
CHAPTER 1

ANALYTIC BOREL SPACES

Let X be an arbitrary topological space. Let T be the given topology on X
and let B be the borel algebra on X generated by T . With regard to B, one
may view X as a borel space. One then refers to X as the borel space derived
from the topological space X . In this chapter, we will introduce the class of
separable metrizable topological spaces and the corresponding derived class,
consisting precisely of the separated countably generated borel spaces. We will
then isolate the intended subclasses of standard and of analytic topological
spaces and the corresponding derived classes of standard and of analytic borel
spaces.

1.1 POLISH TOPOLOGICAL SPACES

Preliminaries

01◦ Let X be a borel space and let B be the given borel algebra on X . One
says that X is separated iff, for any x and y in X , if x 6= y then there is some
Y in B such that x ∈ Y and y ∈ X\Y . One says that X is countably generated

iff B itself is countably generated.

Theorem 1 For each separable metrizable topological space X , the de-
rived borel space is separated and countably generated. Conversely, for each
separated countably generated borel space X , X derives from a separable
metrizable (even totally disconnected) topological space.

Let X be a separable metrizable topological space. Let T be the given topol-
ogy on X and let B be the borel algebra on X generated by T . Let Z be
any countable base for T . Obviously, Z generates B. Moreover, for any x
and y in X , if x 6= y then there is an open subset Y of X such that x ∈ Y
and y ∈ X\Y . Hence, the derived borel space X is separated and countably
generated.
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2 1 ANALYTIC BOREL SPACES

02◦ Conversely, let X be a separated countably generated borel space. Let
B be the given borel algebra on X . Let Z be any countable subfamily of B
which generates B and which meets the following condition:

(•) for each subset Z of X , Z ∈ Z iff X\Z ∈ Z

Let T be the topology on X generated by Z. Let us emphasize that the sets
in T have the form:

∞
⋃

j=1

(Zj1 ∩ Zj2 ∩ · · · ∩ Zjℓj )

where the sets Zjk are drawn from Z. With regard to T , one may view X as a
topological space. Clearly, Z ⊆ T ⊆ B, so T generates B. Let x and y be any
members of X for which x 6= y. Let Bxy be the subfamily of B consisting of
all borel subsets Y of X such that either both x ∈ Y and y ∈ Y or both x 6∈ Y
and y 6∈ Y . Obviously, Bxy is a borel algebra on X . If Z were a subfamily of
Bxy then Bxy would equal B, in contradiction with the assumption that X is
separated. Hence, Z is not a subfamily of Bxy. By condition (•), there exists
some Z in Z such that x ∈ Z and y ∈ X\Z. It follows that X is (separable
and) hausdorff. By design, the members of Z are clopen (that is, closed and
open) subsets of X . Hence, X is totally disconnected. It follows that X is
regular. By the Theorem of Urysohn, X is metrizable. •

03◦ Two separable metrizable topological spaces X ′ and X ′′ may have the
same underlying set X and may determine the same borel space X but they
may not be homeomorphic. In fact, Theorem 1 shows that one may always
take X ′′ to be totally disconnected (whether or not X ′ is such).

Definition

04◦ Let X be a separable metrizable topological space. Let T be the given
topology on X . It may happen that, among the various metrics on X which
define T , there exists one (but then many) with respect to which the corre-
sponding metric space is complete. In such a context, one refers to X as a
pōlish topological space. One also refers to any one of the preferred metrics
on X as pōlish.

05◦ Clearly, the various cartesian topological spaces Rp (where p is any pos-
itive integer) are pōlish. In fact, every separable locally compact topological
space is pōlish. [ See problem 8.5◦. ] In due course, we will develop many
other examples, some of which involve spaces the members of which are sets,
mappings, or measures.

Properties of Pōlish Topological Spaces
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06◦ Now let A be a countable set and let {Xa}a∈A be an indexed family of
pōlish topological spaces. Let us consider the topological product:

X :=
∏

a∈A

Xa

defined in the usual manner. Of course, X is separable and metrizable. For
each a in A, let da be a pōlish metric on Xa. Let {ca}a∈A be a summable
family of positive real numbers, indexed by A. Let d be the metric on the
product X , defined as follows:

d(x, y) :=
∑

a∈A

ca min{1, da(xa, ya)} ((x, y) ∈ X ×X)

Of course, for each a in A, xa and ya denote the components of x and y in
Xa. One can readily show that d defines the given topology on X and that,
with respect to d, X is complete. Hence, X is pōlish.

07◦ Let us consider the topological sum:

X :=
∑

a∈A

Xa

In this context, one presumes that the spaces comprising the indexed family
{Xa}a∈A are mutually disjoint. Under that presumption, one takes X to be
the union:

⋃

a∈A

Xa

One determines the topology on X by requiring that, for any a in A, Xa be
a subspace of X and Xa be an open subset of X . Of course, X is separable
and metrizable. For each a in A, let da be a pōlish metric on Xa. Let d be
the metric on the sum X , defined as follows:

d(x, y) :=

{

min{1, da(x, y)} if a = b
1 if a 6= b

((x, y) ∈ X ×X)

where a and b are the members of A for which x ∈ Xa and y ∈ Xb. One can
readily show that d defines the given topology on X and that, with respect
to d, X is complete. Hence, X is pōlish.

08◦ LetX be a polish topological space and let Y be a subspace ofX . Clearly,
if Y is a closed subset of X then Y is pōlish. Moreover, if Y is an open subset
of X then Y is pōlish. Let us prove the latter assertion. Of course, we may
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assume that Y 6= X . Let d be a polish metric on X and let e be the metric
defined on Y as follows:

e(x, y) := d(x, y) +
∣

∣

∣

1

d(x,X\Y )
−

1

d(y,X\Y )

∣

∣

∣
((x, y) ∈ Y × Y )

where d(x,X\Y ) and d(y,X\Y ) denote the distances between x and X\Y
and between y and X\Y . One can readily check that e defines the topology
on Y and that, with respect to e, the metric space Y is complete.

The Theorem of Alexandrov

09◦ Now we can characterize the pōlish subspaces among all subspaces of a
given pōlish topological space.

Theorem 2 For any pōlish topological space X and for any subspace Y of
X , Y is pōlish iff Y is a Gδ-subset of X , which is to say that there exists a
countable family Z of open subsets of X for which Y = ∩Z.

Let d be a pōlish metric on X .

10◦ Let us assume that there exists a countable family Z of open subsets of
X such that Y = ∩Z. Let the members of Z be listed as follows:

Z1, Z2, Z3, . . .

Of course, for each index j, Zj is a pōlish subspace of X . Let G be the
mapping carrying Y to

∏

j Zj such that, for each x in Y and for any index j,
G(x)(j) = x. Clearly, G carries Y homeomorphically to the subspace G(Y )
of

∏

j Zj. Moreover, G(Y ) is a closed subset of
∏

j Zj . Hence, Y is pōlish.

11◦ Now let us assume that Y is pōlish. Let e be a pōlish metric on Y . For
any nonempty subsets U of X and V of Y , let d(U) and e(V ) stand for the
diameters of U and V relative to d and e. For each positive integer j, let Zj

be the union of all open subsets W of X such that W ∩ Y 6= ∅, d(W ) ≤ 1/j,
and e(W ∩ Y ) ≤ 1/j. We contend that:

Y =

∞
⋂

j=1

Zj

Thus, let y be any member of Y and let j be any positive integer. Let r be
any positive real number and let Nr(y) stand for the open neighborhood of y
in X comprised of all members x for which d(x, y) < r. Clearly, by taking r
sufficiently small, we can arrange that Nr(y) ∩ Y 6= ∅, d(Nr(y)) ≤ 1/j, and
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e(Nr(y) ∩ Y ) ≤ 1/j. Hence, y ∈ Zj . Therefore, Y ⊆ ∩jZj . Now let y be any
member of ∩jZj . We may introduce a sequence:

W1,W2,W3, . . .

of open subsets of X such that, for each positive integer j, Wj ∩ Y 6= ∅,
d(Wj) ≤ 1/j, e(Wj ∩ Y ) ≤ 1/j, and y ∈ Wj . Clearly, y lies in clo(Y ). As a
result, we may arrange that, for each positive integer j, Wj+1 ⊆ Wj . In turn,
we may introduce a sequence:

y1, y2, y3, . . .

of members of Y such that, for each positive integer j, yj ∈ Wj . Relative
to e, the foregoing sequence is cauchy, hence convergent to a member of Y .
Relative to d, the foregoing sequence converges to y. Since the two limits
must coincide, we infer that y ∈ Y . Therefore, ∩jZj ⊆ Y . •

Pōlish Extensions

12◦ Let X be a separable metrizable topological space. Let d be a metric on
X which defines the given topology on X . With respect to d, one may form
the (metric) completion X̂ of X . Of course, the corresponding topological
space X̂ would be pōlish and would include X as a dense subspace. We will
refer to X̂ as a pōlish extension of X .

13◦ By the foregoing theorem, we infer that X is polish iff for some (and
hence for any) polish extension X̂ of X , X is a Gδ-subset of X̂ .

14◦ If advantageous, we may apply the Theorem of Urysohn to produce a
metric d with respect to which X is totally bounded. Then X̂ would be
compact. In that case, we will refer to X̂ as a compact extension of X .

The Canonical Topological Space L

15◦ Now let us describe the canonical topological space L. This space will
figure in many of the arguments to follow.

16◦ Let A be a countably infinite set. For each a in A, let Xa be a countably
infinite set and let Xa be supplied with the discrete topology. Let L be the
topological product:

L :=
∏

a∈A

Xa

Clearly, L is pōlish, totally disconnected, and perfect, but it is neither compact
nor even locally compact.
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17◦ Of course, one may choose the set A and the various sets Xa according to
convenience. The resulting topological space L would be determined within
homeomorphism. In practice, we will take A to be Z+ and the various sets
Xa to be Z+ as well, so that:

L := (Z+)Z
+

Hence, L consists of all sequences of positive integers. In this context, we may
introduce the following canonical (pōlish) metric d on L:

d(ℓ′, ℓ′′) :=

∞
∑

p=1

2−pd(ℓ′p, ℓ
′′
p)

where d stands for the discrete metric on Z+:

d(m′,m′′) :=

{

0 if m′ = m′′

1 if m′ 6= m′′

18◦ Let us establish certain notation. Let T be the topology on L and let B
be the borel algebra on L generated by T. For each n in Z+ and for any m1,
m2, . . ., and mn in Z+, let:

Lm1m2...mn

be the subset of L consisting of all members ℓ for which ℓ1 = m1, ℓ2 = m2,
. . . , and ℓn = mn. Clearly, Lm1m2...mn

is clopen, and d(Lm1m2...mn
) = 2−n.

