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In July 1960, shortly after his 62nd birthday, the graphic artist M.C. 
Escher completed Angels and Devils, the fourth (and final) woodcut in his 
Circle Limit Series. I have a vivid memory of my first view of a print of 
this astonishing work. Following sensations of surprise and delight, two 
questions rose in my mind. What is the underlying design? What is the 
purpose? Of course, within the world of Art, narrowly interpreted, one 
might regard such questions as irrelevant, even impertinent. However, 
for this particular work of Escher, it seemed to me that such questions 
were precisely what the artist intended to excite in my mind. 

In this essay, I will present answers to the foregoing questions, based 
upon Escher’s articles and letters and upon his workshop drawings. For the 
mathematical aspects of the essay, I will require nothing more but certainly 
nothing less than thoughtful applications of straightedge and compass. 

Capturing Infinity 
The Circle Limit Series of M.C. Escher  BY THOMAS WIETING

Escher completed CLIV, also 
known as Angels and Devils, in 1960.

 The Dutch artist  
Maurits C. Escher  

(1898–1972)
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Capturing Infinity 
In 1959, Escher described, in retrospect, a 
transformation of attitude that had occurred 
at the midpoint of his career: 

I discovered that technical mastery was no 
longer my sole aim, for I was seized by another 
desire, the existence of which I had never sus-
pected. Ideas took hold of me quite unrelated to 
graphic art, notions which so fascinated me that 
I felt driven to communicate them to others. 

The woodcut called Day and Night, com-
pleted in February 1938, may serve as a sym-
bol of the transformation. By any measure, it 
is the most popular of Escher’s works. 

Prior to the transformation, Escher pro-
duced for the most part portraits, landscapes, 
and architectural images, together with com-
mercial designs for items such as postage 
stamps and wrapping paper, executed at an 
ever-rising level of technical skill. However, 
following the transformation, Escher produced 
an inspired stream of the utterly original works 
that are now identified with his name: the illu-
sions, the impossible figures, and, especially, 
the regular divisions (called tessellations) of 
the Euclidean plane into potentially infinite 
populations of fish, reptiles, or birds, of stately 
horsemen or dancing clowns.

Of the tessellations, he wrote: 
This is the richest source of inspiration that I 
have ever struck; nor has it yet dried up. 

However, while immensely pleased in prin-
ciple, Escher was dissatisfied in practice with 
a particular feature of the tessellations. He 
found that the logic of the underlying patterns 

Day and Night (1938) is the most popular of Escher’s works. 

Figure A

Regular Division III (1957) demonstrates Escher’s 
mastery of tessellation. At the same time, he 
was dissatisfied with the way the pattern was 
arbitrarily interrupted at the edges.

would not permit what the real materials of 
his workshop required: a finite boundary. He 
sought a new logic, explicitly visual, by which 
he could organize actually infinite populations 
of his corporeal motifs into a patch of finite 
area. Within the framework of graphic art, he 
sought, he said, to capture infinity. 

Serendipity 
In 1954, the organizing committee for the 
International Congress of Mathematicians 
promoted an unusual special event: an exhi-
bition of the work of Escher at the Stedelijk 
Museum in Amsterdam. In the companion 
catalogue for the exhibition, the committee 
called attention not only to the mathemati-
cal substance of Escher’s tessellations but 
also to their “peculiar charm.” Three years 
later, while writing an article on symme-
try to serve as the presidential address to 
the Royal Society of Canada, the eminent 
mathematician H.S.M. Coxeter recalled the 
exhibition. He wrote to Escher, requesting 
permission to use two of his prints as illus-
trations for the article. On June 21, 1957, 
Escher responded enthusiastically: 

Not only am I willing to give you full permis-
sion to publish reproductions of my regular-
flat-fillings, but I am also proud of your inter-
est in them! 

In the spring of 1958, Coxeter sent to Escher 
a copy of the article he had written. In addi-
tion to the prints of Escher’s “flat-fillings,” 
the article contained the following figure, 
which we shall call Figure A: 

Immediately, Escher saw in the figure a 
realistic method for achieving his goal: to 
capture infinity. For a suitable motif, such 
as an angel or a devil, he might create, in 
method logically precise and in form visually 
pleasing, infinitely many modified copies of 
the motif, with the intended effect that the 
multitude would pack neatly into a disk. 

