CURVATURE

Thomas Wieting
Reed College, 2000

1 Surfaces
 2 Curvature
 3 Geodesics
 4 The Great Theorem of Gauss
 5 Coordinate Transformations

1 Surfaces

1° Let U be a region in \mathbf{R}^{2} and let H be an injective mapping carrying U to \mathbf{R}^{3}. Let $S:=H(U)$ be the range of H, a subset of \mathbf{R}^{3}. We will refer to S as a surface in \mathbf{R}^{3}, parametrized by H. We will represent members of \mathbf{R}^{2} as follows:

$$
u=\left(u^{1}, u^{2}\right)
$$

and members of \mathbf{R}^{3} as follows:

$$
x=\left(x^{1}, x^{2}, x^{3}\right)
$$

Now the mapping H can be expressed in the following form:

$$
\begin{equation*}
\left(u^{1}, u^{2}\right)=u \longrightarrow H(u)=x=\left(x^{1}\left(u^{1}, u^{2}\right), x^{2}\left(u^{1}, u^{2}\right), x^{3}\left(u^{1}, u^{2}\right)\right) \tag{1}
\end{equation*}
$$

We will represent the total derivative of H at u as follows:

$$
D H(u)=\left(\begin{array}{cc}
H_{1}^{1}(u) & H_{2}^{1}(u) \\
H_{1}^{2}(u) & H_{2}^{2}(u) \\
H_{1}^{3}(u) & H_{2}^{3}(u)
\end{array}\right)
$$

which is to say that:

$$
\begin{equation*}
H_{j}^{a}\left(u^{1}, u^{2}\right):=\frac{\partial x^{a}}{\partial u^{j}}\left(u^{1}, u^{2}\right) \quad(1 \leq j \leq 2,1 \leq a \leq 3) \tag{2}
\end{equation*}
$$

We require that, for each u in U, the column vectors:

$$
H_{1}(u):=\left(\begin{array}{c}
H_{1}^{1}(u) \\
H_{1}^{2}(u) \\
H_{1}^{3}(u)
\end{array}\right) \quad \text { and } \quad H_{2}(u):=\left(\begin{array}{c}
H_{2}^{1}(u) \\
H_{2}^{2}(u) \\
H_{2}^{3}(u)
\end{array}\right)
$$

be linearly independent, which is to say that:

$$
H_{1}(u) \times H_{2}(u) \neq 0
$$

$$
N(u):=\frac{1}{\left\|H_{1}(u) \times H_{2}(u)\right\|} \cdot\left(H_{1}(u) \times H_{2}(u)\right)
$$

3° We define the first fundamental form G for the surface S as follows:

$$
G(u)=\left(\begin{array}{ll}
G_{11}(u) & G_{12}(u) \\
G_{21}(u) & G_{22}(u)
\end{array}\right)
$$

where:

$$
\begin{equation*}
G_{k \ell}(u):=H_{k}(u) \bullet H_{\ell}(u) \quad(1 \leq k \leq 2,1 \leq \ell \leq 2) \tag{4}
\end{equation*}
$$

One should note that $G(u)$ is a symmetric positive definite matrix.
We plan to describe the various metric properies of the surface S, such as the length of a curve in S, the area of a subset of S, and the curvature of S at a point. We will show that these properties can all be expressed in terms of the first fundamental form. This fact releases us from the view that, in general, a surface must lie in \mathbf{R}^{3}. We may focus our attention upon the region U in \mathbf{R}^{2} and the first fundamental form G :

$$
G(u)=\left(\begin{array}{ll}
G_{11}(u) & G_{12}(u) \\
G_{21}(u) & G_{22}(u)
\end{array}\right)
$$

with which it has in some fashion been supplied. We may then proceed to calculate the various metric properties of U in terms of G.
4° Now let J be an open interval in \mathbf{R} and let Γ be a mapping carrying J to \mathbf{R}^{3} such that the range $C:=\Gamma(J)$ of Γ is a subset of the surface S. We require that, for each t in $J, D \Gamma(t) \neq 0$. We shall refer to C as a curve in S, parametrized by Γ. Of course, we may introduce the mapping γ carrying J to U :

$$
t \longrightarrow \gamma(t)=u=\left(u^{1}(t), u^{2}(t)\right)
$$

such that:

$$
\begin{aligned}
\left(\Gamma^{1}(t), \Gamma^{2}(t), \Gamma^{3}(t)\right) & =\Gamma(t) \\
& =H(\gamma(t)) \\
& =\left(H^{1}\left(u^{1}(t), u^{2}(t)\right), H^{2}\left(u^{1}(t), u^{2}(t)\right), H^{3}\left(u^{1}(t), u^{2}(t)\right)\right)
\end{aligned}
$$