Let U be the family of all such subsets of L. Obviously, U is a countable base
for T.

19◦ Now we supply L with the lexicographic order in the following manner.
For any members ℓ and m of L, let us write ℓ < m to express the conditions
that ℓ 6= m and that ℓp < mp, where p is the smallest among all positive
integers q for which ℓq 6= mq. Clearly, the lexicographic order is a linear order
relation on L. For each m in L, let Lm be the subset of L consisting of all
members ℓ such that ℓ < m. Let C be the family of all such subsets of L.
Obviously, for any m in L:

Lm =

∞
⋃

n=1

mn−1
⋃

j=1

Lm1m2...mn−1j

so Lm is an open subset of L. Hence, C ⊆ T. Moreover:

(◦) Lm1m2...mn
= Lm′′

∩ (L\Lm′

)
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where:

m′ := (m1,m2, . . . ,mn, 1, 1, 1, . . .)

m′′ := (m1,m2, . . . , m̄n, 1, 1, 1, . . .) (m̄n := mn + 1)

It follows that C generates B.

20◦ Let M be a nonempty closed subset of L. We will prove that there is a
smallest member of M relative to the lexicographic order.

21◦ Let ℓ1 be the smallest among all positive integers k for which there exists
a member m of M such that m1 = k; let λ1 be such a member. Let ℓ2 be
the smallest among all positive integers k for which there exists a member m
of M such that m1 = ℓ1 and m2 = k; let λ2 be such a member. Let ℓ3 be
the smallest among all positive integers k for which there exists a member m
of M such that m1 = ℓ1, m2 = ℓ2, and m3 = k; let λ3 be such a member.
Continuing inductively, we obtain a member ℓ of L and a sequence {λn}

∞
n=1

in M such that, for any positive integer n:

(λn)1 = ℓ1, (λn)2 = ℓ2, . . . , (λn)n = ℓn

Clearly, {λn}∞n=1 converges to ℓ, so ℓ is a member of M . By design, ℓ is the
smallest member of M .

22◦ Finally, let us describe the most significant property of the topological
space L.

Theorem 3 For any (nonempty) pōlish topological space X , there exists
an open continuous surjective mapping F carrying L to X .

Let d be a pōlish metric on X .

23◦ Let Z be any nonempty open subset of X and let t be any positive real
number. Since X is separable, we may introduce a countably infinite family:

Z1, Z2, Z3, . . .

of nonempty open (but not necessarily mutually disjoint) subsets of X such
that ∪∞

j=1Zj = Z and such that, for any positive integer j, clo(Zj) ⊆ Z and
d(Zj) ≤ t.

24◦ By the foregoing observation, we obtain a countably infinite family:

Y1, Y2, Y3, . . .
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of nonempty open subsets of X such that ∪∞
j=1Yj = X and such that, for any

positive integer j, d(Yj) ≤ 1. In turn, for any positive integer j, we obtain a
countably infinite family:

Yj1, Yj2, Yj3, . . .

of nonempty open subsets of X such that ∪∞
k=1Yjk = Yj and such that, for any

positive integer k, clo(Yjk) ⊆ Yj and d(Yjk) ≤ 1/2. Continuing inductively,
we obtain an indexed family of nonempty open subsets of X :

Yℓ1ℓ2...ℓn (n ∈ Z+, ℓ1, ℓ2, . . . , ℓn ∈ Z+)

such that:
∞
⋃

ℓ1=1

Yℓ1 = X

such that, for any positive integers n, ℓ1, ℓ2, . . ., and ℓn:

∞
⋃

ℓn+1=1

Yℓ1ℓ2...ℓnℓn+1
= Yℓ1ℓ2...ℓn

such that, for any positive integers n, ℓ1, ℓ2, . . ., ℓn, and ℓn+1:

clo(Yℓ1ℓ2...ℓnℓn+1
) ⊆ Yℓ1ℓ2...ℓn

and such that, for any positive integers n, ℓ1, ℓ2, . . ., and ℓn:

d(Yℓ1ℓ2...ℓn) ≤ 1/n

25◦ Now let ℓ be any member of L. Since X is complete (with respect to the
metric d), it is plain that the intersection:

∞
⋂

n=1

Yℓ1ℓ2...ℓn =

∞
⋂

n=1

clo(Yℓ1ℓ2...ℓn)

consists of precisely one point in X . Let it be denoted by F (ℓ). In this way,
we obtain a mapping F carrying L to X . One can readily check that, for any
positive integers n, ℓ1, ℓ2, . . ., and ℓn:

F (Lℓ1ℓ2...ℓn) = Yℓ1ℓ2...ℓn (n ∈ Z+, ℓ1, ℓ2, . . . , ℓn ∈ Z+)

Hence, F is surjective, continuous, and open. •

26◦ Let us develop an important corollary of the foregoing theorem. By ar-
ticles 20◦ and 21◦, we may introduce the mapping G carrying X to L such
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that, for any y inX , G(y) is the smallest member (relative to the lexicographic
order) of the nonempty closed subset F−1({y}) of L. Let M := G(X). Ob-
viously, the restriction of F to M is continuous and carries M bijectively to
X . Under the condition that F is not only surjective and continuous but also
open, we claim that M is a closed subset of L. Thus, let m be any member of
L\M , let ℓ := G(F (m)), and let n be the smallest positive integer such that
ℓn < mn. Clearly:

m ∈ Lm1m2...mn
∩ F−1(F (Lℓ1ℓ2...ℓn)) ⊆ L\M

It follows that L\M is an open subset of L.

27◦ We conclude that, for any pōlish topological space X , there exist a closed
subset M of L and a continuous mapping E carrying the subspace M of L
bijectively to X .

28◦ Let X1 and X2 be separable metrizable topological spaces. As a pleasing
complement to the foregoing theorem, we contend that if X1 is polish and if
there exists an open continuous surjective mapping F carrying X1 to X2 then
X2 is itself polish.

[ Incomplete. The statement is true but as yet I have no smooth proof
of it. ]

1.2 STANDARD TOPOLOGICAL SPACES

Definition

01◦ Let X be a separable metrizable topological space. One says that X is
standard iff there exist a pōlish topological space X̄ and a bijective continuous
mapping F̄ carrying X̄ to X . By article 1.19◦, one may if useful take X̄ to
be a closed subset (and subspace) of L.

02◦ Clearly, every pōlish topological space is standard. However, a separable
metrizable topological space X may fail to be standard; and if standard it
may fail to be pōlish.

03◦ Theorem 2 and Theorems 4 and 10 (soon to follow) put the matter in
sharp relief. Thus, let X̂ be a pōlish extension of X . The theorems just cited
imply that X is standard iff X is a borel subset of X̂ and that X is pōlish iff
X is a Gδ-subset of X̂.

Properties of Standard Topological Spaces
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04◦ Let A be a countable set and let {Xa}a∈A be an indexed family of stan-
dard topological spaces. By routine observations, one can show that the topo-
logical product

∏

a∈A Xa and the topological sum
∑

a∈A Xa are also standard.

05◦ Now let us consider a standard topological space X . Let T be the given
topology on X , let B be the borel algebra on X generated by T , and let S be
the family of all standard subspaces of X . Thus, for any subspace Y of X ,
Y ∈ S iff there exist a pōlish topological space X̄ and an injective continuous
mapping F̄ carrying X̄ to X such that F̄ (X̄) = Y .

06◦ Let Y be a countable subfamily of S. We claim that ∩Y ∈ S and that if
the sets in Y are mutually disjoint then ∪Y ∈ S.

07◦ To simplify notation, let the sets in Y be displayed as follows:

Y1, Y2, Y3, . . .

We may introduce corresponding displays:

X̄1, X̄2, X̄3, . . .

and:
F̄1, F̄2, F̄3, . . .

such that, for each index j, X̄j is a pōlish topological space and F̄j is an
injective continuous mapping carrying X̄j to X for which F̄j(X̄j) = Yj . Of
course, the topological sum X̄ ′ :=

∑

j X̄j and the topological product X̄ ′′ :=
∏

j X̄j are polish. Let us form the (continuous) mapping F̄ carrying X̄ ′ to

X such that, for each index j, the restriction of F̄ to X̄j equals F̄j . Clearly,
F̄ (X̄ ′) = ∪Y. If the sets in Y are mutually disjoint then F̄ is injective, so ∪Y
is standard.

08◦ In turn, let us form the subspace Ȳ of X̄ ′′ consisting of all members ȳ of
X̄ ′′ such that, for any indices j and k, F̄j(ȳj) = F̄k(ȳk). Clearly, Ȳ is a closed
subset of X̄ ′′, so Ȳ is a pōlish topological space. Let us form the (continuous)
mapping Ḡ carrying Ȳ to X such that, for any ȳ in Ȳ and for any index j,
Ḡ(ȳ) = F̄j(ȳj). Clearly, Ḡ is injective and Ḡ(Ȳ ) = ∩Y, so ∩Y is standard.

09◦ Let us introduce a pōlish extension X̂ of X . Of course, the preceding
observations apply in particular to the pōlish space X̂ . Hence, for any pōlish
subspace Ŷ of X̂ , X ∩ Ŷ is standard. Naturally, Ŷ might be an open subset
of X̂ or a closed subset of X̂. Hence, for any subspace Y of X , if Y is an open
subset of X or if Y is a closed subset of X then Y ∈ S.
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10◦ The properties of S now in hand are sufficient to prove the following
result.

Theorem 4 For any standard topological space X and for any subspace Y
of X , if Y is a borel subset of X then Y is standard.

Let C be the subfamily of S consisting of all subspaces Y of X such that
Y ∈ S and X\Y ∈ S. We note that, for any sequence:

Y1, Y2, Y3, . . .

of subsets of X :

∞
⋃

j=1

Yj = Y1 ∪ (Y2 ∩ (X\Y1)) ∪ (Y3 ∩ (X\Y1) ∩ (X\Y2)) ∪ . . .

