DIFFERENTIAL FORMS ON R ${ }^{3}$

Thomas Wieting, 2011

On \mathbf{R}^{3}, forms stand as follows:

$$
\begin{array}{ll}
\text { 0-forms: } & f=f .1 \quad \text { (which are functions) } \\
\text { 1-forms: } & p d x+q d y+r d z \\
\text { 2-forms: } & u d y \wedge d z+v d z \wedge d x+w d x \wedge d y \\
\text { 3-forms: } & h d x \wedge d y \wedge d z
\end{array}
$$

where f, p, q, r, u, v, w, and h are any functions of x, y, and z. For a k-form λ, one refers to k as the degree of the form. One adds forms in the manner expected but one multiplies them by applying the following relations:

$$
d \alpha \wedge d \beta+d \beta \wedge d \alpha=0
$$

where α and β stand for any of x, y, and z. For instance, $d x \wedge d x=0$ and $d y \wedge d z=-d z \wedge d y$. One computes the exterior derivative $d \lambda$ of a form λ as follows:

$$
\begin{aligned}
d f & =\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z \\
d(p d x+q d y+r d z) & =d p \wedge d x+d q \wedge d y+d r \wedge d z \\
d(u d y \wedge d z+v d z \wedge d x+w d x & \wedge d y) \\
& =d u \wedge d y \wedge d z+d v \wedge d z \wedge d x+d w \wedge d x \wedge d y \\
d(h d x \wedge d y \wedge d z) & =d h \wedge d x \wedge d y \wedge d z=0(!)
\end{aligned}
$$

Note that d increases the degree of λ by 1. One computes the Hodge *-operator on a form λ by applying the following relations:

$$
\begin{gathered}
* 1=d x \wedge d y \wedge d z \\
* d x=d y \wedge d z, \quad * d y=d z \wedge d x, \quad * d z=d x \wedge d y \\
*(d y \wedge d z)=d x, \quad *(d z \wedge d x)=d y, \quad *(d x \wedge d y)=d z \\
*(d x \wedge d y \wedge d z)=1
\end{gathered}
$$

Consequently, $d y \wedge(* d y)=d x \wedge d y \wedge d z,(d z \wedge d x) \wedge(*(d z \wedge d x))=d x \wedge d y \wedge d z$, and so forth. Moreover:

$$
*(p d x+q d y+r d z)=p d y \wedge d z+q d z \wedge d x+r d x \wedge d y
$$