The mapping γ describes the given curve C in terms of the parameters u^{1} and u^{2}. By the Chain Rule, we have:

$$
D \Gamma(t)=D H(\gamma(t)) D \gamma(t)
$$

Hence:

$$
\begin{equation*}
\frac{d \Gamma}{d t}(t)=\frac{d u^{j}}{d t}(t) \cdot H_{j}(\gamma(t)) \tag{5}
\end{equation*}
$$

For the latter relation, we have invoked the summation convention, which directs that indices which appear in a given expression both "up" and "down" shall be summation indices running through their given range (in this case, from 1 to 2). In turn:

$$
\left\|\frac{d \Gamma}{d t}(t)\right\|^{2}=\frac{d u^{k}}{d t}(t) G_{k \ell}\left(u^{1}(t), u^{2}(t)\right) \frac{d u^{\ell}}{d t}(t)
$$

Now we may proceed to calculate the length of the segment of the curve C in S from $\Gamma\left(t^{\prime}\right)$ to $\Gamma\left(t^{\prime \prime}\right)$:

$$
\begin{equation*}
\int_{t^{\prime}}^{t^{\prime \prime}}\|D \Gamma(t)\| d t=\int_{t^{\prime}}^{t^{\prime \prime}} \sqrt{\frac{d u^{k}}{d t}(t) G_{k \ell}\left(u^{1}(t), u^{2}(t)\right) \frac{d u^{\ell}}{d t}(t)} d t \tag{6}
\end{equation*}
$$

where t^{\prime} and $t^{\prime \prime}$ are any numbers in J for which $t^{\prime} \leq t^{\prime \prime}$. We are led to interpret:

$$
\begin{equation*}
\|V\|:=\sqrt{V^{k} G_{k \ell}(u) V^{\ell}} \tag{7}
\end{equation*}
$$

as the length of the tangent vector:

$$
V:=\binom{V^{1}}{V^{2}}
$$

to U at u, and to interpret:

$$
\int_{t^{\prime}}^{t^{\prime \prime}} \sqrt{\frac{d u^{k}}{d t}(t) G_{k \ell}\left(u^{1}(t), u^{2}(t)\right) \frac{d u^{\ell}}{d t}(t)} d t
$$

as the length of the segment of the curve γ in U from $\gamma\left(t^{\prime}\right)$ to $\gamma\left(t^{\prime \prime}\right)$. More generally, we interpret:

$$
\begin{equation*}
V \circ W:=V^{k} G_{k \ell}(u) W^{\ell} \tag{8}
\end{equation*}
$$

as the inner product of the vectors:

$$
V=\binom{V^{1}}{V^{2}} \quad \text { and } \quad W=\binom{W^{1}}{W^{2}}
$$

in \mathbf{R}^{2}, tangent to U at u.
$5^{\circ} \quad$ We may also proceed to calculate the area of a subset T of S, as follows. We first present T as $T=H(V)$, where V is a subset of U. We then equate the area of T with the following double integral:

$$
\begin{equation*}
\operatorname{area}(T):=\iint_{V}\left\|H_{1}\left(u^{1}, u^{2}\right) \times H_{2}\left(u^{1}, u^{2}\right)\right\| d u^{1} d u^{2} \tag{9}
\end{equation*}
$$

Since:

$$
\left\|H_{1}(u) \times H_{2}(u)\right\|^{2}=G_{11}(u) G_{22}(u)-G_{21}(u) G_{12}(u)=: g(u)
$$

we interpret:

$$
\begin{equation*}
\operatorname{area}(V):=\iint_{V} \sqrt{g\left(u^{1}, u^{2}\right)} d u^{1} d u^{2} \tag{10}
\end{equation*}
$$

as the area of the subset V of U.