With straightedge and compass, Escher 
set forth to analyze the figure. The following 
diagram, based upon a workshop drawing, 
suggests his first (no doubt empirical) effort:

Workshop drawing

Escher recognized that the figure is defined 
by a network of infinitely many circular arcs, 
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together with certain diameters, each of which 
meets the circular boundary of the ambient 
disk at right angles. To reproduce the figure, he 
needed to determine the centers and the radii 
of the arcs. Of course, he recognized that the 
centers lie exterior to the disk. 

Failing to progress, Escher set the project 
aside for several months. Then, on Novem-
ber 9, 1958, he wrote a hopeful letter to his 
son George: 

I’m engrossed again in the study of an illus-
tration which I came across in a publication of 
the Canadian professor H.S.M. Coxeter . . . I 
am trying to glean from it a method for reduc-
ing a plane-filling motif which goes from the 
center of a circle out to the edge, where the 
motifs will be infinitely close together. His 
hocus-pocus text is of no use to me at all, 
but the picture can probably help me to pro-
duce a division of the plane which promises 
to become an entirely new variation of my 
series of divisions of the plane. A regular, 
circular division of the plane, logically bor-
dered on all sides by the infinitesimal, is 
something truly beautiful. 

Soon after, by a remarkable empirical effort, 
Escher succeeded in adapting Coxeter’s 
figure to serve as the underlying pattern for 
the first woodcut in his Circle Limit Series, 
CLI (November 1958). 

One can detect the design for CLI in the 
following Figure B, closely related to Figure A: 

Frustration 
However, Escher had not yet found the 
principles of construction that underlie 
Figures A and B. While he could reproduce 
the figures empirically, he could not yet 
construct them ab initio, nor could he con-
struct variations of them. He sought Cox-
eter’s help. What followed was a comedy 
of good intention and miscommunication. 
The artist hoped for the particular, in prac-
tical terms; the mathematician offered the 
general, in esoteric terms. On December 5, 
1958, Escher wrote to Coxeter: 

Though the text of your article on “Crystal 
Symmetry and its Generalizations” is much 
too learned for a simple, self-made plane 
pattern-man like me, some of the text illustra-
tions and especially Figure 7, [that is, Figure A] 
gave me quite a shock. 

Since a long time I am interested in pat-
terns with “motifs” getting smaller and small-
er till they reach the limit of infinite smallness. 
The question is relatively simple if the limit is 
a point in the center of a pattern. Also, a line-
limit is not new to me, but I was never able to 
make a pattern in which each “blot” is getting 
smaller gradually from a center towards the 
outside circle-limit, as shows your Figure 7. 

I tried to find out how this figure was geo-
metrically constructed, but I succeeded only in 
finding the centers and the radii of the largest 
inner circles (see enclosure). If you could give me 
a simple explanation how to construct the fol-
lowing circles, whose centers approach gradually 
from the outside till they reach the limit, I should 
be immensely pleased and very thankful to you! 
Are there other systems besides this one to reach 
a circle-limit? 

Nevertheless I used your model for a large 
woodcut (CLI), of which I executed only a sector 
of 120 degrees in wood, which I printed three 

Escher completed CLI, the first in the 
Circle Limit Series, in 1958.

Regular Division VI (1957) illustrates Escher’s 
ability to execute a line limit.

Capturing Infinity continued

Escher based the design of CLI on Figure B, 
which he derived from Figure A.  

The two are superimposed in Figure AB.

Figure B

Figure AB

times. I am sending you a copy of it, together 
with another little one (Regular Division VI ), 
illustrating a line-limit case. 

On December 29, 1958, Coxeter replied: 

I am glad you like my Figure 7, and interest-
ed that you succeeded in reconstructing so 
much of the surrounding “skeleton” which 
serves to locate the centers of the circles. 
This can be continued in the same manner. 
For instance, the point that I have marked 
on your drawing (with a red • on the back of 
the page) lies on three of your circles with 
centers 1, 4, 5. These centers therefore lie on a 
straight line (which I have drawn faintly in red) 
and the fourth circle through the red point must 
have its center on this same red line. 

