A NOTE ON CURVATURE

01° Let Ω be a region in \mathbf{R}^{2} and let H be a mapping carrying Ω to \mathbf{R}^{3} :

$$
H(u, v)=\left(\begin{array}{l}
a(u, v) \\
b(u, v) \\
c(u, v)
\end{array}\right)
$$

where a, b, and c are functions defined on Ω and where (u, v) is any point in Ω. Of course, H serves to parametrize a surface $S=H(\Omega)$ in \mathbf{R}^{3}. Let H_{u} and H_{v} be the mappings carrying Ω to \mathbf{R}^{3} defined, as usual, by the first and second columns of the total derivative $D H$ of H :

$$
D H(u, v)=\left(\begin{array}{ll}
H_{u}(u, v) & H_{v}(u, v)
\end{array}\right)=\left(\begin{array}{ll}
a_{u}(u, v) & a_{v}(u, v) \\
b_{u}(u, v) & b_{v}(u, v) \\
c_{u}(u, v) & c_{v}(u, v)
\end{array}\right)
$$

Let N be the unit normal mapping carrying Ω to \mathbf{R}^{3} :

$$
N(u, v) \equiv \frac{1}{\left\|H_{u}(u, v) \times H_{v}(u, v)\right\|} H_{u}(u, v) \times H_{v}(u, v)=\left(\begin{array}{c}
\alpha(u, v) \\
\beta(u, v) \\
\gamma(u, v)
\end{array}\right)
$$

where α, β, and γ are suitable functions defined on Ω. Of course, the range of N is included in the unit sphere \mathbf{S}^{2}. In this context, one refers to N as the Gauss Map, relative to the parametrization H.
02° Let ρ be the surface area 2-form for S on \mathbf{R}^{3}. We know that:

$$
H^{*}(\rho)=\left\|H_{u}(u, v) \times H_{v}(u, v)\right\| d u d v
$$

As usual, let σ be the surface area 2-form for \mathbf{S}^{2} on \mathbf{R}^{3} :

$$
\sigma=x d y d z+y d z d x+z d x d y
$$

Of course, there must be a function κ defined on Ω such that:

$$
N^{*}(\sigma)=\kappa H^{*}(\rho)
$$

We plan to show that κ defines the curvature of S.
03° To prepare the way, let us recall the following identity:

$$
(A \times B) \bullet(C \times D)=(A \bullet C)(B \bullet D)-(B \bullet C)(A \bullet D)
$$

where A, B, C, and D are any vectors in \mathbf{R}^{3}.
04° In particular, we find the following expression for the determinant γ of the First Fundamental Form G for S, relative to the parametrization H :

$$
\gamma=\left\|H_{u} \times H_{v}\right\|^{2}=\left(H_{u} \bullet H_{u}\right)\left(H_{v} \bullet H_{v}\right)-\left(H_{u} \bullet H_{v}\right)^{2}
$$

where:

$$
G \equiv\left(\begin{array}{cc}
H_{u} \bullet H_{u} & H_{u} \bullet H_{v} \\
H_{v} \bullet H_{u} & H_{v} \bullet H_{v}
\end{array}\right)
$$

In turn, we find the following expression for the determinant λ of the Second Fundamental Form L for S, relative to the parametrization H :

$$
\lambda=\left(H_{u} \times H_{v}\right) \bullet\left(N_{u} \times N_{v}\right)=\left(H_{u} \bullet N_{u}\right)\left(H_{v} \bullet N_{v}\right)-\left(H_{v} \bullet N_{u}\right)\left(H_{u} \bullet N_{v}\right)
$$

where:

$$
L \equiv\left(\begin{array}{ll}
H_{u u} \bullet N & H_{u v} \bullet N \\
H_{v u} \bullet N & H_{v v} \bullet N
\end{array}\right)
$$

To see that λ equals $\operatorname{det}(L)$, we observe that $H_{u} \bullet N=0$ and $H_{v} \bullet N=0$, so that:

$$
\begin{aligned}
& H_{u u} \bullet N+H_{u} \bullet N_{u}=0 \\
& H_{u v} \bullet N+H_{u} \bullet N_{v}=0 \\
& H_{v u} \bullet N+H_{v} \bullet N_{u}=0 \\
& H_{v v} \bullet N+H_{v} \bullet N_{v}=0
\end{aligned}
$$

05° Finally, we find that:

$$
\begin{aligned}
N^{*}(\sigma) & =N^{*}(x d y d z+y d z d x+z d x d y) \\
& =\alpha d \beta d \gamma+\beta d \gamma d \alpha+\gamma d \alpha d \beta \\
& =\left[\alpha\left(\beta_{u} \gamma_{v}-\beta_{v} \gamma_{u}\right)+\beta\left(\gamma_{u} \alpha_{v}-\gamma_{v} \alpha_{u}\right)+\gamma\left(\alpha_{u} \beta_{v}-\alpha_{v} \beta_{u}\right)\right] d u d v \\
& =N \bullet\left(N_{u} \times N_{v}\right) d u d v \\
& =\frac{1}{\left\|H_{u} \times H_{v}\right\|}\left(H_{u} \times H_{v}\right) \bullet\left(N_{u} \times N_{v}\right) d u d v \\
& =\frac{1}{\left\|H_{u} \times H_{v}\right\|^{2}}\left(H_{u} \times H_{v}\right) \bullet\left(N_{u} \times N_{v}\right)\left\|H_{u} \times H_{v}\right\| d u d v \\
& =\frac{\lambda}{\gamma} H^{*}(\rho)
\end{aligned}
$$

We conclude that:

$$
\kappa=\frac{\lambda}{\gamma}
$$

Hence, κ defines the curvature of S.

