MATHEMATICS 211: THE CHAIN RULE

$1^{\circ} \quad$ Let a, b, and c be positive integers. Let U be an open subset of \mathbf{R}^{a} and let V be an open subset of \mathbf{R}^{b}. Let F be a mapping carrying U to \mathbf{R}^{b} for which $F(U) \subseteq V$ and let G be a mapping carrying V to \mathbf{R}^{c}. Let $H=G \cdot F$ be the the composition of F and G. Of course, H is a mapping carrying U to \mathbf{R}^{c}. Let A be a member of U and let $B=F(A)$. Of course, B is a member of V. Let F be differentiable at A and let G be differentiable at B. Under these assumptions, we will prove that H is differentiable at A and that $D H(A)=D G(B) \cdot D F(A)$.
$2^{\circ} \quad$ Let $K=D F(A)$ and let $L=D G(B)$. Let $M=L \cdot K$. Let ρ, σ, and τ be the functions defined as follows:

$$
\begin{aligned}
& \rho(X)= \begin{cases}\frac{1}{\|X\|}(F(X+A)-F(A)-K(X)) & \text { if } X+A \in U \text { and } X \neq 0 \\
0 & \text { if } X=0\end{cases} \\
& \sigma(Y)= \begin{cases}\frac{1}{\|Y\|}(G(Y+B)-G(B)-L(Y)) & \text { if } Y+B \in V \text { and } Y \neq 0 \\
0 & \text { if } Y=0\end{cases}
\end{aligned}
$$

and:

$$
\tau(X)= \begin{cases}\frac{1}{\|X\|}(H(X+A)-H(A)-M(X)) & \text { if } X+A \in U \text { and } X \neq 0 \\ 0 & \text { if } X=0\end{cases}
$$

By assumption, ρ and σ are continuous at 0 . We must prove that τ is continuous at 0 . To that end, let $Y=F(X+A)-F(A)$. Clearly:

$$
\|Y\| \leq\|X\|\|\rho(X)\|+\|K(X)\| \leq\|X\|(\|\rho(X)\|+\|K\|)
$$

Moreover:

$$
\begin{aligned}
\|X\| \tau(X) & =H(A+X)-H(A)-M(X) \\
& =G(F(X+A))-G(F(A))-M(X) \\
& =G(Y+B)-G(B)-L(K(X)) \\
& =G(Y+B)-G(B)-L(Y-\|X\| \rho(X)) \\
& =G(Y+B)-G(B)-L(Y)+L(\|X\| \rho(X)) \\
& =\|Y\| \sigma(Y)+\|X\| L(\rho(X))
\end{aligned}
$$

Hence:

$$
\|X\|\|\tau(X)\| \leq\|Y\|\|\sigma(Y)\|+\|X\|\|L(\rho(X))\|
$$

Therefore:

$$
\|\tau(X)\| \leq(\|\rho(X)\|+\|K\|)\|\sigma(Y)\|+\|L\|\|\rho(X)\|
$$

It follows that τ is continuous at 0 . That is, H is differentiable at A and $D H(A)=M=$ $L \cdot K=D G(B) \cdot D F(A)$.