In answer to your question “Are there other 
systems besides this one to reach a circle 
limit?” I say yes, infinitely many! This partic-
ular pattern [that is, Figure A] is denoted by 
{4, 6} because there are 4 white and 4 shaded 
triangles coming together at some points, 6 
and 6 at others. But such patterns {p, q} exist 
for all greater values of p and q and also for p 
= 3 and q = 7,8,9,... A different but related pat-
tern, called <<p, q>> is obtained by drawing 
new circles through the “right angle” points, 
where just 2 white and 2 shaded triangles 
come together. I enclose a spare copy of <<3, 
7>>… If you like this pattern with its alternate 
triangles and heptagons, you can easily derive 
from {4, 6} the analogue <<4, 6>>, which con-
sists of squares and hexagons. 

One may ask why Coxeter would send 
Escher a pattern featuring sevenfold sym-
metry, even if merely to serve as an analogy. 
Such a pattern cannot be constructed with 
straightedge and compass. It could only 
cause confusion for Escher. 

However, Coxeter did present, though 
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very briefly, the principle that Escher 
sought. I have displayed the essential sen-
tence in italics. In due course, I will show 
that the sentence holds the key to decipher-
ing Coxeter’s figure. Clearly, Escher did not 
understand its significance at that time. 

On February 15, 1959, Escher wrote 
again, in frustration, to his son George: 

Coxeter’s letter shows that an infinite num-
ber of other systems is possible and that, 
instead of the values 2 and 3, an infinite num-
ber of higher values can be used as a basis. He 
encloses an example, using the values 3 and 7 
of all things! However, this odd 7 is no use to 
me at all; I long for 2 and 4 (or 4 and 8), because 
I can use these to fill a plane in such a way that 
all the animal figures whose body axes lie in 
the same circle also have the same “colour,” 
whereas, in the other example (CLI), 2 white 
ones and 2 black ones constantly alternate. 
My great enthusiasm for this sort of picture 
and my tenacity in pursuing the study will per-
haps lead to a satisfactory solution in the end. 
Although Coxeter could help me by saying just 
one word, I prefer to find it myself for the time 
being, also because I am so often at cross pur-
poses with those theoretical mathematicians, 
on a variety of points. In addition, it seems to 
be very difficult for Coxeter to write intelligibly 
for a layman. Finally, no matter how difficult it 
is, I feel all the more satisfaction from solving a 
problem like this in my own bumbling fashion. 
But the sad and frustrating fact remains that 
these days I’m starting to speak a language 
which is understood by very few people. It 
makes me feel increasingly lonely. After all, I 
no longer belong anywhere. The mathemati-
cians may be friendly and interested and give 
me a fatherly pat on the back, but in the end 
I am only a bungler to them. “Artistic” people 
mainly become irritated. 

Success
Escher’s enthusiasm and tenacity did indeed 
prove sufficient. Somehow, during the fol-
lowing months, he taught himself, in terms 
of the straightedge and the compass, to con-
struct not only Coxeter’s figure but at least 
one variation of it as well. In March 1959, 
he completed the second of the woodcuts in 
his Circle Limit Series.

The simplistic design of the work sug-
gests that it may have served as a practice 
run for its successors. In any case, Escher 
spoke of it in humorous terms: 

Really, this version ought to be painted on 
the inside surface of a half-sphere. I offered 
it to Pope Paul, so that he could decorate the 
inside of the cupola of St. Peter’s with it. Just 
imagine an infinite number of crosses hang-
ing over your head! But Paul didn’t want it. 

In December 1959, he completed the 
third in the series, the intriguing CLIII, titled 
The Miraculous Draught of Fishes.

He described the work eloquently, in 
words that reveal the craftsman’s pride of 
achievement: 

In the colored woodcut Circle Limit III the 
shortcomings of Circle Limit I are largely elimi-
nated. We now have none but “through traffic” 
series, and all the fish belonging to one series 
have the same color and swim after each other 
head to tail along a circular route from edge 
to edge. The nearer they get to the center the 
larger they become. Four colors are needed 
so that each row can be in complete contrast 
to its surroundings. As all these strings of fish 
shoot up like rockets from the infinite distance 
at right angles from the boundary and fall back 
again whence they came, not one single com-
ponent reaches the edge. For beyond that there 

Despite its simplistic motif, CLII (1959) represented an 
artistic breakthrough: Escher was now able to construct 

variations of Coxeter’s figures.