By this note and by the observations in article 3◦, we infer that C is a borel
algebra on X . By the observations in article 4◦, we infer that T ⊆ C. Hence,
B ⊆ C ⊆ S •

11◦ Actually, B = S. See the Subspace Theorem (Theorem 10).

Standard Images

12◦ Now we can prove the following basic result.

Theorem 5 For any separable metrizable topological spaces X1 and X2

and for any borel mapping F carrying X1 to X2, if X1 is standard and if F
is injective then F (X1) is a standard subspace of X2.

Let X̂2 be a polish extension of X2. Let F̂ be the borel mapping carrying
X1 to X̂2 defined by composing F with the natural inclusion mapping Î2
carrying X2 to X̂2. Of course, the graph Γ̂ of F̂ is a borel subset of the
standard topological space X1 × X̂2. [ See problem 8.4◦. ] By Theorem 4,
we may introduce a polish topological space X̄ and an injective continuous
mapping F̄ carrying X̄ to X1 × X̂2 such that F̄ (X̄) = Γ̂. Let Π′′ be the
(second coordinate) projection mapping carrying X1 × X̂2 to X̂2. Clearly,
Π′′ · F̄ is injective and continuous, and (Π′′ · F̄ )(X̄) = F (X1). It follows that
F (X1) is standard. •

13◦ When the mapping F fails to be injective, the image F (X1) may or may
not be standard. [ See article 3.4◦. ] To gain flexibility, we now pass to a larger
class of spaces.
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1.3 ANALYTIC TOPOLOGICAL SPACES

Definition

01◦ Let X be a separable metrizable topological space. One says that X is
analytic iff there exist a pōlish topological space X̄ and a surjective continuous
mapping F̄ carrying X̄ to X . By Theorem 3, one may if useful take X̄ to be
L (except when X is empty).

02◦ Clearly, every standard topological space is analytic. However, a separa-
ble metrizable topological space X may fail to be analytic; and if analytic it
may fail to be standard. Let us discuss this important matter now, invoking
Theorems 6, 7, and 10 (soon to follow) as needed.

Preview

03◦ Let X be any separable metrizable topological space and let A be any
family of subspaces of X . Let M be any subspace of L × X . For each ℓ in
L, let M ℓ be the subspace of X consisting of all x for which (ℓ, x) ∈ M . One
says that M represents A iff, for any subspace Y of X , Y ∈ A iff there exists
some ℓ in L such that Y = M ℓ.

04◦ Now let X be analytic and let A be the family of all analytic subspaces
of X . We claim that there exists an analytic subspace M of L × X which
represents A. Let us presume for the moment that this claim is true. Of
course, the claim applies in particular to the case in which X = L. We obtain
an analytic subspace M of L × L which represents the family of all analytic
subspaces of L. Let N be the subspace of L consisting of all m such that
(m,m) ∈ M . By Theorems 6 and 7, it is plain that N is analytic.

05◦ We contend that L\N is not an analytic subspace of L. If it were so then
there would be some ℓ in L such that L\N = M ℓ. We would obtain:

ℓ ∈ L\N iff ℓ ∈ M ℓ iff (ℓ, ℓ) ∈ M iff ℓ ∈ N

a contradiction.

06◦ By Theorems 6 and 10, it is plain that N is not standard.

07◦ We will now prove the foregoing claim. First, let us display a countable
base for the topology on X :

Z1, Z2, Z3, . . .
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taking Z1 to be ∅. The subspace:

V :=
⋃

ℓ∈L

[

{ℓ} ×
(

∞
⋃

n=1

Zℓn

) ]

of L ×X is open and represents the family of all open subspaces of X . The
complement of V in L × X is closed and represents the family of all closed
subspaces of X . Replacing X by L×X , we may apply the foregoing observa-
tions to introduce a closed subspace W of L× (L ×X) which represents the
family of all closed subspaces of L×X .

08◦ Now we may introduce the relevant subspace M of L×X by projection.
Specifically, let Π be the projection mapping carrying L× (L×X) to L×X
defined as follows:

Π(ℓ, (m,x)) := (ℓ, x) ((ℓ, (m,x)) ∈ L× (L×X))

Let M := Π(W ). By Theorems 6 and 7, M is analytic.

09◦ We can easily check that M represents A. Thus, let P be the projection
mapping carrying L×X to X defined as follows:

P (m,x) := x ((m,x) ∈ L×X)

Clearly, for any ℓ in L:
P (W ℓ) = M ℓ

Hence, M ℓ is an analytic subspace of X . In turn, let Y be any analytic
subspace of X . If Y is empty then we may introduce ℓ in L such that W ℓ is
empty, hence such that M ℓ is empty. If Y is not empty then there must exist
a continuous mapping F carrying L to X such that F (L) = Y . Of course,
the graph Γ of F is a closed subspace of L×X (see problem 8.4◦), so we may
introduce ℓ in L such that W ℓ = Γ, hence such that M ℓ = P (Γ) = Y .

10◦ With reference to article 2.8◦, let us note that W may be standard while
M = Π(W ) is not. Of course, Π is not injective. Indeed, if M were standard
then (by any one of several logical routes) every analytic subspace of X would
be standard. However, in most cases (for example, in the caseX = L discussed
earlier) that is false.

Properties of Analytic Topological Spaces

11◦ Let A be a countable set and let {Xa}a∈A be an indexed family of ana-
lytic topological spaces. By routine observations, one can show that the topo-
logical product

∏

a∈A Xa and the topological sum
∑

a∈A Xa are also analytic.
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12◦ Now let us consider an analytic topological space X . Let T be the given
topology on X , let B be the borel algebra on X generated by T , and let A
be the family of all analytic subspaces of X . Thus, for any subspace Y of X ,
Y ∈ A iff there exist a pōlish topological space X̄ and a continuous mapping
F̄ carrying X̄ to X such that F̄ (X̄) = Y .

13◦ Let Y be a countable subfamily of A. We claim that ∪Y ∈ A and that
∩Y ∈ A. To prove these claims, we need only copy the discussion in article
2.3◦, ignoring conditions of injectivity.

14◦ In the same way, we may copy the discussion in article 2.4◦ to show that,
for any subspace Y of X , if Y is an open subset of X or if Y is a closed subset
of X then Y is analytic.

15◦ We obtain the following analogue of Theorem 4.

Theorem 6 For any analytic topological space X and for any subspace Y
of X , if Y is a borel subset of X then Y is analytic.

Let C be the subfamily of S consisting of all subspaces Y of X such that
Y ∈ A and X\Y ∈ A. By the observations in the foregoing article, C is a
borel algebra on X and T ⊆ C. Therefore, B ⊆ C. •

Analytic Images

16◦ Now we can prove a flexible extension of Theorem 5.

Theorem 7 For any separable metrizable topological spaces X1 and X2

and for any borel mapping F carrying X1 to X2, if X1 is analytic then F (X1)
is an analytic subspace of X2.

Again, we need only copy the argument for Theorem 5, ignoring conditions
of injectivity. •

17◦ The argument for Theorem 5 also yields the following useful fact. Let
X1 be analytic and let Z be any analytic subspace of X2. Let Π

′ be the (first
coordinate) projection mapping carrying X1 × X̂2 to X1. Clearly:

F−1(Z) = Π′(Γ̂ ∩ (X1 × Z))

Hence, by Theorem 7, F−1(Z) is an analytic subspace of X1.

The Separation Theorem of Souslin
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18◦ Let X be a separable metrizable topological space. Let Y ′ and Y ′′ be
any subsets of X for which Y ′ ∩ Y ′′ = ∅. Let us say that Y ′ and Y ′′ are borel

separable in X iff there exist borel subsets Z ′ and Z ′′ of X such that Y ′ ⊆ Z ′,
Y ′′ ⊆ Z ′′, and Z ′ ∩ Z ′′ = ∅.

Theorem 8 For any separable metrizable topological space X and for any
subspaces Y ′ and Y ′′ of X , if Y ′ and Y ′′ are analytic and if Y ′ ∩Y ′′ = ∅ then
Y ′ and Y ′′ are borel separable in X .

Let us first note the following fact. Let A and B be countable sets and let
{X ′

a}a∈A and {X ′′
b }b∈B be indexed families of subsets of X . Let:

X ′ :=
⋃

a∈A

X ′
a

X ′′ :=
⋃

b∈B

X ′′
b

Let us assume that X ′ ∩X ′′ = ∅ and that, for any a in A and for any b in B,
X ′

a and X ′′
b are borel separable in X . We will prove that X ′ and X ′′ are borel

separable in X . Thus, for any a in A and for any b in B, let Z ′
ab and Z ′′

ab be
borel subsets of X for which X ′

a ⊆ Z ′
ab, X

′′
b ⊆ Z ′′

ab, and Z ′
ab ∩ Z ′′

ab = ∅. Let:

Z ′ :=
⋂

b∈B

⋃

a∈A

Z ′
ab

Z ′′ :=
⋂

a∈A

⋃

b∈B

Z ′′
ab

Clearly, Z ′ and Z ′′ are borel subsets of X . Moreover, X ′ ⊆ Z ′, X ′′ ⊆ Z ′′, and
Z ′ ∩ Z ′′ = ∅. Hence, X ′ and X ′′ are borel separable in X .

19◦ Now let us suppose that Y ′ and Y ′′ are not borel separable in X . We
shall derive a contradiction. Of course, our supposition entails that Y ′ and
Y ′′ are nonempty. By Theorem 3, we may introduce continuous mappings G′

and G′′ carrying L to X such that G′(L) = Y ′ and G′′(L) = Y ′′. Obviously:

Y ′ =

∞
⋃

j=1

G′(Lj)

Y ′′ =

∞
⋃

j=1

G′′(Lj)
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[ For the relevant notational conventions, see article 1.13◦. ] By the foregoing
note, there must exist j′ and j′′ in Z+ such that G′(Lj′ ) and G′′(Lj′′ ) are not
borel separable in X . Obviously:

G′(Lj′ ) =
∞
⋃

k=1

G′(Lj′k)

G′′(Lj′′ ) =

∞
⋃

k=1

G′′(Lj′′k)

Again by the foregoing note, there must exist k′ and k′′ in Z+ such that
G′(Lj′k′) andG′′(Lj′′k′′ ) are not borel separable inX . Continuing inductively,
we obtain members ℓ′ and ℓ′′ in L such that, for every n in Z+, G′(Lℓ′

1
ℓ′
2
...ℓ′n

)
and G′′(Lℓ′′

1
ℓ′′
2
...ℓ′′n

) are not borel separable in X .