1 Curvature

6° Let us consider a particular point \bar{P} :

$$
\bar{P}=\left(\bar{x}^{1}, \bar{x}^{2}, \bar{x}^{3}\right)=H\left(\bar{u}^{1}, \bar{u}^{2}\right)
$$

in the surface S. We plan to describe the curvature of S at \bar{P}. To that end, let us consider a curve C in S containing \bar{P}. The curvature of C at \bar{P} derives in part from the bending of C within S and in part from the bending of S itself. One may refer to the former as the internal bending of C and to the latter as the external bending. One may say that the internal bending is a matter of free choice but that the external bending is forced upon the curve by the structure of the surface. Among all curves C in S containing \bar{P}, we may consider those for which the external bending is minimum and those for which it is maximum. By definition, the gaussian curvature of the surface S at the point \bar{P} is the product of these two extreme values.
7° Let J be an open interval in \mathbf{R} and let Γ be a mapping carrying J to \mathbf{R}^{3} such that $C:=\Gamma(J)$. As usual, we require that, for each t in $J, D \Gamma(t) \neq 0$. For convenience, let 0 be in J and let $\Gamma(0)=\bar{P}$. In turn, let γ be the mapping carrying J to U :

$$
t \longrightarrow \gamma(t)=u=\left(u^{1}(t), u^{2}(t)\right)
$$

such that:

$$
\begin{aligned}
\left(\Gamma^{1}(t), \Gamma^{2}(t), \Gamma^{3}(t)\right) & =\Gamma(t) \\
& =H(\gamma(t)) \\
& =\left(H^{1}\left(u^{1}(t), u^{2}(t)\right), H^{2}\left(u^{1}(t), u^{2}(t)\right), H^{3}\left(u^{1}(t), u^{2}(t)\right)\right)
\end{aligned}
$$

Of course, $\gamma(0)=\bar{u}=\left(\bar{u}^{1}, \bar{u}^{2}\right)$. We have:

$$
\frac{d \Gamma}{d t}(t)=\frac{d u^{j}}{d t}(t) \cdot H_{j}(\gamma(t))
$$

and:

$$
\frac{d^{2} \Gamma}{d t^{2}}(t)=\frac{d^{2} u^{j}}{d t^{2}}(t) \cdot H_{j}(\gamma(t))+\frac{d u^{k}}{d t}(t) \frac{d u^{\ell}}{d t}(t) \cdot H_{k \ell}(\gamma(t))
$$

where:

$$
\begin{equation*}
H_{k \ell}(u):=\frac{\partial^{2} H}{\partial u^{k} \partial u^{\ell}}(u) \tag{11}
\end{equation*}
$$

Now we may introduce functions $K_{k \ell}^{j}$ and $L_{k \ell}$ such that:

$$
\begin{equation*}
H_{k \ell}(u)=K_{k \ell}^{j}(u) \cdot H_{j}(u)+L_{k \ell}(u) \cdot N(u) \tag{12}
\end{equation*}
$$

The foregoing relations are called Gauss' Equations. One should note carefully that:

$$
\begin{equation*}
L_{k \ell}(u)=H_{k \ell}(u) \bullet N(u) \tag{13}
\end{equation*}
$$

One refers to L :

$$
L(u)=\left(\begin{array}{ll}
L_{11}(u) & L_{12}(u) \\
L_{21}(u) & L_{22}(u)
\end{array}\right)
$$

as the second fundamental form for the surface S. One refers to K^{1} and K^{2} :

$$
K^{1}(u)=\left(\begin{array}{ll}
K_{11}^{1}(u) & K_{12}^{1}(u) \\
K_{21}^{1}(u) & K_{22}^{1}(u)
\end{array}\right) \quad \text { and } \quad K^{2}(u)=\left(\begin{array}{ll}
K_{11}^{2}(u) & K_{12}^{2}(u) \\
K_{21}^{2}(u) & K_{22}^{2}(u)
\end{array}\right)
$$

as the connection forms for S. Finally, we obtain:

$$
\begin{equation*}
\frac{d^{2} \Gamma}{d t^{2}}(t)=A^{j}(t) \cdot H_{j}(\gamma(t))+B(t) \cdot N(\gamma(t)) \tag{14}
\end{equation*}
$$

where:

$$
\begin{equation*}
A^{j}(t):=\frac{d^{2} u^{j}}{d t^{2}}(t)+\frac{d u^{k}}{d t} K_{k \ell}^{j}(\gamma(t))(t) \frac{d u^{\ell}}{d t}(t) \tag{15}
\end{equation*}
$$

and:

$$
\begin{equation*}
B(t):=\frac{d u^{k}}{d t}(t) L_{k \ell}(\gamma(t)) \frac{d u^{\ell}}{d t}(t) \tag{16}
\end{equation*}
$$