Six months after his breakthrough with CLII, 
Escher produced the more sophisticated CLIII, 

The Miraculous Draught of Fishes. (1959).

Figure C

Figure D

Figure CD

is “absolute nothingness.” And yet this round 
world cannot exist without the emptiness 
around it, not simply because “within” presup-
poses “without,” but also because it is out there 
in the “nothingness” that the center points of 
the arcs that go to build up the framework are 
fixed with such geometric exactitude. 

As I have noted, Escher completed the last 
of the Circle Limit Series, CLIV, in July 1960. 
Of this work, he wrote very little of substance: 

Here, too, we have the components diminishing 
in size as they move outwards. The six largest 
(three white angels and three black devils) are 
arranged about the center and radiate from it. 
The disc is divided into six sections in which, 
turn and turn about, the angels on a black 
background and then the devils on a white one, 
gain the upper hand. In this way, heaven and 
hell change place six times. In the intermediate 
“earthly” stages, they are equivalent. 

Perhaps Escher intended that this woodcut 
should inspire not commentary but con-
templation. 

Remarkably, while CLI and CLIV are 
based upon Figures A and B, CLII and CLIII 
are based upon the following subtle varia-
tions of them: 

March 2010  Reed magazine  25



Straightedge and Compass
Let me describe how I myself would 
reconstruct the critical Figure A, with 
straightedge and compass. Such an 
exercise might shed light on Escher’s 
procedures. To that end, I will suppress 
my knowledge of mathematics beyond 
elementary geometry. However, at a 
certain point, I will allow myself to be, 
like Escher, preternaturally clever. 

To begin, let me denote by H the 
disk that serves as the foundation for 
the figure. Moreover, let me declare 
that the radius of H is simply one unit. 
I note that there are six diameters, 
separated in succession by angles of 
30 degrees, that emphasize the rota-
tional symmetry of the figure. I also 
note that, among the circular arcs 
that define the figure, there are six for 
which the radii are largest. By rough 
measurement, I conjecture that the 
radii of  these arcs equal the radius of 
H and that the centers of the arcs lie √2 
units from the center of H. I display my 
conjectures in the following diagram: 

Step 1 

The bold brown disk is H. Clearly, 
the six red circles meet the boundary 
of H at right angles. By comparison 
with Figure A, I see that I am on the 
right track. 

The diagram calls out for its own 
elaboration. I note the points of inter
section of the six red circles. I draw 
the line segments joining, in succes-
sion, the centers of these circles and I 
mark the midpoints of the segments. 
Using these midpoints and the points 
of intersection just mentioned, I draw 
six new circles. Then, from the new 
circles, I do it all again. In the follow-
ing figure, I display the results of my 
work: the first set of new circles in 
green; the second, in blue. 

Step 2 

Now the diagram falls mute. I 
see that the blue circles offer no new 
points of intersection from which 
to repeat my mechanical maneu-
vers. Of course, the red circles and 
the blue circles offer new points of 
intersection, but it is not clear what 
to do with them. Perhaps Escher 
encountered this obstacle, called 
upon Coxeter for help, but then 
retired to his workshop to confront 
the problem on his own. In any case, 
I must now find the general princi-
ples that underlie the construction, 
by straightedge and compass, of the 
circles that meet the boundary of H 
at right angles. I shall refer to these 
circles as hypercircles. 

To that end, I propose the follow-
ing diagram: 

The Polar Construction 

Again, the bold brown disk is H. 
The perpendicular white lines set the 
orientation for the construction. I con-
tend that, from the red point or the 
blue point, I can proceed to construct 
the entire diagram. In fact, from the 
red point, I can draw the white dogleg. 
From the blue point, I can draw the blue 
circle. In either case, I can proceed by 
obvious steps to complete the diagram. 
Now, with the confidence of experience, 
I declare that the red circle is a hyper-
circle. Obviously, it meets the horizontal 
white diameter at right angles. 

I shall refer to the foregoing con-
struction as the Polar Construction. In 
relation to it, I shall require certain ter-
minology. I shall refer to the red point 
as the base point, to the blue point as 
the polar point, and to the white point 
as the point inverse to the base point. 
I shall refer to the red circle as the 
hypercircle, to the (vertical) red and 
blue lines as the base line and the polar 
line, respectively, and to the (horizon-
tal) white line as the diameter. 

