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1 Swarms

Fundamentals

1◦ We imagine a Swarm of N particles in R3, in random motion. We
describe the distribution of the particles in the Swarm by the number density
function ν:

ν(t, r) ≡ ν(t, x, y, z)

where the nonnegative number t records time and the vector r = (x, y, z)
locates position. We measure time in seconds (sec) and length in micrometers
(µm). For any time t and for any region B in R3:

∫ ∫ ∫
B

ν(t, r)dr ≡
∫ ∫ ∫

B

ν(t, x, z)dxdydz

is the number at time t of the particles in the Swarm having position r in B.
Consequently, ν carries the units (µm)−3. Of course:

∫ ∫ ∫
R3

ν(t, r)dr = N

We describe the flow of the particles in the Swarm by the velocity density
function j :

j(t, r) ≡ (f(t, x, y, z), g(t, x, y, z), h(t, x, y, z))

For any time t and for any region B in R3:
∫ ∫ ∫

B

j(t, r)dr

is the total velocity at time t of the particles in the Swarm having position r
in B. The components of j carry the units sec−1(µm)−2.
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The Continuity Equation

2◦ Let B be a ball in R3 and let S be its surface. Let us introduce the
surface integral:

φ(t) ≡
∫ ∫

S

j(t, r) • σσ(dr)

In the foregoing expression:

σσ(dr) ≡ σ(dr)n(r)

where σ(dr) is the area of a small patch of S at r and n(r) is the (outward
directed) unit vector normal to S at r. The dot product:

j(t, r) • n(r)

is the component of j(t, r) in the direction at r defined by n(r). We interpret
φ(t) to be the rate at time t at which the particles leave the ball B. Of course,
φ(t) may be negative.

3◦ By the Theorem of Gauss, we may transform the surface integral as
follows: ∫ ∫

S

j(t, r) • σσ(dr) =
∫ ∫ ∫

B

(∇ • j)(t, r)dr

where ∇ • j is the divergence of j:

(∇ • j)(t, r) ≡ ∂

∂x
f(t, x, y, z) +

∂

∂y
g(t, x, y, z) +

∂

∂z
h(t, x, y, z)

We infer that:
φ(t) =

∫ ∫ ∫
B

(∇ • j)(t, r)dr

4◦ Naturally, at any time t, the rate of increase of the number of particles
in B must equal the negative of the rate at which the particles leave B. That
is:

d

dt

∫ ∫ ∫
B

ν(t, r)dr = −φ(t)

Hence: ∫ ∫ ∫
B

[ ∂

∂t
ν(t, r) + (∇ • j)(t, r)

]
dr = 0

2



Since B may be any ball in R3, we conclude that, for any time t and for any
position r in R3:

(CE)
∂

∂t
ν(t, r) = −(∇ • j)(t, r)

The foregoing relation, called the Continuity Equation, is the first of the three
fundamental elements of our study.

Diffusion: the Equation

5◦ The Continuity Equation is a relation of consistency between the density
functions ν and j. It reflects no special assumption about the motion of the
Swarm. At this point, however, we introduce a special assumption with far
reaching effects:

(◦) the Swarm seeks, by its motion, to establish uniform distribution
of its particles as rapidly as possible

Under this assumption, one says that the Swarm undergoes diffusion.

6◦ To express the assumption precisely, we require the gradient ∇ν of ν:

(∇ν)(t, r) ≡ ( ∂

∂x
ν(t, x, y, z),

∂

∂y
ν(t, x, y, z),

∂

∂z
ν(t, x, y, z)

)

By elementary argument, one may show that the vector (∇ν)(t, r) defines, at
time t, the direction at r of greatest increase in ν.

7◦ Let δ be a positive number. Let us assume that, for any time t and for
any position r in R3:

(FE) j(t, r) = −δ(∇ν)(t, r)

The foregoing relation, called Fick’s Equation, is the second of the three fun-
damental elements of our study. It expresses, in simplest form, the special
assumption (◦) about the motion of the Swarm.