Clearly:

$$
A^{j}(t) \cdot H_{j}(\gamma(t))
$$

is tangent to S at $H(u)$. It represents the internal bending of C at $H(u)$. Moreover:

$$
B(t) \cdot N(\gamma(t))
$$

is normal to S at $H(u)$. It represents the external bending of C at $H(u)$.

$$
\begin{equation*}
B(0)=\frac{d u^{k}}{d t}(0) L_{k \ell}(\bar{u}) \frac{d u^{\ell}}{d t}(0) \tag{17}
\end{equation*}
$$

since it measures the "external bending" of C at \bar{P}. To set the scale of computation, we require that C be parametrized by arc length. The effect of this requirement is to force:

$$
\frac{d u^{k}}{d t}(t) G_{k \ell}(\gamma(t)) \frac{d u^{\ell}}{d t}(t)=1
$$

In particular:

$$
\begin{equation*}
\frac{d u^{k}}{d t}(0) G_{k \ell}(\bar{u}) \frac{d u^{\ell}}{d t}(0)=1 \tag{18}
\end{equation*}
$$

Now we wish to study the minimum and maximum values of the quantity:

$$
V^{k} L_{k \ell}(\bar{u}) V^{\ell}
$$

where V is any vector in \mathbf{R}^{2} meeting the condition:

$$
V^{k} G_{k \ell}(\bar{u}) V^{\ell}=1
$$

The product of these extreme values is the gaussian curvature for S at \bar{P}.
9° Here is our problem. We have two symmetric matrices:

$$
L=\left(\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right)
$$

and:

$$
G=\left(\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right)
$$

The latter is positive definite. These matrices define functions ("quadratic forms") as follows:

$$
\lambda(V):=V^{k} L_{k \ell} V^{\ell}=\left(\begin{array}{ll}
V^{1} & V^{2}
\end{array}\right)\left(\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right)\binom{V^{1}}{V^{2}}
$$

and:

$$
\gamma(V):=V^{k} G_{k \ell} V^{\ell}=\left(\begin{array}{ll}
V^{1} & V^{2}
\end{array}\right)\left(\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right)\binom{V^{1}}{V^{2}}
$$

We wish to calculate the product of the minimum and the maximum values of the quantity $\lambda(V)$, subject to the condition $\gamma(V)=1$. By "diagonalizing"
the quadratic form L relative to the (positive definite) quadratic form G, one can show that the foregoing product equals:

$$
\frac{L_{11} L_{22}-L_{21} L_{12}}{G_{11} G_{22}-G_{21} G_{12}}
$$

Accordingly, we define the curvature of the surface S at the point \bar{P} to be:

$$
\begin{align*}
\kappa_{S}(\bar{P}): & =\frac{L_{11}(\bar{u}) L_{22}(\bar{u})-L_{21}(\bar{u}) L_{12}(\bar{u})}{G_{11}(\bar{u}) G_{22}(\bar{u})-G_{21}(\bar{u}) G_{12}(\bar{u})} \\
& =\frac{L_{11}(\bar{u}) L_{22}(\bar{u})-L_{21}(\bar{u}) L_{12}(\bar{u})}{g(\bar{u})} \tag{19}
\end{align*}
$$

3 Geodesics

10° In the foregoing section, we focussed our attention upon the "external bending" of a given curve C in the surface S, expressed by the following vector:

$$
B(t) \cdot N(\gamma(t))
$$

and we proceeded to develop a measure of "curvature" for S at a given point \bar{P}. Now we will focus our attention upon the "internal bending" of C, expressed by the following vector:

$$
A^{j}(t) \cdot H_{j}(\gamma(t))
$$

By a geodesic in S we mean a curve C in S for which the internal bending is 0 . Such a curve is "as straight as possible," given that S is curved. Clearly, C is a geodesic iff it satisfies the following Geodesic Equations:

$$
\begin{equation*}
\frac{d^{2} u^{j}}{d t^{2}}(t)+\frac{d u^{k}}{d t}(t) K_{k \ell}^{j}(\gamma(t)) \frac{d u^{\ell}}{d t}(t)=0 \quad(1 \leq j \leq 2) \tag{20}
\end{equation*}
$$