By design, the polar constructions 
and the hypercircles stand in perfect 
correspondence, each determining 
the other. However, to apply a polar 
construction to construct a particu-
lar hypercircle passing through an 
arbitrary point, one must first locate 
the base point for the construction, 
that is, the point on the hypercircle 
that lies closest to the center of H. In 
practice, that may be difficult to do. I 
require greater flexibility. 

By experimentation with the Polar 
Construction, I discover the elegant 
Principle of Polar Lines: 

If several hypercircles pass through a 
common point then their centers must 
lie on a common line, in fact, the polar 

line for the common point. 

and a specialized but useful corollary, 
the Principle of Base Lines: 

If two hypercircles meet at right angles 
then the center of the one must lie on 
the base line of the other. 

The following diagram illustrates 
both principles: 

Principles of Polar/Base Lines 

For the first principle, the com-
mon point is the red base point for a 
polar construction and the common 
line is the corresponding blue polar 
line. Moreover, the two green hyper-
circles pass through not only the 
base point but also the white point 
inverse to it. Finally, in accord with 
the facts of elementary geometry, 
the angle of intersection between 
the two hypercircles coincides with 
the angle between the two corre-
sponding green radii. 

For the second principle, the 
orange base line for the lower hyper-
circle passes through the center of the 
upper hypercircle. 

At this point, I should note that, 
in his letter of December 29, 1958, 
Coxeter offered the Principle of Polar 
Lines to Escher. 

With the foregoing principles in 
mind, I return to the former point of 
stagnation. I engage the diagram, 
as if in a game of chess. For any new 
point of intersection between hyper-
circles offered by the diagram, I draw 
the corresponding polar construc-
tion. I determine which among the 
other hypercircles passing through 
the point are required for progress. 
Applying the Principle of Polar Lines, 
I draw them. (Sometimes, the Prin-
ciple of Base Lines provides a short-
cut. Sometimes, good fortune plays 
a role. These elements lend a certain 
piquancy to the project.) That done, 
I look for new points of intersection 
offered by the diagram: those defined 
by the new hypercircles that I have 
drawn. And so I continue, relent-
lessly, until I encounter a failure of 
motor control, of visual acuity, or of 
willpower. 

I present the following diagram, 
with a challenge: Justify the drawing 
of the orange and purple circles. 

Constructing the Scaffold
Escher wrote much about the designs for his regular divisions of 

the Euclidean plane, but nothing about the principles underlying 

the Circle Limit Series. He left only cryptic glimpses. From his 

workshop drawings, one can see that, in effect, he created a 

“scaffold” of lines in the “nothingness” exterior to the basic disk, 

from which he could draw the circles that compose the desired 

figure. However, one cannot determine with certainty how he 

found his way. Did he reconsider Coxeter’s letter? Did he discover 

(by trial and error) and formulate (in precise terms) the principles 

which underlie the design of Figures A, B, C, and D? Lacking the 

certain, I will offer the plausible. 
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For instance, in Figure D and in CLIII, the 
eight vertices of the central octagon correspond, 
alternately, to threefold focal points of the noses 
and the wings of the flying fish. Similarly, in Fig-
ure B and in CLIV, the six vertices of the central 
hexagon correspond to fourfold focal points of 
the wing tips of the angels and the devils. 

Clearly, Escher had found and mastered 
his new logic. Within the framework of 
graphic art, by his own resources, he had 
captured infinity. 

A Subjective View 
Mathematicians cite CLIII as the most inter-
esting of the woodcuts of the Circle Limit 
Series. They enjoy especially the application 
of color, because it enriches the interpreta-
tion of symmetry, and they are delighted by 
the various implicit elements of surprise. 
Indeed, the redoubtable Coxeter called 
attention to one such element, namely, that 
the white circular arcs in CLIII, which guide 
the “traffic flow” of the flying fish, meet the 
boundary of the ambient disk not at right 
angles but at angles of roughly 80 degrees, 
in contradiction with Escher’s prior, rather 
more poetic assertion. Coxeter wrote: 

Escher’s integrity is revealed in the fact that he 
drew this angle correctly even though he appar-
ently believed that it ought to be 90 degrees. 