8◦ The number δ is called the diffusion coefficient . It carries the units of
(µm)2sec−1. It serves both as a conversion factor and as a measure of the
rate at which the Swarm approaches uniform distribution.

9◦ In context of experiment, the Diffusion Coefficient δ is a characteristic
of the medium in which the Swarm moves.
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10◦ Combining (CE) and (FE), we find that:

∂

∂t
ν(t, r) = δ(∇ •∇ν)(t, r) ≡ δ(∇2ν)(t, r)

where ∇2ν is the laplacian of ν:

(∇2ν)(t, r) ≡ ∂2

∂x2
ν(t, x, y, z) +

∂2

∂y2
ν(t, x, y, z) +

∂2

∂z2
ν(t, x, y, z)

Now we may infer that, for any time t and for any position r in R3:

(DE)
∂

∂t
ν(t, r) = δ(∇2ν)(t, r)

The foregoing relation, called the Diffusion Equation, is the last of the three
fundamental elements of our study.

2 Simple Diffusion

11◦ Let us turn to the problem of solving the Diffusion Equation and to the
problem of measuring the Diffusion Coefficient.

Fourier Transforms

12◦ We require the dual relations between functions and their Fourier Trans-
forms:

α̂(q) =
1

(2π)3/2

∫ ∫ ∫
R3

exp(−iq • r)α(r)dr

α(r) =
1

(2π)3/2

∫ ∫ ∫
R3

exp(+iq • r)α̂(q)dq

In this context, α and α̂ are complex valued functions of the position vector
r ≡ (x, y, z) and of the dual position vector q ≡ (u, v, w), respectively. The
components of q carry the units (µm)−1. One refers to α̂ as the Fourier
Transform of α and to α itself as the Inverse Fourier Transform of α̂.

13◦ In turn, we require a remarkable example: the function β which coincides
with its own Fourier Transform:

β(r) = exp(−1
2
r • r)

β̂(q) = exp(−1
2
q • q)

It is no accident that β is (essentially) the density function for the standard
Normal Distribution in Probability Theory.
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14◦ Finally, we require a basic relation between Fourier Transforms and Con-
volutions. Let α1 and α2 be complex valued functions of the position vector
r. We form a new function α1 ∗ α2, called the convolution of α1 and α2, as
follows:

(α1 ∗ α2)(r) ≡ 1
(2π)3/2

∫ ∫ ∫
R3

α1(r − s)α2(s)ds

We have introduced the position vector s ≡ (a, b, c) to represent the variable
of integration. By straightforward computation, one may show that:

(α1 ∗ α2 )̂ (q) = α̂1(q)α̂2(q)

That is, the Fourier Transform of the convolution of α1 and α2 is the product
of the Fourier Transforms of α1 and α2.

Diffusion: the Solution

15◦ Now let us apply the Fourier Transform to the number density function
ν:

ν̂(t,q) =
1

(2π)3/2

∫ ∫ ∫
R3

exp(−iq • r)ν(t, r)dr

ν(t, r) =
1

(2π)3/2

∫ ∫ ∫
R3

exp(+iq • r)ν̂(t,q)dq

In the foregoing relations, we regard the time t as a parameter. By inter-
changing derivative and integral, we find that:

∂

∂t
ν(t, r) =

1
(2π)3/2

∫ ∫ ∫
R3

exp(+iq • r)
∂

∂t
ν̂(t,q)dq

(∇2ν)(t, r) =
1

(2π)3/2

∫ ∫ ∫
R3

exp(+iq • r)(−q • q)ν̂(t,q)dq

Hence:

∂

∂t
ν̂(t,q) =

1
(2π)3/2

∫ ∫ ∫
R3

exp(−iq • r)
∂

∂t
ν(t, r)dr

−(q • q)ν̂(t,q) =
1

(2π)3/2

∫ ∫ ∫
R3

exp(−iq • r)(∇2ν)(t, r)dr

Consequently:

∂

∂t
ν(t,q) = δ(∇2ν)(t, r) iff

∂

∂t
ν̂(t,q) = −δ(q • q)ν̂(t,q)
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16◦ By the foregoing computations, we have passed the Diffusion Equation
through the “Fourier Mirror,” transforming a partial differential equation of
relatively complicated form into an ordinary differential equation of altogether
simple form. Indeed, by inspection, we see that:

ν̂(t,q) = exp(−δ(q • q)t))ν̂(0,q)

Referring to article 13◦, we change scale in β:

γ(t, r) ≡ 1
(2δt)3/2

exp(−1
2

1
2δt

r • r)

with the following good effect:

γ̂(t,q) = exp(−δ(q • q)t)

Referring to article 14◦, we conclude that:

(•) ν(t, r) =
1

(2π)3/2

∫ ∫ ∫
R3

γ(t, r− s)ν(0, s)ds

The foregoing relation describes the development of the number density func-
tion for the Swarm, from its state at time 0 to its state at time t.

17◦ For precision of expression, let us introduce the following notational
conventions:

νt(r) ≡ ν(t, r)
γt(r) ≡ γ(t, r)

Now our solution of the Diffusion Equation takes the form:

(•) νt = γt ∗ ν0

18◦ One should note that:

κ(t, r) ≡ 1
(2π2δt)3/2

exp(−1
2

1
2δt

r • r) =
1

(2π)3/2
γ(t, r)

is the density function for the Normal Distribution on R3, having mean 0 and
variance 2δt. Obviously:

ν(t, r) =
∫ ∫ ∫

R3
κ(t, r − s)ν(0, s)ds
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Mean Square Displacement

19◦ For applications, we require a good estimate of the Diffusion Constant
δ. To that end, we introduce the mean square displacement :

m(t) ≡ 1
N

∫ ∫ ∫
R3

(r • r)ν(t, r)dr

where, as usual, t is the time. We contend that:

(∗) m(t) = m(0) + 6δt

By the foregoing relation, one may proceed to make estimates of δ in the
laboratory.

20◦ To prove the contention, we return to article 15◦. Interchanging ν and
ν̂, we obtain:

(∇2ν̂)(t,0) = − 1
(2π)3/2

∫ ∫ ∫
R3

(r • r)ν(t, r)dr

Hence:

m(t) = − (2π)3/2

N
(∇2ν̂)(t,0)

Of course, we know that:

ν̂(t,q) = γ̂(t,q)ν̂(0,q) and γ̂(t,q) = exp(−δ(q • q)t)
Hence:

(∇2ν̂)(t,q)

= (∇2γ̂)(t,q)ν̂(0,q) + (∇γ̂)(t,q) • (∇ν̂)(0,q) + γ̂(t,q)(∇2ν̂)(0,q)

and:

(∇γ̂)(t,q) = −2δtexp(−δ(q • q)t)q

(∇2γ̂)(t,q) = 4δ2t2(q • q)exp(−δ(q • q)t) − 6δtexp(−δ(q • q)t)

Therefore:

m(t) = − (2π)3/2

N
(∇2ν̂)(t,0)

= −(∇2γ̂)(t,0)
(2π)3/2

N
ν̂(0,0) − (2π)3/2

N
(∇2ν̂)(0,0)

= 6δt + m(0)
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3 Prospects

Particle Motion

21◦ One should study the following time-dependent Ordinary Differential
Equation, defined by the velocity density function j:

∂

∂t
r̄(t, r) = j(t, r̄(t, r), r̄(0, r) = r

Boundaries

22◦ In the foregoing study of simple diffusion, we have allowed the Swarm to
evolve without constraints on its territory. No matter the initial distribution
of the particles, the Swarm dissipates toward ever smaller densities over ever
larger domains. One should refine the study by incorporating constraints. For
instance, one might confine the Swarm to a rectangular box with reflecting or
absorbing boundaries.

General Diffusion

23◦ One should replace the Diffusion Constant δ by a function of time t and
position r:

δ(t, r)

The relation between the support of δ and a putative constraint on territory
would be interesting.
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