20◦ However:
G′(ℓ′) 6= G′′(ℓ′′)

because Y ′ ∩ Y ′′ = ∅. Hence, we may introduce open subsets Z ′ and Z ′′ of X
such that G′(ℓ′) ∈ Z ′, G′′(ℓ′′) ∈ Z ′′, and Z ′ ∩ Z ′′ = ∅. Since G′ and G′′ are
continuous, there must be some n in Z+ such that:

G′(Lℓ′
1
ℓ′
2
...ℓ′n

) ⊆ Z ′

G′′(Lℓ′′
1
ℓ′′
2
...ℓ′′n

) ⊆ Z ′′

For such an n, G′(Lℓ′
1
ℓ′
2
...ℓ′n

) and G′′(Lℓ′′
1
ℓ′′
2
...ℓ′′n

) would be borel separable in
X . •

21◦ By straightforward argument, one can prove the following generalization
of the Separation Theorem. Thus, for any countable family:

Y1, Y2, Y3, . . .

of mutually disjoint analytic subspaces of X , there is a countable family:

Z1, Z2, Z3, . . .

of mutually disjoint borel subsets of X such that, for each j, Yj ⊆ Zj .

The Isomorphism Theorem

22◦ Let us apply the Separation Theorem to prove the following complement
to Theorem 7.
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Theorem 9 For any separable metrizable topological spaces X1 and X2

and for any borel mapping F carrying X1 to X2, if X1 is analytic and if F is
bijective then F is a borel isomorphism.

Let Y be any borel subset of X1. By Theorems 6 and 7, Y and X1\Y are
analytic subspaces of X1 and F (Y ) and X2\F (Y ) = F (X1\Y ) are analytic
subspaces of X2. By the Separation Theorem, F (Y ) must be a borel subset
of X2. It follows that F is a borel isomorphism. •

23◦ By Theorems 7 and 9, if X1 is analytic and if F is (merely) injective then
F carries X1 borel isomorphically to the analytic subspace F (X1) of X2.

The Subspace Theorem and the Retraction Theorem

24◦ Let us apply the Separation Theorem to show that standard topological
spaces may appear only as borel subsets of ambient (separable metrizable)
topological spaces.

Theorem 10 For any separable metrizable topological space X and for any
subspace Y of X , if Y is standard then Y is a borel subset of X .

Actually, this important theorem is a direct consequence of the following
general Retraction Theorem.

Theorem 11 For any separable metrizable topological spaces X1 and X2

and for any borel mapping F carrying X1 to X2, if X1 is standard and if F
is injective then there is a borel mapping G carrying X2 to X1 such that, for
any x in X1, G(F (x)) = x.

Obviously, G must be surjective. One refers to G as a retraction of F .

25◦ To prove that Theorem 11 implies Theorem 10, one may take Y to be
X1, X to be X2, and F to be the natural inclusion mapping carrying Y to
X . One may then introduce a retraction G of F . Finally, one may note that,
for any x in X , x ∈ Y iff F (G(x)) = x. By problem 8.3◦, it follows that Y is
a borel subset of X .

26◦ Let us prove Theorem 11. We presume that X1 is not empty. With
reference to article 1.19◦, we may introduce a closed subset M of L and a
bijective continuous mapping E carrying the subspace M of L to X1. We will
show that there exists a borel mapping H carrying X2 to M such that, for
each m in M , H(F (E(m))) = m. We may then take G to be E ·H .
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27◦ Let d be the canonical metric on L. Let m̄ be the least member of M ,
relative to the lexicographic order. Let n be any positive integer. Clearly,
we may introduce a countable (perhaps finite) partition of M by nonempty
closed subsets of L:

N1, N2, N3, . . .

such that, for each index j, d(Nj) ≤ 2−n. Such a partition of M may be
produced by listing those which are nonempty among sets of the following
form:

M ∩ Lm1m2...mn

where m1, m2, . . . , and mn are any positive integers. The corresponding
subsets:

F (E(N1)), F (E(N2)), F (E(N3)), . . .

of X2 must be mutually disjoint. Clearly, they are analytic (in fact standard)
subspaces of X2. By the Separation Theorem, we may introduce mutually
disjoint borel subsets:

Z1, Z2, Z3, . . .

of X2 such that, for each index j, F (E(Nj)) ⊆ Zj .

28◦ Now, for each index j, let n̄j be the least member of Nj, relative to the
lexicographic order. Let Hn be the mapping carrying X2 to M such that, for
each x in X2, if x ∈ ∪jZj then Hn(x) = n̄k (where k is the unique index for
which x ∈ Zk) while if x 6∈ ∪jZj then Hn(x) = m̄. Clearly, Hn is a borel
mapping. Moreover, for any m in M :

d(Hn(F (E(m))),m) ≤ 2−n

29◦ Let Z be the subset of X2 consisting of all members x such that the
sequence {Hn(x)}∞n=1 in L is cauchy:

Z =

∞
⋂

n=1

∞
⋃

p=1

∞
⋂

r=p

∞
⋂

s=p

Znrs

where Znrs is the borel subset of X2 consisting of all members x for which
d(Hr(x), Hs(x)) ≤ 2−n. Clearly, Z is a borel subset of X2.

30◦ Finally, let H be the mapping carrying X2 to M such that, for any x in
X2, if x ∈ Z then H(x) equals the limit in M of the sequence {Hn(x)}∞n=1

while if x 6∈ Z then H(x) = m̄. Clearly, H is a borel mapping. Moreover, for
each m in M , H(F (E(m))) = m. •

The Theorem of Blackwell
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31◦ Finally, let us apply the Separation Theorem to prove the Theorem of
Blackwell.

Theorem 12 For any separable metrizable topological spaces X1 and X2

and for any surjective borel mapping F carrying X1 to X2, if X1 is analytic
then, for any subset Y of X2, F

−1(Y ) is a borel subset of X1 iff Y is a borel
subset of X2.

Let Y be any subset of X2 for which F−1(Y ) is a borel subset of X1. Of
course, F−1(X2\Y ) = X1\F−1(Y ), so F−1(X2\Y ) is also a borel subset of
X1. Since F is surjective, Y = F (F−1(Y )) and X2\Y = F (F−1(X2\Y )). By
Theorem 7, Y and X2\Y are analytic subspaces of X2. By the Separation
Theorem, Y must be a borel subset of X2. •

32◦ We infer that if X1 is analytic then the borel space X2 is the quotient
of the borel space X1 relative to the mapping F . The underlying equivalence
relation is that which determines the following equivalence sets:

F−1({y}) (y ∈ X2)

in X1.

1.4 STANDARD AND ANALYTIC BOREL SPACES

Definitions

01◦ Let X be a borel space. One says that X is standard iff it is the borel
space derived from a standard topological space. One says that X is analytic
iff it is the borel space derived from an analytic topological space. Obviously,
every standard borel space is analytic.

02◦ It is conceivable that two separable metrizable topological spaces X ′ and
X ′′ have the same underlying setX and determine the same borel spaceX but
that the one is standard while the other is not. In such a context, the borel
space X would be standard but certain of the parent topological spaces would
not be standard. Similarly, it is conceivable that a borel space X is analytic
but that certain of the parent topological spaces are not analytic. However,
Theorems 5 and 7 show that such contexts cannot arise. Therefore, one may
apply the terms standard space and analytic space smoothly, in reference
either to a borel space X or to any one of the parent topological spaces from
which it derives.

Countably Separated Borel Spaces
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03◦ Let X be a borel space and let B be the given borel algebra on X . One
says that X is countably separated iff there is a countable subfamily Z of B
which separates the members of X , which is to say that, for any x and y
in X , if x 6= y then there is some Z in Z for which x ∈ Z and y ∈ X\Z.
With reference to article 1.2◦, one can readily show that if X is separated and
countably generated then X is countably separated.

04◦ We contend that, for any borel spaces X1 and X2, if X1 is analytic, if
X2 is countably separated, and if there exists a surjective borel mapping F
carrying X1 to X2 then in fact X2 is analytic.

05◦ Let us prove the contention. Let B2 be the given borel algebra on X2 and
let Z2 be a countable subfamily of B2 which separates the members of X2.
Let B̄2 be the borel algebra on X2 generated by Z2. Let X̄2 be the borel space
formed by supplying the set X2 with the borel algebra B̄2. Obviously, X̄2 is
separated and countably generated. Clearly, the mapping F̄ := F carryingX1

to X̄2 is surjective and borel. By Theorem 7, X̄2 is analytic. By the Theorem
of Blackwell (Theorem 12), B2 ⊆ B̄2. It follows that the borel spaces X2 and
X̄2 coincide, hence that X2 is analytic.

06◦ Now let X be an analytic borel space and let B be the given borel algebra
on X . Let Z be any countable subfamily of B which separates the members
of X . With reference to the foregoing argument, one can easily show that Z
generates B.

Countably Generated Borel Algebras

07◦ Let X1 and X2 be analytic borel spaces and let F be a surjective borel
mapping carrying X1 to X2. Let B1 and B2 be the given borel algebras on
X1 and X2. Let C1 := F−1(B2). Clearly, C1 is a countably generated borel
subalgebra of B1.

08◦ Conversely, let X1 be an analytic borel space and let B1 be the given
borel algebra on X1. Let C1 be a countably generated borel subalgebra of B1.
We plan to design an analytic borel space X2 and a surjective borel mapping
F carrying X1 to X2 such that C1 = F−1(B2), where B2 is the given borel
algebra on X2.

09◦ To that end, let E1 be the equivalence relation on X1 defined by C1 as
follows. For any x′

1 and x′′
1 in X1, (x

′
1, x

′′
1 ) ∈ E1 iff, for each Y1 in C1, either

both x′
1 ∈ Y1 and x′′

1 ∈ Y1 or both x′
1 ∈ X1\Y1 and x′′

1 ∈ X1\Y1. Let X2 be the
set of equivalence sets inX1 determined by E1. Let F be the mapping carrying
X1 to X2 which assigns to each member x1 of X1 the equivalence set F (x1)
in X1 to which x1 belongs. Note that, for each Y1 in C1, Y1 = F−1(F (Y1)).
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Let B2 be the borel algebra on X2 comprised of all subsets Y2 of X2 such that
F−1(Y2) ∈ C1. Clearly, C1 = F−1(B2) and B2 = F (C1). The borel space X2

formed by supplying the set X2 with the borel algebra B2 is now the center
of attention.