In my estimation, however, CLIV stands 
alone. It is the most mature of the woodcuts 
of the Circle Limit Series. It inspires not active 
analysis but passive contemplation. It speaks 
not in the brass tones of the cartoon but in the 
gold tones of the graceful and the grotesque. 
Like its relatives in the ornamental art of 
the Middle East, it prepares the mind of the 
observer to see, in the local finite, hints of the 
global infinite. It is, in fact, a beautiful visual 
synthesis of Escher’s meditation on infinity: 

We are incapable of imagining that time could 
ever stop. For us, even if the earth should cease 
turning on its axis and revolving around the sun, 
even if there were no longer days and nights, 
summers and winters, time would continue to 
flow on eternally. We find it impossible to imagine 
that somewhere beyond the farthest stars of the 
night sky there should come an end to space, a 
frontier beyond which there is nothing more . . . 
For this reason, as long as there have been men to 
lie and sit and stand upon this globe, or to crawl 
and walk upon it, or to sail and ride and fly across 
it, or to fly away from it, we have held firmly to the 
notion of a hereafter: a purgatory, heaven, hell, 
rebirth, and nirvana, all of which must continue 
to be everlasting in time and infinite in space. 

Capturing Infinity continued

A challenge 

The Circle Limit Series requires 
refined ground plans, defined by 
legions of hypercircles. In preparing 
the plans, Escher gave new mean-
ing to the words “enthusiasm”  
and “tenacity.” 

To draw such a figure as Figure A 
or Figure C, one must know where to 
begin. In primitive terms, one must be 
able to construct the triangles at the 
centers of the figures. For the case of 
Figure A, the construction is simple. 
As described, one begins with a hyper-
circle for which the radius is one unit 
and for which the center lies √2 units 
from the center of H. However, for the 
case of Figure C, the construction is 
more difficult. Of course, Escher must 
have found a way to do it, since he 
used the figure as the ground plan for 
CLII and CLIII. 

In any case, I have posted a suit-
able construction on my website: 
people.reed.edu/~wieting/essays/
HyperTriangles.pdf. 

Perhaps it coincides with Escher’s 
construction. 

Detail of a challenge

The Hyperbolic Plane 
On May 1, 1960, Escher sent a print of 

CLIII to Coxeter. Again, his words reveal his 
pride of achievement: 

A minimum of four woodblocks, one for every 
color and a fifth for the black lines, was needed. 
Every block was roughly the form of a segment 
of 90 degrees. This implicates that the complete 
print is composed of 4 x 5 = 20 printings. 

Responding on May 16, 1960, Coxeter 
expressed thanks for the gift and admiration 
for the print. Then, in a virtuoso display of 
informed seeing, he described, mathemati-
cally, the mathematical elements implicit in 
CLIII, citing not only his own publications 
but also W. Burnside’s Theory of Groups for 
good measure. For Coxeter, it was the ulti-
mate act of respect. For Escher, however, it 
was yet another encounter with the baffling 
world of mathematical abstraction. Twelve 
days later, he wrote to George: 

I had an enthusiastic letter from Coxeter 
about my colored fish, which I sent him. 
Three pages of explanation of what I actually 
did. . . . It’s a pity that I understand nothing, 
absolutely nothing of it. 

One can only wonder at Coxeter’s insensi-
tivity to the context of Escher’s work: to the 
steady applications of straightedge and com-
pass; to the sound of the gouge on pearwood 
and the smell of printer’s ink. That said, one 
can only wonder at Escher’s stubborn refusal 
to explore what Coxeter offered: an invita-
tion to the hyperbolic plane. 

Let me elaborate. For more than two mil-
lennia, the five postulates of Euclid had gov-
erned the study of plane geometry. The first 
three postulates were homespun rules that 
activated the straightedge and the compass. 
The fourth and fifth postulates were more 
sophisticated rules that entailed the funda-
mental Principle of Parallels, characteristic 
of Euclidean geometry: 

For any point P and for any straight line L, if 
P does not lie on L then there is precisely one 
straight line M such that P lies on M and such 
that L and M are parallel. 

Specifically, the fourth postulate entailed 
the existence of the parallel M and the fifth 
postulate entailed the uniqueness. 