To make use of these equations, we must calculate the functions:

$$
K_{k \ell}^{j}
$$

It will turn out that they can be expressed in terms of the first fundamental form G. Hence, the geodesics in S are determined by G. We begin by defining:

$$
\begin{equation*}
K_{k \ell m}(u):=H_{k \ell}(u) \bullet H_{m}(u) \tag{21}
\end{equation*}
$$

Since:

$$
G_{k m}(u)=H_{k}(u) \bullet H_{m}(u)
$$

we have:

$$
\begin{aligned}
\frac{\partial G_{k m}}{\partial u^{\ell}}(u) & =\frac{\partial\left(H_{k} \bullet H_{m}\right)}{\partial u^{\ell}}(u) \\
& =H_{k \ell}(u) \bullet H_{m}(u)+H_{k}(u) \bullet H_{m \ell}(u) \\
& =K_{k \ell m}(u)+K_{m \ell k}(u)
\end{aligned}
$$

By permuting the indices, we obtain:

$$
\begin{aligned}
\frac{\partial G_{k m}}{\partial u^{\ell}}(u) & =K_{k \ell m}(u)+K_{m \ell k}(u) \\
\frac{\partial G_{\ell k}}{\partial u^{m}}(u) & =K_{\ell m k}(u)+K_{k m \ell}(u) \\
\frac{\partial G_{m \ell}}{\partial u^{k}}(u) & =K_{m k \ell}(u)+K_{\ell k m}(u)
\end{aligned}
$$

Since:

$$
K_{k \ell m}(u)=K_{\ell k m}(u)
$$

we obtain:

$$
\begin{equation*}
K_{k \ell m}(u)=\frac{1}{2}\left(\frac{\partial G_{k m}}{\partial u^{\ell}}(u)+\frac{\partial G_{m \ell}}{\partial u^{k}}(u)-\frac{\partial G_{\ell k}}{\partial u^{m}}(u)\right) \tag{22}
\end{equation*}
$$

Now we observe that:

$$
\begin{align*}
K_{k \ell m}(u): & =H_{k \ell}(u) \bullet H_{m}(u) \\
& =K_{k \ell}^{i}(u)\left(H_{i}(u) \bullet H_{m}(u)\right) \tag{23}\\
& =K_{k \ell}^{i}(u) G_{i m}(u)
\end{align*}
$$

Let us introduce the companion \hat{G} to G, defined by inversion as follows:

$$
\hat{G}(u)=\left(\begin{array}{ll}
G^{11}(u) & G^{12}(u) \tag{24}\\
G^{21}(u) & G^{22}(u)
\end{array}\right):=\frac{1}{g(u)}\left(\begin{array}{rr}
G_{22}(u) & -G_{12}(u) \\
-G_{21}(u) & G_{11}(u)
\end{array}\right)
$$

Clearly:

$$
G_{i m}(u) G^{m j}(u)=\Delta_{i}^{j}(u):= \begin{cases}1 & \text { if } i=j \tag{25}\\ 0 & \text { if } i \neq j\end{cases}
$$

Hence:

$$
K_{k \ell}^{j}(u)=K_{k \ell}^{i} \Delta_{i}^{j}(u)=K_{k \ell}^{i}(u) G_{i m}(u) G^{m j}(u)=K_{k \ell m}(u) G^{m j}(u)
$$

so that:

$$
\begin{equation*}
K_{k \ell}^{j}(u)=\frac{1}{2} G^{j m}(u)\left(\frac{\partial G_{k m}}{\partial u^{\ell}}(u)+\frac{\partial G_{\ell m}}{\partial u^{k}}(u)-\frac{\partial G_{k \ell}}{\partial u^{m}}(u)\right) \tag{26}
\end{equation*}
$$

These relations express the connection forms K^{1} and K^{2} in terms of the first fundamental form G.