10◦ We contend that X2 is analytic. By article 3◦, we need only check that
X2 is countably separated. Thus, let Z1 be a countable subfamily of C1

which generates C1. Let Z2 := F (Z1). Clearly, Z2 ⊆ B2. Let x′
1 and x′′

1

be any members of X1 for which F (x′
1) 6= F (x′′

1 ). Of course, (x′
1, x

′′
1 ) /∈ E1.

With reference to article 1.2◦, one can readily show that there is some Z1

in Z1 such that x′
1 ∈ Z1 and x′′

1 ∈ X1\Z1. Clearly, F (x′
1) ∈ F (Z1) and

F (x′′
1 ) ∈ X2\F (Z1). Hence, X2 is countably separated.

Analytic Borel Bundles

11◦ Let X1 and X2 be analytic borel spaces and let F be a surjective borel
mapping carrying X1 to X2. We will call the ordered triple:

(X1, F,X2)

an analytic borel bundle. We will refer to X2 as the base space and to X1 as
the bundle space. For each y in X2, we will refer to:

F−1({y})

as the fiber of F in X1 over y.

12◦ Let (X ′
1, F

′, X ′
2) and (X ′′

1 , F
′′, X ′′

2 ) be analytic borel bundles. Let H1

and H2 be borel isomorphisms carrying X ′
1 to X ′′

1 and X ′
2 to X ′′

2 such that
F ′′ ·H1 = H2 · F ′. We will call the ordered pair:

(H1, H2)

a borel bundle isomorphism carrying (X ′
1, F

′, X ′
2) to (X ′′

1 , F
′′, X ′′

2 ).

13◦ We will say that (X ′
1, F

′, X ′
2) and (X ′′

1 , F
′′, X ′′

2 ) are borel isomorphic iff
there exists a borel bundle isomorphism (H1, H2) carrying (X ′

1, F
′, X ′

2) to
(X ′′

1 , F
′′, X ′′

2 ).

14◦ ............

1.5 THE THEOREM OF KURATOWSKI

The Embedding Theorem
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01◦ The following theorem, remarkable in itself, serves as the base for the
fundamental Theorem of Kuratowski.

Theorem 13 For any separable metrizable topological spaces X ′ and X ′′,
if X ′ is totally disconnected and if X ′′ is uncountable and analytic then there
exists an injective mapping E carrying X ′ to X ′′ such that E carries X ′

homeomorphically to the subspace E(X ′) of X ′′.

Let d′ and d′′ be metrics onX ′ andX ′′ which define the given topologies. With
reference to articles 1.12◦ and 1.13◦, let L be the canonical topological space,
let d be the canonical metric on L, and let U be the (preferred) countable
base for the topology on L.

02◦ To prove the theorem, we require an indexed family:

Z ′ : Z ′
ℓ1ℓ2···ℓn (n, ℓ1, ℓ2, · · · , ℓn ∈ Z+)

of (not necessarily nonempty) clopen subsets of X ′ such that the sets:

Z ′
1, Z

′
2, Z

′
3, . . .

are mutually disjoint and:
∞
⋃

ℓ1=1

Z ′
ℓ1

= X

such that, for any positive integers n, ℓ1, ℓ2, . . ., and ℓn, the sets:

Z ′
ℓ1ℓ2···ℓn1, Z

′
ℓ1ℓ2···ℓn2, Z

′
ℓ1ℓ2···ℓn3, . . .

are mutually disjoint and:

∞
⋃

ℓn+1=1

Z ′
ℓ1ℓ2···ℓnℓn+1

= Z ′
ℓ1ℓ2···ℓn

and such that, for any positive integers n, ℓ1, ℓ2, . . ., and ℓn, if Z
′
ℓ1ℓ2···ℓn

6= ∅
then:

d′(Z ′
ℓ1ℓ2···ℓn) ≤ 1/n

We also require an indexed family:

Z ′′ : Z ′′
ℓ1ℓ2···ℓn (n, ℓ1, ℓ2, · · · , ℓn ∈ Z+)

of (definitely nonempty) open subsets of X ′′ such that the sets:

Z ′′
1 , Z

′′
2 , Z

′′
3 , . . .
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are mutually disjoint; such that, for any positive integers n, ℓ1, ℓ2, . . ., and
ℓn, the sets:

Z ′′
ℓ1ℓ2···ℓn1, Z

′′
ℓ1ℓ2···ℓn2, Z

′′
ℓ1ℓ2···ℓn3, . . .

are mutually disjoint; such that, for any positive integers n, ℓ1, ℓ2, . . ., ℓn,
and ℓn+1:

Z ′′
ℓ1ℓ2···ℓnℓn+1

⊆ Z ′′
ℓ1ℓ2···ℓn

such that, for any positive integers n, ℓ1, ℓ2, . . ., and ℓn:

d′′(Z ′′
ℓ1ℓ2···ℓn) ≤ 1/n

and such that, for each ℓ in L:

∞
⋂

n=1

Z ′′
ℓ1ℓ2···ℓn 6= ∅

Of course, the latter intersections are singletons.

03◦ Given such indexed families Z ′ and Z ′′, we may proceed to define the
mapping E carrying X ′ to X ′′, as follows. For each x′ in X ′, there is precisely
one ℓ in L such that:

∞
⋂

n=1

Z ′
ℓ1ℓ2···ℓn = {x′}

In turn, there is precisely one x′′ in X ′′ such that:

∞
⋂

n=1

Z ′′
ℓ1ℓ2···ℓn = {x′′}

Let E(x′) := x′′. Now, by routine argument, one can verify that E is injective
and that it carries X ′ homeomorphically to the subspace E(X ′) of X ′′.

04◦ Let us construct an indexed family Z ′ of the required sort. We need
only apply the Theorem of Lindelöf. First, we introduce a countably infinite
partition:

Y1, Y2, Y3, . . .

of X by (not necessarily nonempty) clopen subsets of X such that, for any
positive integer j, if Yj 6= ∅ then d(Yj) ≤ 1. Then, for each positive integer j,
we introduce a countably infinite partition:

Yj1, Yj2, Yj3, . . .

of Yj by (not necessarily nonempty) clopen subsets of Yj such that, for any
positive integer k, if Yjk 6= ∅ then d(Yjk) ≤ 1/2. Continuing inductively, we
obtain an indexed family Z ′ meeting the required conditions.
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05◦ Let us construct an indexed family Z ′′ of the required sort. For that
purpose, let H be a surjective continuous mapping carrying L to X ′′. This
mapping will serve as scaffolding for the construction of Z ′′.

06◦ Let M be a subset of L such that the restriction of H to M carries M
bijectively to X ′′. Let N be the subset of M composed of the condensation
points in M . That is, for each m in M , m ∈ N iff, for each neighborhood U
of m in L, U ∩ M is uncountable. If N were empty then, by the Theorem
of Lindelöf, M would be countable. Hence, N is not empty. If M\N were
uncountable then, by the Theorem of Lindelöf, N∩(M\N) 6= ∅. Hence, M\N
is countable. It follows that N is uncountable.

07◦ Now let Z ′′ be any (nonempty) open subset of X ′′ and let U be any
(clopen) set in U such that U∩N is uncountable and H(U) ⊆ Z ′′. To produce
such sets, one may introduce a member m of N , an open neighborhood Z ′′ of
H(m) in X ′′, and a (clopen) set U in U such that m ∈ U and H(U) ⊆ Z ′′.
The sets U and Z ′′ will serve as the base for the construction of Z ′′.

08◦ Let t be any positive real number. We may construct sequences:

U1, U2, U3, . . .

of mutually disjoint (clopen) sets in U and:

Z ′′
1 , Z

′′
2 , Z

′′
3 , . . .

of mutually disjoint (nonempty) open subsets of X ′′ such that, for each posi-
tive integer j, Uj ⊆ U , Z ′′

j ⊆ Z ′′, d(Uj) ≤ t, d′′(Z ′′
j ) ≤ t, Uj∩N is uncountable,

and H(Uj) ⊆ Z ′′
j .

09◦ Thus, let m1 and m̄2 be any two distinct members of U ∩N . Let Z ′′
1 and

Z̄ ′′
2 be open neighborhoods of H(m1) and H(m̄2) in X ′′ such that Z ′′

1 ⊆ Z ′′,
d′′(Z ′′

1 ) ≤ t, Z̄ ′′
2 ⊆ Z ′′, d′′(Z̄ ′′

2 ) ≤ t, and Z ′′
1 ∩ Z̄ ′′

2 = ∅. In turn, let U1 and
Ū2 be (clopen) sets in U such that m1 ∈ U1, U1 ⊆ U , d(U1) ≤ t, m̄2 ∈ Ū2,
Ū2 ⊆ U , d(Ū2) ≤ t, H(U1) ⊆ Z ′′

1 , and H(Ū2) ⊆ Z̄ ′′
2 . Of course, U1 ∩ Ū2 = ∅

and both U1 ∩N and Ū2 ∩N are uncountable.

10◦ Again, let m2 and m̄3 be any two distinct members of Ū2∩N . Let Z ′′
2 and

Z̄ ′′
3 be open neighborhoods of H(m2) and H(m̄3) in X ′′ such that Z ′′

2 ⊆ Z̄ ′′
2

(so that d′′(Z ′′
2 ) ≤ t), Z̄ ′′

3 ⊆ Z̄ ′′
2 (so that d′′(Z̄ ′′

3 ) ≤ t), and Z ′′
2 ∩ Z̄ ′′

3 = ∅.
In turn, let U2 and Ū3 be (clopen) sets in U such that m2 ∈ U2, U2 ⊆ Ū2

(so that d(U2) ≤ t), m̄3 ∈ Ū3, Ū3 ⊆ Ū2 (so that d(Ū3) ≤ t), H(U2) ⊆ Z ′′
2 ,

and H(Ū3) ⊆ Z̄ ′′
3 . Of course, U2 ∩ Ū3 = ∅ and both U2 ∩N and Ū3 ∩ N are

uncountable.
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11◦ Continuing inductively, we obtain sequences:

U1, U2, U3, . . .

and:
Z ′′
1 , Z

′′
2 , Z

′′
3 , . . .

with the stated properties.

