THE CENTRAL LIMIT THEOREM

01° Let (X, \mathcal{A}, μ) be a Probability Space. By definition, μ is a probability measure:

$$\mu(X) = 1$$

Let us introduce a sequence:

$$F: f_1, f_2, \ldots, f_i, \ldots$$

of Random Variables defined on X. Let

$$\nu_1, \ \nu_2, \ \ldots, \nu_i, \ \ldots$$

be the corresponding sequence of probability measures (called Distributions) on \mathbf{R} , defined by forward projection:

$$\nu_j \equiv (f_j)_*(\mu) \qquad (j \in \mathbf{Z}^+)$$

In turn, let:

$$\hat{\nu}_1, \; \hat{\nu}_2, \; \ldots, \hat{\nu}_j, \; \ldots$$

be the corresponding sequence of Characteristic Functions defined on ${\bf R}$ as follows:

$$\hat{\nu}_j(y) = \int_{\mathbf{R}} exp(iyw)\nu_j(dw) \qquad (j \in \mathbf{Z}^+, \ y \in \mathbf{R})$$

02° We assume that the sequence F is Identically Distributed, that is, that there is a common probability measure ν on ${\bf R}$ such that:

$$\nu_i = \nu \qquad (j \in \mathbf{Z}^+)$$

We also assume that F is Independent, that is, that the Joint Distributions are the products of the corresponding Marginals:

$$(f_1 \times \cdots \times f_k)_*(\mu) = \nu_1 \times \cdots \times \nu_k = \nu \times \cdots \times \nu \qquad (k \in \mathbf{Z}^+)$$

where:

$$(f_1 \times \dots \times f_k)(\xi) \equiv (f_1(\xi), \dots, f_k(\xi))$$
 $(\xi \in X)$

Finally, we assume that the common distribution ν is Standard, that is, that:

$$m \equiv \int_{\mathbf{R}} w \nu(dw) = 0, \quad s^2 \equiv \int_{\mathbf{R}} (w - m)^2 \nu(dw) = 1$$

We summarize the foregoing assumptions by saying that F is IIDS.

 03° Now let:

$$\Phi: \qquad \phi_1, \ \phi_2, \ \ldots, \phi_k, \ \ldots$$

be the modified sequence of partial sums for F, defined as follows:

$$\phi_k \equiv \frac{1}{\sqrt{k}}(f_1 + \dots + f_k) \qquad (k \in \mathbf{Z}^+)$$

Let:

$$n_1, n_2, \ldots, n_k, \ldots$$

be the corresponding sequence of distributions, defined as usual:

$$n_k \equiv (\phi_k)_*(\mu) \qquad (k \in \mathbf{Z}^+)$$

and let:

$$\hat{n}_1, \; \hat{n}_2, \; \ldots, \hat{n}_k, \; \ldots$$

be the corresponding sequence of characteristic functions:

$$\hat{n}_k(y) = \int_{\mathbf{R}} exp(iyw)n_k(dw) \qquad (k \in \mathbf{Z}^+, \ y \in \mathbf{R})$$

One can easily check that:

(1)
$$\hat{n}_k(y) = (\hat{\nu}(\frac{1}{\sqrt{k}}y))^k \qquad (k \in \mathbf{Z}^+)$$

 04° Since ν is standard, we find that:

$$\hat{\nu}(0) = 1, \ \hat{\nu}'(0) = im = 0, \ \hat{\nu}''(0) = -s^2 = -1$$

By Taylor's Theorem:

$$\hat{\nu}(\frac{1}{\sqrt{k}}y) = \hat{\nu}(0) + \hat{\nu}'(0)\frac{1}{\sqrt{k}}y + \frac{1}{2}\hat{\nu}''(u_k)(\frac{1}{\sqrt{k}}y)^2$$
$$= 1 + \frac{1}{k}\hat{\nu}''(u_k)\frac{1}{2}y^2$$

where u_k is a suitable number between 0 and $(1/\sqrt{k})y$. Now it is plain that:

(2)
$$\lim_{k \to \infty} \hat{n}_k(y) = \lim_{k \to \infty} \left(1 + \frac{1}{k} t_k\right)^k = \exp\left(-\frac{1}{2} y^2\right) \qquad (y \in \mathbf{R})$$

where:

$$t_k \equiv \hat{\nu}''(u_k) \frac{1}{2} y^2$$

 05° At this point, let us review the Normal Distribution:

$$\rho(B) = \int_{B} \frac{1}{\sqrt{2\pi}} exp(-\frac{1}{2}w^{2})dw \qquad (w \in \mathbf{R})$$

where B is any borel subset of \mathbf{R} . By common knowledge:

(3)
$$\hat{\rho}(y) = exp(-\frac{1}{2}y^2) \qquad (y \in \mathbf{R})$$

By relations (1), (2), and (3), we find that the sequence:

$$\hat{n}_1, \ \hat{n}_2, \ \ldots, \hat{n}_k, \ \ldots$$

converges pointwise to $\hat{\rho}$:

(4)
$$\lim_{k \to \infty} \hat{n}_k(y) = \hat{\rho}(y) \qquad (y \in \mathbf{R})$$

06° By the Continuity Theorem of Levy, the foregoing conclusion proves to be equivalent to the assertion that the sequence:

$$n_1, n_2, \ldots, n_k, \ldots$$

of distributions converges Weakly to the normal distribution ρ , that is, that, for every borel subset B of **R**, if $\rho(per(B)) = 0$ then:

$$\lim_{k \to \infty} n_k(B) = \rho(B)$$

In particular, B may be any interval (a,b) in ${\bf R}$. Reviewing the definitions, we conclude that:

$$\lim_{k \to \infty} \mu(\{\xi \in X : a < \frac{1}{\sqrt{k}} (f_1(\xi) + \dots + f_k(\xi)) < b\})$$

$$= \int_a^b \frac{1}{\sqrt{2\pi}} exp(-\frac{1}{2}w^2) dw$$

The foregoing relation expresses the essential features of the Central Limit Theorem.