4 The Great Theorem of Gauss

11° Now we contend that the curvature of S at any point \bar{P} can be computed in terms of the connection forms K^{1} and K^{2} and the first fundamental form G, hence (by the foregoing relations (26)), in terms of the first fundamental form G alone. To simplify the following computations, we will surpress reference to the variable position \bar{u} in U. We begin by defining:

$$
\begin{equation*}
H_{k \ell m}:=\frac{\partial^{3} H}{\partial u^{k} \partial u^{\ell} \partial u^{m}}=\frac{\partial H_{k \ell}}{\partial u^{m}} \tag{27}
\end{equation*}
$$

and:

$$
\begin{equation*}
N_{m}:=\frac{\partial N}{\partial u^{m}} \tag{28}
\end{equation*}
$$

From Gauss' Equations - that is, from relations (12):

$$
H_{k \ell}=K_{k \ell}^{j} \cdot H_{j}+L_{k \ell} \cdot N
$$

we obtain:

$$
\begin{equation*}
H_{k \ell m}=\frac{\partial K_{k \ell}^{j}}{\partial u^{m}} \cdot H_{j}+K_{k \ell}^{j} \cdot H_{j m}+\frac{\partial L_{k \ell}}{\partial u^{m}} \cdot N+L_{k \ell} \cdot N_{m} \tag{29}
\end{equation*}
$$

We must find expressions for N_{m}. Since:

$$
N \bullet N=1
$$

we have:

$$
N_{m} \bullet N=0
$$

As a result, we may introduce coefficients C_{m}^{ℓ} such that:

$$
N_{m}=C_{m}^{\ell} \cdot H_{\ell}
$$

Since:

$$
H_{k} \bullet N=0
$$

we have:

$$
H_{k m} \bullet N+H_{k} \bullet N_{m}=0
$$

From relations (13):

$$
L_{k m}=H_{k m} \bullet N=-H_{k} \bullet N_{m}=-C_{m}^{\ell}\left(H_{k} \bullet H_{\ell}\right)=-G_{k \ell} C_{m}^{\ell}
$$

Hence:

$$
C_{m}^{j}=\Delta_{\ell}^{j} C_{m}^{\ell}=G^{j k} G_{k \ell} C_{m}^{\ell}=-G^{j k} L_{k m}
$$

Finally, we obtain:

$$
\begin{equation*}
N_{m}=-L_{m}^{j} \cdot H_{j} \tag{30}
\end{equation*}
$$

where:

$$
\begin{equation*}
L_{m}^{j}:=G^{j k} L_{k m} \tag{31}
\end{equation*}
$$

One refers to relations (30) as Weingarten's Equations.
12° By straightforward computation, we find that:

$$
L_{11} L_{22}-L_{21} L_{12}=\left(G_{11} G_{22}-G_{21} G_{12}\right)\left(L_{1}^{1} L_{2}^{2}-L_{1}^{2} L_{2}^{1}\right)
$$

Hence, we may express the gaussian curvature of S as follows:
(•)

$$
\kappa_{S}=\operatorname{det}\left(L_{m}^{j}\right)
$$

13° Now let us return to relations (29). We have:

$$
\begin{equation*}
H_{k \ell m}=\frac{\partial K_{k \ell}^{j}}{\partial u^{m}} \cdot H_{j}+K_{k \ell}^{i} \cdot H_{i m}+\frac{\partial L_{k \ell}}{\partial u^{m}} \cdot N-L_{k \ell} L_{m}^{j} \cdot H_{j} \tag{32}
\end{equation*}
$$

Recalling Gauss' Equations once again, we can present the tangential and the normal components of $H_{k \ell m}$ as follows:

$$
\begin{equation*}
H_{k \ell m}=P_{k \ell m}^{j} \cdot H_{j}+Q_{k \ell m} \cdot N \tag{33}
\end{equation*}
$$

where:

$$
\begin{equation*}
P_{k \ell m}^{j}:=\frac{\partial K_{k \ell}^{j}}{\partial u^{m}}+K_{k \ell}^{i} K_{i m}^{j}-L_{k \ell} L_{m}^{j} \tag{34}
\end{equation*}
$$

and:

$$
\begin{equation*}
Q_{k \ell m}:=K_{k \ell}^{i} L_{i m}+\frac{\partial L_{k \ell}}{\partial u^{m}} \tag{35}
\end{equation*}
$$