12◦ Now we may construct an indexed family Z ′′ of the required sort by
applying the foregoing procedure inductively. We begin with the original sets
U and Z ′′. For t = 1, we apply the foregoing procedure to the sets U and Z ′′,
obtaining the sequences:

U1, U2, U3, . . .

and:
Z ′′
1 , Z

′′
2 , Z

′′
3 , . . .

For each positive integer j and for t = 1/2, we apply the foregoing procedure
to the sets Uj and Z ′′

j , obtaining the sequences:

Uj1, Uj2, Uj3, . . .

and:
Z ′′
j1, Z

′′
j2, Z

′′
j3, . . .

Continuing inductively, we obtain indexed families:

U ′′ : Uℓ1ℓ2···ℓn (n, ℓ1, ℓ2, · · · , ℓn ∈ Z+)

and:
Z ′′ : Z ′′

ℓ1ℓ2···ℓn (n, ℓ1, ℓ2, · · · , ℓn ∈ Z+)

the latter meeting all the required conditions except possibly the last one. To
show that Z ′′ meets the last of the required conditions, we need only note
that, for each ℓ in L:

H(
∞
⋂

n=1

Uℓ1ℓ2···ℓn) ⊆
∞
⋂

n=1

Z ′′
ℓ1ℓ2···ℓn

Since:
∞
⋂

n=1

Uℓ1ℓ2···ℓn 6= ∅

we find that:
∞
⋂

n=1

Z ′′
ℓ1ℓ2···ℓn 6= ∅
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•

The Theorem of Kuratowski

13◦ The following fundamental theorem shows the versatility of borel isomor-
phisms.

Theorem 14 For any standard topological spaces X ′ and X ′′, if X ′ and
X ′′ are uncountable then X ′ and X ′′ are borel isomorphic.

By Theorem 1, we may assume that both X ′ and X ′′ are totally disconnected.
By the Embedding Theorem (just proved), we may introduce injective borel
mappings F carrying X ′ to X ′′ and G carrying X ′′ to X ′. By Theorems
5, 9 and 10, F will carry X ′ borel isomorphically to the (borel subset and)
subspace F (X ′) of X ′′ and G will carry X ′′ borel isomorphically to the (borel
subset and) subspace G(X ′′) of X ′.

14◦ Let us interweave F and G (in the fashion sometimes used to prove the
Theorem of Cantor, Schröder, and Bernstein) to produce a borel isomorphism
H carrying X ′ to X ′′. Thus, let {Y ′

j }
∞
j=1 and {Y ′′

j }∞j=1 be the (decreasing)
sequences of borel subsets of X ′ and X ′′ inductively defined as follows:

Y ′
1 := X ′

Y ′
j+1 := G(Y ′′

j )

Y ′′
1 := X ′′

Y ′′
j+1 := F (Y ′

j ) (j ∈ Z+)

For each positive integer j:

F (Y ′
2j−1\Y

′
2j) = Y ′′

2j\Y
′′
2j+1

G(Y ′′
2j−1\Y

′′
2j) = Y ′

2j\Y
′
2j+1

Moreover:

F (

∞
⋂

j=1

Y ′
j ) =

∞
⋂

j=1

Y ′′
j

G(

∞
⋂

j=1

Y ′′
j ) =

∞
⋂

j=1

Y ′
j

At this point, the design of H is self-evident. For any x′ in X ′ and x′′ in X ′′,
H(x′) = x′′ iff x′ lies in:

(Y ′
1\Y

′
2) ∪ (Y ′

3\Y
′
4) ∪ (Y ′

5\Y
′
6) ∪ . . .

and F (x′) = x′′; or x′ lies in:

(Y ′
2\Y

′
3) ∪ (Y ′

4\Y
′
5) ∪ (Y ′

6\Y
′
7) ∪ . . .
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and x′ = G(x′′); or x′ lies in:
∞
⋂

j=1

Y ′
j

and F (x′) = x′′. One can easily check that H is a borel isomorphism carrying
X ′ to X ′′. •

The Classification of Standard Spaces

15◦ By Theorems 4, 10, and 14, we conclude that standard spaces are coex-
tensive with borel subsets of pōlish topological spaces, that two such spaces
are borel isomorphic iff they have the same cardinality, and that such a space
if uncountable must have the cardinality of the continuum.

16◦ For analytic spaces, no such classification has been described. By analogy
with recursive set theory, in which standard spaces play the role of recursively
decidable sets and analytic spaces play the role of recursively enumerable sets,
one may conjecture that no such classification can be described.

1.6 SPACES OF SETS

The Effros Algebra

01◦ Let X be a separable metrizable topological space. Let F(X) be the
family of all nonempty closed subsets of X . We will show that the family
F(X) may be viewed as a separated, countably generated borel space in a
useful way. It will turn out that if X is polish then F(X) is standard.

02◦ Let V be a nonempty open subset of X . Let FV (X) be the subfamily of
F(X) consisting of all members Y for which Y ∩V 6= ∅. By the effros algebra
on F(X), one means the borel algebra on F(X) generated by the collection
of all subfamilies:

FV (X)

of F(X), where V runs through the nonempty open subsets of X . One refers
to the corresponding borel space F(X) as the effros borel space determined
by X .

03◦ Let Y ′ and Y ′′ be any members of F(X). If Y ′ 6= Y ′′ then Y ′ 6⊆ Y ′′

or Y ′′ 6⊆ Y ′. In the former case, Y ′ ∈ FX\Y ′′(X) and Y ′′ 6∈ FX\Y ′′(X). In
the latter case, Y ′′ ∈ FX\Y ′(X) and Y ′ 6∈ FX\Y ′(X). It follows that F(X) is
separated.
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04◦ Let Z be a countable base for X . For any nonempty open subset V of
X , we may introduce members:

Z1, Z2, Z3, . . .

of Z such that V = ∪jZj . Obviously:

FV (X) =
⋃

j

FZj
(X)

It follows that F(X) is countably generated.

Various Effros Topologies

05◦ With reference to article 1.1◦ and to Theorem 1, we may introduce (in
many different ways) a topology on F(X) such that the corresponding topo-
logical space is separable and metrizable and such that the corresponding
borel space is the effros borel space. The proof of Theorem 1 points to par-
ticular examples. See article 1.2◦. Let Z be a countable base for X . By the
effros topology on F(X) determined by Z, one means the topology on F(X)
generated by all subfamilies:

F 0
Z (X) := F(X)\FZ(X), F 1

Z (X) := FZ(X)

of F(X), where Z runs through the nonempty open subsets of X in Z. Let us
emphasize that the members of the effros topology (determined by Z) have
the form:

∞
⋃

j=1

(F ι
Zj1

(X) ∩ F ι
Zj2

(X) ∩ · · · ∩ F ι
Zjℓj

(X))

where the sets Zjk are drawn from Z and where the superscript ι equals
either 0 or 1. One refers to the corresponding topological space F(X) as the
effros topological space determined by X and Z. By the proof of Theorem
1, it is plain that, for any countable base Z for X , the corresponding effros
topological space is separable, totally disconnected, and metrizable and the
corresponding borel space is the effros borel space.

Properties of Effros Spaces

06◦ Let X be a separable metrizable topological space and let Y be a closed
subset and subspace of X . Of course, we can identify F(Y ) as a subfamily of
F(X). Let Z be a countable base for X . Let V := X\Y . If V is empty then
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F(Y ) = F(X). If V is not empty then we may apply the relation in article
4◦ to obtain:

F(Y ) = F(X)\FV (X) =
⋂

j

(F(X)\FZj
(X))

It follows that F(Y ) is a closed subfamily of the effros topological space F(X)
determined by X and Z.

07◦ Let X ′ and X ′′ be separable metrizable topological spaces. Let H be
an open continuous surjective mapping carrying X ′ to X ′′. Let H∗ be the
mapping carrying F(X ′′) to F(X ′), defined as follows:

H∗(Y ′′) := H−1(Y ′′) (Y ′′ ∈ F(X ′′))

Since H is continuous and surjective, the various subsets H−1(Y ′′) of X ′ are
closed and nonempty. Hence, the mapping H∗ is properly defined. Let Z ′

be a countable base for X ′. Since H is open and surjective, it is plain that
Z ′′ := H(Z ′) is a countable base for X ′′. Hence, we may form the effros
topological spaces F(X ′) (determined by X ′ and Z ′) and F(X ′′) (determined
by X ′′ and Z ′′). We contend that H∗ carries F(X ′′) homeomorphically to the
subspace H∗(F(X ′′)) of F(X ′) and that H∗(F(X ′′)) is a closed subfamily of
F(X ′).

08◦ Since H is surjective, it is plain that H∗ is injective. Let Z ′ be any
nonempty open subset of X ′ in Z ′. For each Y ′′ in F(X ′′), H−1(Y ′′)∩Z ′ 6= ∅
iff Y ′′ ∩H(Z ′) 6= ∅. Hence:

(H∗)−1(FZ′(X ′)) = FH(Z′)(X
′′)

Clearly, H∗ carries F(X ′′) homeomorphically to the subspace H∗(F(X ′′)) of
F(X ′).

09◦ For each Y ′ in F(X ′), Y ′ ∈ H∗(F(X ′′)) iff Y ′ = H−1(H(Y ′)), in which
case H(Y ′) ∈ F(X ′′) and Y ′ = H∗(H(Y ′)). Moreover, Y ′ = H−1(H(Y ′))
iff, for each Z ′ ∈ Z ′, either Y ′ ∩ Z ′ 6= ∅ or H−1(H(Y ′)) ∩ Z ′ = ∅. However,
H−1(H(Y ′)) ∩ Z ′ = ∅ iff Y ′ ∩H−1(H(Z ′)) = ∅. Hence:

H∗(F(X ′′)) =
⋂

Z′∈Z′

(FZ′(X ′) ∪ F(X ′\Ẑ ′) )

where Ẑ ′ := H−1(H(Z ′)). Of course, for each Z ′ in Z ′, both FZ′(X ′) and
F(X ′\Ẑ ′) are closed sufamilies of F(X ′). See article 6◦. Clearly, H∗(F(X ′′))
is a closed subfamily of F(X ′).
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The Effros Space F(L)

10◦ As usual, the canonical topological space L shows attractive features.
Let us consider the countable base U for L, described in article 1.13◦. We
will prove that the effros topological space F(L) determined by L and U is
polish. It will follow that the effros borel space F(L) determined by L is
standard.