The following diagram illustrates the 
Principle of Parallels in Euclidean geometry. 
The rectangle E represents the conventional 
model of the Euclidean plane: a perfectly flat 
drawing board that extends, in our imagina-
tion, indefinitely in all directions. The point 
P and the straight line L appear in red. The 
straight line M appears in blue. 
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Euclidean parallels 

In the beginning, all mathematicians 
regarded the postulates of Euclid as incontro-
vertibly true. However, they observed that the 
fifth postulate offered nothing “constructive” 
and they believed that it was redundant. They 
sought to prove the fifth postulate from the 
first four. In effect, they sought to prove that 
the existence of the parallel M entailed its own 
uniqueness. To that end, they applied the most 
flexible of the logician’s methods: reductio ad 
absurdum. They supposed that the fifth postu-
late was false and they sought to derive from 
that supposition (together, of course, with the 
first four postulates) a contradiction. Succeed-
ing, they would conclude that the fifth postu-
late followed from the first four. For more than 
two millennia, many sought and all failed. 

At the turn of the 18th century, the grip 
of belief in the incontrovertible truth of 
the fifth postulate began to weaken. Many 
mathematicians came to believe that the 
sought contradiction did not exist. They 
came to regard the propositions that they 
had proved from the negation of the fifth 
postulate not as absurdities leading ulti-
mately to a presumed contradiction but as 
provocative elements of a new geometry. 

Swiftly, the new geometry acquired dis-
ciples, notably, the young Russian mathemati-
cian N. Lobachevsky and the young Hungar-
ian mathematician J. Bolyai. They and many 
others proved startling propositions at vari-
ance with the familiar propositions of Euclid-
ean geometry. The German savant K. Gauss 
had pondered these matters for 30 years. In 
1824, he wrote to his friend F. Taurinus: 

The theorems of this geometry appear to be 
paradoxical and, to the uninitiated, absurd; 
but calm, steady reflection reveals that they 
contain nothing at all impossible. For exam-
ple, the three angles of a triangle become 
as small as one wishes, if only the sides are 
taken large enough; and the area of a triangle 
can never exceed a definite limit. 

However, the specter of contradiction, once 
sought by all but now by many feared, contin-
ued to cast its shadow over the planes. Fifty 
years would pass before mathematicians found 

a method by which they could, decisively, ban-
ish the specter: the method of models. 

Let me explain the method in terms of a 
case study. At the turn of the 19th century, 
the French savant H. Poincaré suggested a 
novel interpretation of the points and the 
straight lines of the new geometry, using the 
elements of the Euclidean plane E itself. He 
declared that the points of the new geom-
etry shall be interpreted as the points of 
the unit disk H, the same disk that would, 
in due course, serve Escher in his plans for 
the Circle Limit Series. He declared that the 
straight lines of the new geometry shall be 
interpreted as the arcs of circles that meet 
the boundary of H at right angles. 

“When I use a word,” Humpty Dumpty said in 
rather a scornful tone, “it means just what I 
choose it to mean—neither more nor less.”

These interpretations can be justified, in a 
sense, by introducing an unusual method 
for measuring distance between points in 
H, with respect to which the shortest paths 
between points prove to be, in fact, subarcs 
of arcs of the sort just described. Moreover, 
the lengths of the various straight lines 
prove to be infinite. The same is true of the 
area of H. 

Poincaré then proved that H served 
as a model for the new geometry. That is, 
he proved that the first four postulates of 
Euclid are true in H and the fifth postulate is 
false. He concluded that if, by a certain argu-
ment, one should find a contradiction in the 
new geometry, then, by the same argument, 
one would find a contradiction in Euclidean 
geometry as well. In turn, he concluded that 
if Euclidean geometry is free of contradic-
tion, then the new geometry is also free of 
contradiction. 

By similar (though somewhat more sub-
tle) maneuvers, one can show the converse: 
if the new geometry is free of contradiction, 
then Euclidean geometry is also free of con-
tradiction. 

The following diagram illustrates the 
Principle of Parallels in the new geometry: 

For any point P and for any straight line L, if P 
does not lie on L then there are many straight 
lines M such that P lies on M and such that L 
and M are parallel. 