Since $H_{k \ell m}=H_{k m \ell}$, we must have:

$$
P_{k \ell m}^{j}=P_{k m \ell}^{j}
$$

Hence:

$$
\begin{equation*}
R_{k \ell m}^{j}=L_{\ell}^{j} L_{k m}-L_{m}^{j} L_{k \ell} \tag{36}
\end{equation*}
$$

where:

$$
\begin{equation*}
R_{k \ell m}^{j}:=\left(\frac{\partial K_{k m}^{j}}{\partial u^{\ell}}+K_{k m}^{i} K_{i \ell}^{j}\right)-\left(\frac{\partial K_{k \ell}^{j}}{\partial u^{m}}+K_{k \ell}^{i} K_{i m}^{j}\right) \tag{37}
\end{equation*}
$$

One refers to the functions just defined as the curvature functions for the surface S. Visibly, they are defined in terms of the connection forms K^{1} and K^{2} for S; hence, in terms of the first fundamental form G for S. Finally, let us define certain companions to the curvature functions:

$$
\begin{equation*}
R_{i k \ell m}:=G_{i j} R_{k \ell m}^{j} \tag{38}
\end{equation*}
$$

By relations (36), we have:

$$
\begin{equation*}
R_{i k \ell m}=G_{i j}\left(L_{\ell}^{j} L_{k m}-L_{m}^{j} L_{k \ell}\right)=L_{i \ell} L_{k m}-L_{i m} L_{k \ell} \tag{39}
\end{equation*}
$$

In particular:

$$
\begin{equation*}
R_{1212}=L_{11} L_{22}-L_{12} L_{21} \tag{40}
\end{equation*}
$$

With reference to relation (19), we conclude that:

$$
\begin{equation*}
\kappa_{S}=\frac{R_{1212}}{g} \tag{41}
\end{equation*}
$$

One refers to this conclusion as "The Great Theorem" of Gauss, to the effect that one may compute the curvature of a surface S from the first fundamental form G for S.
14° One can easily check that:

$$
\begin{align*}
R_{j i k \ell} & =-R_{i j k \ell} \\
R_{i j \ell k} & =-R_{i j k \ell} \tag{42}
\end{align*}
$$

Hence, the various (companion) curvature functions $R_{i j k \ell}$ equal $-R_{1212}, 0$, or R_{1212}. Instead of 16 different functions, we have (essentially) just one. For spaces S having dimension greater than 2 , the situation is more complex.

5 Coordinate Transformations

15° The basic functions for this study are the following:

$$
\begin{equation*}
G_{k \ell}(u), \quad K_{k \ell}^{j}(u), \quad \text { and } \quad R_{k \ell m}^{j}(u) \tag{43}
\end{equation*}
$$

They comprise the first fundamental form, the connection forms, and the curvature form. The basic relations:

$$
\begin{equation*}
K_{k \ell}^{j}(u)=\frac{1}{2} G^{j m}(u)\left(\frac{\partial G_{k m}}{\partial u^{\ell}}(u)+\frac{\partial G_{\ell m}}{\partial u^{k}}(u)-\frac{\partial G_{k \ell}}{\partial u^{m}}(u)\right) \tag{44}
\end{equation*}
$$

(45) $R_{k \ell m}^{j}(u)=\left(\frac{\partial K_{k \ell}^{j}}{\partial u^{m}}(u)+K_{k \ell}^{i}(u) K_{i m}^{j}(u)\right)-\left(\frac{\partial K_{k m}^{j}}{\partial u^{\ell}}(u)+K_{k m}^{i}(u) K_{i \ell}^{j}(u)\right)$
relate the connection forms and the curvature form to the first fundamental form. Let us consider what happens when we replace the old coordinates:

$$
u=\left(u^{1}, u^{2}\right)
$$

by new coordinates:

$$
v=\left(v^{1}, v^{2}\right)
$$

where:

$$
\begin{aligned}
& v^{1}=v^{1}\left(u^{1}, u^{2}\right) \\
& v^{2}=v^{2}\left(u^{1}, u^{2}\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
u^{1} & =u^{1}\left(v^{1}, v^{2}\right) \\
u^{2} & =u^{2}\left(v^{1}, v^{2}\right)
\end{aligned}
$$