11◦ For convenience, let us abbreviate the members of U as follows:

U := Lm1m2...mn

For each U in U, let ΥU stand for the characteriestic function of FU (L):

ΥU := 1FU (L)

Clearly, the effros topology on F(L) determined by U is the weak topology on
F(L) determined by the family of characteristic functions just defined. Let
Ω be the product space:

Ω := {0, 1}U =
∏

U∈U

ΩU

where, for each U in U, ΩU = {0, 1}. Of course, Ω is a compact separable
metrizable topological space. For each M in F(L), let Υ(M) be the member
of Ω defined as follows:

Υ(M)(U) := ΥU (M) =

{

0 if M ∩ U = ∅
1 if M ∩ U 6= ∅

(U ∈ U)

By the foregoing discussion, the mapping Υ (so defined) carries F(L) home-
omorphically to the subspace Υ(F(L)) of Ω. We will prove that Υ(F(L)) is
a Gδ-subset of Ω.

12◦ For each M in F(L), the mapping T := Υ(M) carryingU to {0, 1}meets
the following conditions:

(•) there is some U in U, T(U)=1
(•) for each U ′′ in U, if T (U ′′) = 1 then there is some U ′ in U such

that U ′ ⊂ U ′′ and T (U ′) = 1
(•) for any U ′ and U ′′ in U, if U ′ ⊂ U ′′ then either T (U ′) = 0 or

T (U ′′) = 1

By definition, U ′ ⊂ U ′′ iff U ′ ⊆ U ′′ and U ′ 6= U ′′.



1.6 SPACES OF SETS 31

13◦ The foregoing conditions uniquely characterize those mappings T in Ω

which lie in Υ(F(L)). In fact, one may apply such a mapping T to define M ,
as follows:

M := L\(
⋃

U0)

where U0 is the subset of U consisting of all members U for which T (U) = 0.
The foregoing conditions imply that M is closed and nonempty and that
Υ(M) = T .

14◦ For each U in U and for each ι in {0, 1}, let Ω ι
U be the (clopen) subset

of Ω comprised of all members T such that T (U) = ι. With this notation, we
may express the foregoing conditions on T as follows:

(•) T ∈
⋃

U

Ω 1
U

(•) T ∈
⋂

U ′′

( Ω 0
U ′′ ∪ (

⋃

U ′⊂U ′′

Ω 1
U ′) )

(•) T ∈
⋂

U ′⊂U ′′

(Ω 0
U ′ ∪Ω 1

U ′′)

Of course, we intend that U , U ′, and U ′′ run through U. In this form, the
foregoing conditions plainly show that Υ(F(L)) is a Gδ-subset of Ω.

15◦ We conclude that the effros topological space F(L) determined by L and
U is polish.

16◦ Let Σ stand for the mapping carrying F(L) to L which assigns to each
M in F(L) the minimum member Σ(M) of M under the lexicographic order.
For each M in F(L) and for each m in L, Σ(M) < m iff M ∩Lm 6= ∅. Hence:

Σ−1(Lm) = FLm(L)

With reference to relation (◦) in article 1.14◦, we infer that Σ is a borel
mapping.

The Theorem of Effros

17◦ The following theorem brings our brief study of effros spaces to focus.

Theorem 15 For any polish topological space X , the effros borel space
F(X) determined by X is standard.

By Theorem 3, we may introduce an open continuous surjective mapping H
carrying L to X . We may also introduce the countable base U for L and the
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corresponding countable base Z := H(U) for X . We obtain the effros topo-
logical spaces F(L) (determined by L and U) and F(X) (determined by X
and Z). By article 8◦, F(L) is polish. By article 7◦, H∗ carries F(X) home-
omorphically to the closed subset and subspace H∗(F(X)) of F(L). Hence,
F(X) is polish. It follows that the effros borel space F(X) is standard. •

The Selection Theorem of Ryll-Nardzewski

18◦ With reference to article 9◦ and to the foregoing theorem, we may intro-
duce the borel mapping:

S := H · Σ ·H∗

carrying F(X) to X . This natural construction yields a proof of the following
basic theorem. •

Theorem 16 For each polish topological space X , there is a borel mapping
S carrying the effros borel space F(X) to X such that, for each Y in F(X),
S(Y ) ∈ Y .

1.7 CROSS SECTIONS

Borel Cross Sections

01◦ Let X1 and X2 be separable metrizable topological spaces and let F
be a surjective mapping carrying X1 to X2. By a cross section of F , one
means a mapping G carrying X2 to X1 such that, for any member y of X2,
F (G(y)) = y. Of course, the Axiom of Choice guarantees that such a mapping
exists. However, in practice, one seeks a cross section G of F which satisfies
some pertinent condition, leading to some useful conclusion.

02◦ Let G be a cross section of F . Clearly, for each x in X1, x ∈ G(X2)
iff G(F (x)) = x. If F and G are borel mappings then of course G · F is a
borel mapping carrying X1 to itself. It follows that G(X2) is a borel subset
of X1. See problem 8.3◦. It also follows that the restriction of F to G(X2)
carries G(X2) borel isomorphically to X2. Moreover, if X1 is standard then,
by Theorem 4, the subspace G(X2) of X1 is standard. It follows that X2 is
standard as well.

03◦ We conclude that if X1 is standard, if F is a borel mapping, and if there
exists a borel cross section G of F then X2 is (not only analytic but in fact)
standard as well.
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04◦ Let X := X2 be analytic but not standard. Let X1 := L. By definition,
there exists a surjective continuous mapping F carrying L toX . The foregoing
observations imply that no borel cross section G of F may exist.

05◦ One may imagine that if both X1 and X2 are standard (or if both are
analytic) and if F is continuous (perhaps merely borel) then a borel cross sec-
tion G of F will exist. Remarkably, one can design examples to the contrary.
For instructions, see problem 8.12◦.

The Cross Section Theorem of Dixmier

06◦ With regard to the question whether borel cross sections may exist, the
following theorem puts forward a broad class of favorable cases.

Theorem 17 For any separable metrizable topological spaces X1 and X2

and for any surjective mapping F carrying X1 to X2, if X1 is polish, if, for
any y in X2, F

−1({y}) is a closed subset of X1, and if, for any open subset Z
of X1, F (Z) is a borel subset of X2 then there exists a borel cross section G
of F .

Let us introduce the mapping F ∗ carryingX2 to the effros borel space F(X1),
defined as follows:

F ∗(y) := F−1({y}) (y ∈ X2)

For each nonempty open subset Z of X1 and for any y in X2, F
∗(y) ∈ FZ(X1)

iff F−1({y}) ∩ Z 6= ∅. Hence:

(F ∗)−1(FZ(X1)) = F (Z)

Clearly, F ∗ is a borel mapping. Let us apply the Theorem of Ryll-Nardzewski
(Theorem 16) to introduce a borel mapping S carrying F(X1) to X1 such
that, for each Y in F(X1), S(Y ) ∈ Y . Finally, let us introduce the composite
mapping G := S ·F ∗ carrying X2 to X1. Clearly, G is a borel cross section of
F . •

The Cross Section Theorem of Federer and Morse

07◦ Let us note that the hypotheses of the foregoing theorem hold if X1 is
(separable and) locally compact and if F is continuous. This special case of
the Theorem of Dixmier is the Theorem of Federer and Morse.

08◦ One might replace the third of the hypotheses by the complementary
hypothesis that, for any closed subset Y of X1, F (Y ) is a borel subset of X2.
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However, nothing would be gained. The latter hypothesis implies the former,
because every open subset of X1 is an Fσ-subset of X1.

09◦ By an Fσ-subset of X1, one means any subset of X1 which is the union
of a countable family of closed subsets of X1.

Analytic Cross Sections

10◦ Let X1 and X2 be separable metrizable topological spaces and let F be
a surjective mapping carrying X1 to X2. Granting that a borel cross section
G of F may not exist, we may inquire whether, in general, there exists an
adequate substitute. Let us make the question precise.

11◦ Let B1 and B2 be the borel algebras on X1 and X2 generated by the
given topologies. Let A2 be the family of analytic subspaces of X2 and let
Ā2 be the borel algebra on X2 generated by A2. By an analytic cross section
of F , one means a cross section G of F such that, for any subset Y of X1, if
Y ∈ B1 then G−1(Y ) ∈ Ā2.

12◦ In due course, we will prove that analytic cross sections are plentiful and
that they serve as adequate substitutes for borel cross sections.

The Cross Section Theorem of von Neumann

13◦ With the foregoing preparation, we can put forward a simple proof of
the following celebrated theorem.

Theorem 18 For any analytic topological spaces X1 and X2 and for any
surjective borel mapping F carrying X1 to X2, there exists an analytic cross
section G of F .

Let us first consider the special case in which X1 is polish and F is continuous.
For this case, we simply copy the argument which supports the Theorem of
Dixmier. Now the mapping F ∗ carrying X2 to F(X1) is not necessarily borel
but it is nevertheless analytic, because, for each nonempty open subset Z of
X1, F (Z) is analytic. It follows that G := S · F ∗ is an analytic cross section
of F .

14◦ Let us turn to the general case. Of course, we may assume that X1 is
nonempty. Let Γ be the graph of F in X1 × X2 and let Π′ and Π′′ be the
(first and second coordinate) projection mappings carrying X1 × X2 to X1

and to X2. By problem 8.4◦, Γ is a borel subset, hence an analytic subspace
of X1 ×X2. Let Φ be a continuous mapping carrying L to X1 ×X2 such that
Φ(L) = Γ. Of course, F := Π′′ ·Φ is a surjective continuous mapping carrying
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L to X2. By the foregoing special case, we may introduce an analytic cross
section G of F . Clearly, G := Π′ · Φ · G is an analytic cross section of F . •

Universal Measurability

15◦ Now let us consider the sense in which an analytic cross section is an
adequate substitute for a borel cross section. Of course, the distinction be-
tween the two lies in the fact that, for a given subset Y of X1, Y may lie in
B1 but G−1(Y ) may lie (not in B2 but) in Ā2\B2. We plan to show that, for
the purposes of measure theory (to which much of our study is directed), the
distinction is negligible.

