: 1 ) E3: 0 )
0 0 1

Obviously:

By relation (x), we find that:

d
7 det M(t) = trA(t)det M(t)



Now relation (e) follows by application of the simplest of results in the theory
of first order linear Ordinary Differential Equations.

The Lorenz Field

07° As a prime example, we introduce the following vector field, specifically,
the Lorenz field:

L(z,y,2) = (—ox + oy, e —y — xz, —bz + xy)
where 0 = 10, b = 8/3 and r = 28. Straightway, we note that:
(divL)(z,y,2) = —0c—1—b=—41/3
In turn, we find that:

TAV@) = —pMVW)  (p=0+1+D)

Consequently:
AV (1)) = e "'A(V(0))

We infer that:
AX)=0

where X is the Future Limit Set, that is, the Attractor, for L:

5= co(|JT(t)(E)

0<s s<t

and where F is a carefully designed ellipsoid such that:

(e) E is future absorbing, which is to say that, for each (z,y, z) in R?,
there exists ¢ in R such that 0 < ¢ and such that I'(t)(z,y, z) lies in E

(o) E is future invariant, which is to say that, for each (z,y,2) in E
and for any ¢ in R, if 0 < ¢ then I'(¢)(z,y,2) liesin F