The disk H represents the model of the 
hyperbolic plane designed by Poincaré. The 
point P and the straight line L appear in red. 
Various parallels M appear in blue while the 
two parallels that meet L “at infinity” appear 
in green. 

Hyperbolic parallels 

After more than two millennia of conten-
tions to the contrary, we now know that the 
Euclidean plane is not the only rationally 
compelling context for the study of plane 
geometry. From a logical point of view, the 
Euclidean geometry and the new geometry, 
called hyperbolic, are equally tenable. 

In light of the foregoing elaboration, I 
can set Escher’s Circle Limit Series in 
perspective by describing the striking 
contrast between regular tessellations 

of the Euclidean plane and regular tessella-
tions of the hyperbolic plane. Of the former, 
there are just three instances: the tessella-
tion T, defined by the regular 3-gon (that 
is, the equilateral triangle); the tessellation 
H, defined by the regular 6-gon (that is, the 
regular hexagon); and the tessellation S, 
defined by the regular 4-gon (better known 
as the square). These are the ground forms for 
all tessellations of the Euclidean plane. The 
tessellations T and H are mutually “dual,” in 
the sense that each determines the other by 
drawing line segments between midpoints of 
cells. In that same sense, the tessellation S is 
“self-dual.” In the following figures, I display 
the tessellations T and H superimposed, and 
the tessellation S in calm isolation: 

Capturing Infinity continued

Figure TH   

Figure S 
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Of the hyperbolic plane, however, there 
are infinitely many tessellations, with prop-
erties that defy visualization. Indeed, for 
any positive integers p and q for which 
(p - 2)(q - 2) exceeds 4, there is a regular tes-
sellation, called (p,q), by regular p-gons, q of 
which turn about each vertex. The following 
two illustrations suggest the superposition, 
Figure B, of the mutually dual tessellations 
(4,6) and (6,4) and the superposition, Figure 
D, of the mutually dual tessellations (3,8) 
and (8,3). One can see that these are the 
tessellations that served as Escher’s ground 
plans for the Circle Limit Series: 

In the first figure, one finds regular 4-gons 
(in red), six of which turn about each vertex; 
and regular 6-gons (in blue), four of which turn 
about each vertex. In the second figure, one 
finds regular 3-gons (in red), eight of which 
turn about each vertex; and regular 8-gons (in 
blue), three of which turn about each vertex. 

For the regular tessellations of the Euclid-
ean plane, the various cells of a given color are, 
plain to see, mutually congruent. Remarkably, 
for the regular tessellations of the hyperbol-
ic plane, the same is true. Of course, to the 
Euclidean eye, the latter assertion would seem 
to be wildly false. However, to the hyperbolic 
eye, conditioned to the “unusual method” of 
measuring distance, the assertion is true. 

Of course, the assertion of congruence 
applies just as well to the various motifs that 
compose the patterns of the Circle Limit 
Series. Although there is no evidence that 
Escher understood this assertion, I am sure 
that he would have been delighted by the 
idea of a hyperbolic eye that would confirm his 

procedure for capturing infinity and would 
refine its meaning. 

Conclusion 
Seeking a new visual logic by which to 
“capture infinity,” Escher stepped, without 
foreknowledge, from the Euclidean plane 
to the hyperbolic plane. Of the former, he 
was the master; in the latter, a novice. Nev-
ertheless, his acquired insights yielded two 
among his most interesting works: CLIII, 
The Miraculous Draught of Fishes, and CLIV, 
Angels and Devils. 

Escher devoted 25 years of his life to the 
development of striking, perplexing images 
and patterns: those that so fascinated him 
that he “felt driven to communicate them to 
others.” In retrospect, it seems to me alto-
gether fitting and proper that non-Euclidean 
geometry should have served, at least implic-
itly, as the inspiration for his later works. 

Coda 
In my imagination, I see the crystal spheres 
of Art and Mathematics rotating rapidly 
about their axes and revolving slowly about 
their center of mass, in the pure aether 
surrounding them. I see ribbons of light 
flash between them and within these the 
reflections, the cryptic images of diamantine 
forms sparkle and shimmer. As if in a dream, 
I try to decipher the images: simply, deeply 
to understand. 
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Hand with Reflecting Sphere (1935)

Escher contemplates Angels and Devils in his study.
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