We wish to calculate:

$$
\bar{G}_{q r}(v), \quad \bar{K}_{q r}^{p}(v), \quad \text { and } \quad \bar{R}_{q r s}^{p}(v)
$$

in terms of:

$$
G_{k \ell}(u), \quad K_{k \ell}^{j}(u), \quad \text { and } \quad R_{k \ell m}^{j}(u)
$$

We begin by noting that:

$$
\bar{H}(v)=H(u)
$$

where \bar{H} is the mapping (carrying an open subset V of \mathbf{R}^{2} to \mathbf{R}^{3}) which parametrizes the surface S in terms of the new coordinates. We have:

$$
\bar{H}_{q}(v)=\frac{\partial u^{k}}{\partial v^{q}}(v) \cdot H_{k}(u)
$$

Hence:

$$
\begin{equation*}
\bar{G}_{q r}(v)=\frac{\partial u^{k}}{\partial v^{q}}(v) \frac{\partial u^{\ell}}{\partial v^{r}}(v) G_{k \ell}(u) \tag{46}
\end{equation*}
$$

Since:

$$
\begin{aligned}
\frac{\partial u^{\ell}}{\partial v^{r}}(v) \frac{\partial v^{r}}{\partial u^{m}}(u) & =\Delta_{m}^{\ell} \\
G_{k m}(u) G^{m n}(u) & =\Delta_{k}^{n} \\
\frac{\partial v^{s}}{\partial u^{k}}(u) \frac{\partial u^{k}}{\partial v^{q}}(v) & =\Delta_{q}^{s}
\end{aligned}
$$

we have:

$$
\left(\frac{\partial u^{k}}{\partial v^{q}}(v) \frac{\partial u^{\ell}}{\partial v^{r}}(v) G_{k \ell}(u)\right)\left(\frac{\partial v^{r}}{\partial u^{m}}(u) \frac{\partial v^{s}}{\partial u^{n}}(u) G^{m n}(u)\right)=\Delta_{q}^{s}
$$

Hence:

$$
\begin{equation*}
\bar{G}^{r s}(v)=\frac{\partial v^{r}}{\partial u^{m}}(u) \frac{\partial v^{s}}{\partial u^{n}}(u) G^{m n}(u) \tag{47}
\end{equation*}
$$

By similar (but more intricate) computations, based upon relations (44), (45), (46), and (47), one can show that:

$$
\begin{equation*}
\bar{K}_{q r}^{p}(v)=\frac{\partial v^{p}}{\partial u^{j}}(u) \frac{\partial u^{k}}{\partial v^{q}}(v) \frac{\partial u^{\ell}}{\partial v^{r}}(v) K_{k \ell}^{j}(u)+\frac{\partial v^{p}}{\partial u^{m}}(u) \frac{\partial^{2} u^{m}}{\partial v^{q} \partial v^{r}}(v) \tag{48}
\end{equation*}
$$

Moreover:

$$
\begin{equation*}
\bar{R}_{q r s}^{p}(v)=\frac{\partial v^{p}}{\partial u^{j}}(u) \frac{\partial u^{k}}{\partial v^{q}}(v) \frac{\partial u^{\ell}}{\partial v^{r}}(v) \frac{\partial u^{m}}{\partial v^{s}}(v) R_{k \ell m}^{j}(u) \tag{49}
\end{equation*}
$$

and:

$$
\begin{equation*}
\bar{R}_{p q r s}(v)=\frac{\partial u^{j}}{\partial v^{p}}(v) \frac{\partial u^{k}}{\partial v^{q}}(v) \frac{\partial u^{\ell}}{\partial v^{r}}(v) \frac{\partial u^{m}}{\partial v^{s}}(v) R_{j k \ell m}(u) \tag{50}
\end{equation*}
$$

16° As an exercise, one should show that:

$$
\begin{equation*}
\frac{\bar{R}_{1212}}{\bar{g}}=\kappa_{S}=\frac{R_{1212}}{g} \tag{51}
\end{equation*}
$$

By relation (51), one infers that the curvature of the surface S is the same, whether computed relative to the coordinates $\left(u^{1}, u^{2}\right)$ or the coordinates $\left(v^{1}, v^{2}\right)$.