16◦ Let X be a separable metrizable topological space. Let B be the borel
algebra on X generated by the given topology, let A be the family of analytic
subspaces of X , and let Ā be the borel algebra on X generated by A. Let µ
be a normalized finite borel measure defined on (the borel subsets of) X . For
any subset Z of X , one defines the outer measure and the inner measure of
Z with respect to µ as follows:

µ◦(Z) := inf
Z⊆Y

µ(Y )

µ◦(Z) := sup
Y⊆Z

µ(Y )

where Y runs through the borel subsets of X . One says that Z is measurable

with respect to µ iff µ◦(Z) = µ◦(Z), which is to say that there exist borel
subsets Y ′ and Y ′′ of X such that Y ′ ⊆ Z ⊆ Y ′′ and µ(Y ′′\Y ′) = 0. In
this context, one denotes the common value of µ◦(Z) and µ◦(Z) by µ̄(Z).
Should Z be a borel subset of X , one would recover the original value µ(Z).
The family Bµ of all subsets of X which are measurable with respect to µ
is a borel algebra on X and the extension µ̄ of µ to Bµ just described is a
normalized finite borel measure on Bµ. One refers to µ̄ as the completion of
µ.

17◦ Let us prove that Ā ⊆ Bµ.

Theorem 19 For any separable metrizable topological space X , for any
analytic subspace Z of X , and for any normalized finite borel measure µ on
X , Z is measurable with respect to µ.

We require an elementary property of outer measure. Thus, let {Zj}∞j=1 be any
increasing sequence of subsets of X . Let Z := ∪∞

j=1Zj. Clearly, {µ◦(Zj)}∞j=1

is an increasing sequence of real numbers bounded above by µ◦(Z). Let ǫ be



36 1 ANALYTIC BOREL SPACES

any positive real number. For each positive integer j, let Yj be a borel subset
of X for which Zj ⊆ Yj and µ(Yj) ≤ µ◦(Zj) + ǫ. We have:

lim
j→∞

µ◦(Zj) ≤ µ◦(Z)

≤ µ(∪∞
j=1 ∩

∞
k=j Yk)

= lim
j→∞

µ(∩∞
k=jYk)

≤ lim
j→∞

µ◦(Zj) + ǫ

It follows that:
µ◦(Z) = lim

j→∞
µ◦(Zj)

18◦ Now let ǫ be any positive real number. We will show that there exists a
compact subset Y of X such that Y ⊆ Z and µ◦(Z)− ǫ ≤ µ(Y ). It will follow
that Z is measurable with respect to µ.

19◦ Of course, we may assume that Z is nonempty. Let H be a continuous
mapping carrying L to X such that H(L) = Z. For each n in Z+ and for
any m1, m2, . . ., and mn in Z+, let Lm1m2...mn be the subset of L consisting
of all members ℓ for which ℓ1 ≤ m1, ℓ2 ≤ m2, . . ., and ℓn ≤ mn. Obviously,
{H(Lj)}∞j=1 is an increasing sequence of subsets of X and Z = ∪∞

j=1H(Lj).
By the foregoing elementary property of outer measures, there must exist some
positive integer j such that µ◦(Z) − ǫ < µ◦(H(Lj)). In turn, {H(Ljk)}∞k=1

is an increasing sequence of subsets of X and H(Lj) = ∪∞
k=1H(Ljk). Again,

there must exist some positive integer k such that µ◦(Z) − ǫ < µ◦(H(Ljk)).
Continuing inductively, we obtain a member m of L such that:

µ◦(Z)− ǫ < µ◦(H(Lm1m2...mn)) (n ∈ Z+)

For each positive integer n, let Kn := Lm1m2...mn and let Yn := clo(H(Kn)).
Obviously, {Kn}∞n=1 and {Yn}∞n=1 are decreasing sequences of sets. Moreover,
for each positive integer n, µ◦(H(Kn)) ≤ µ(Yn). Let K := ∩∞

n=1Kn and let
Y := ∩∞

n=1Yn. We have:

µ◦(Z)− ǫ ≤ lim
n→∞

µ(Yn)

= µ(Y )

Obviously, K is a compact subset of L. We will complete the argument by
showing that Y = H(K).

20◦ Of course, H(K) ⊆ Y .
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21◦ Let d be a metric on X which defines the given topology. Let y be
any member of Y . For each positive integer n, we may introduce a member
ℓn of Kn such that d(H(ℓn), y) < 1/n. Clearly, for each positive integer
j, the sequence {(ℓn)j}∞n=1 of positive integers is bounded. The Theorem
of Tychonov now implies that the terms of the sequence {ℓn}

∞
n=1 all lie in

a compact subset of L. Hence, there exists a subsequence of the sequence
{ℓn}∞n=1 in L which is convergent. One might as well assume that {ℓn}∞n=1

itself is convergent. Let ℓ be the limit of {ℓn}∞n=1. Clearly, ℓ ∈ K and
H(ℓ) = y. We conclude that Y ⊆ H(K). •

Borel Cross Sections Modulo µ

22◦ Finally, we can describe precisely the sense in which an analytic cross
section is an adequate substitute for a borel cross section. Let us return to
the context of the Cross Section Theorem of von Neumann (Theorem 18). See
articles 8◦ and 9◦. Let µ be a normalized finite borel measure defined on X2.
Let G be an analytic cross section of F . We contend that there is a borel
mapping H carrying X2 to X1 such that G and H are equal modulo µ, which
is to say that there is a borel subset Z of X2 such that µ(Z) = 0 and such
that, for each x in X2\Z, G(x) = H(x). One may refer to H as a borel cross
section of F modulo µ.

23◦ To produce H , we argue as follows. Let Z be a countable subfamily of
B1 which generates B1. Let the members of Z be displayed as follows:

Z1, Z2, Z3, . . .

We may apply Theorem 19 to introduce borel subsets:

Y ′
1 , Y

′
2 , Y

′
3 , . . .

and:
Y ′′
1 , Y ′′

2 , Y ′′
3 , . . .

of X2 such that, for each index j, Y ′
j ⊆ G−1(Zj) ⊆ Y ′′

j and µ(Y ′′
j \Y ′

j ) = 0.
Let:

Z :=
⋃

j

(Y ′′
j \Y ′

j )

Let H ′ be the mapping carrying X2\Z to X1 defined by restricting G to
X2\Z. Clearly, for each index j, (H ′)−1(Zj) = Y ′

j \Z. It follows that H ′ is
a borel mapping. Let H ′′ be any borel mapping carrying Z to X1 and let H
be the mapping carrying X2 to X1 formed by combining H ′ and H ′′ in the
obvious manner. Of course, H is a borel mapping. By design, G and H are
equal modulo µ.
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Restrictions of Measures

24◦ By Theorem 19, we may justify the following informal treatment of mea-
sures. Let X be a separable metrizable topological space and let Y be an
analytic subspace of X . Let I be the natural inclusion mapping carrying Y
to X . Given a normalized finite borel measure ν on Y , one may form the
normalized finite borel measure µ := I∗(ν) on X . That is:

µ(Z) := ν(I−1(Z)) = ν(Z ∩ Y )

where Z is any borel subset of X . Clearly, µ̄(Y ) = 1. One may say that µ is
the extension of ν to X . Conversely, given a normalized finite borel measure
µ on X , if µ̄(Y ) = 1 then the restriction of µ̄ to Y yields a normalized finite
borel measure ν on Y . Obviously, I∗(ν) = µ. One may say that ν is the
restriction of µ to Y . The latter usage is precise, even though Y may not be
a borel subset of X .

1.8 PROBLEMS

Topological Spaces and Borel Spaces

01◦ Let X be a separable metrizable topological space. Let T be the given
topology on X and let B be the borel algebra on X generated by T . With
regard to B, one may view X as a borel space. Let Y be any subset of X .
With regard to the topology T ∩Y on Y and with regard to the borel algebra
B ∩ Y on Y , one may view Y as a topological subspace of X and as a borel
subspace of X . Prove that T ∩ Y generates B ∩ Y . Hence, the borel subspace
Y of X is that derived from the topological subspace Y of X .

02◦ Let A be a countable set and let {Xa}a∈A be an indexed family of separa-
ble metrizable topological spaces. For each a in A, let Ta be the given topology
on Xa and let Ba be the borel algebra on Xa generated by Ta. Let T be the
topology on the topological product

∏

a∈AXa and let B be the borel algebra
on the borel product

∏

a∈A Xa. Prove that T generates B. Hence, the borel
product

∏

a∈A Xa is that derived from the topological product
∏

a∈AXa.

03◦ Let X be a separable metrizable topological space. Let F be a mapping
carrying X to itself and let Y be the subset of X consisting of all members
x for which F (x) = x. Prove that if F is a borel mapping then Y is a borel
subset of X . Prove that if F is a continuous mapping then Y is a closed subset
of X .

[ Note that Y = G−1(∆), where G is the mapping carrying X to X ×X ,
defined as follows:

G(x) := (x, F (x)) (x ∈ X)
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and where ∆ is the diagonal subset of X ×X . ]

04◦ Let X1 and X2 be separable metrizable topological spaces and let F be a
mapping carrying X1 to X2. Let Γ be the graph of F , the subset of X1 ×X2

composed of all ordered pairs (x, y) for which y = F (x). Prove that if F is
a borel mapping then Γ is a borel subset of X1 × X2. Prove that if F is a
continuous mapping then Γ is a closed subset of X1 ×X2.

[ Introduce the mapping F carrying X1×X2 to itself, defined as follows:

F(x, y) := (x, F (x)) ((x, y) ∈ X1 ×X2)

Apply the foregoing problem. ]
Prove that if X1 is an analytic topological space and if Γ is an analytic

subspace of X1 ×X2 then F is a borel mapping.
[ Apply the Isomorphism Theorem (Theorem 9) to show that X1 and Γ

are borel isomorphic. ]

05◦ Let X be a separable locally compact topological space. Show that X is
pōlish.

[ Introduce the one-point compactification of X . ]

Perfect Topological Spaces

06◦ Let X be a separable metrizable topological space. One says that X
is perfect iff, for any x in X , clo(X\{x}) = X . Show that if X is pōlish
then there exists a closed subset Y of X such that X\Y is countable and the
subspace Y of X is perfect.

[ Let Y be the subset of X consisting of all condensation points in X .
That is, for any x in X , x ∈ Y iff, for any neighborhood V of x in X , V is
uncountable. Clearly, Y is closed and perfect. Apply the Theorem of Lindelöf
to show that Z := X\Y is countable. ]

Show that the foregoing decomposition of X is unique.
[ For any subspaces Y ′ and Y ′′ of X , if both Y ′ and Y ′′ are closed and

perfect and if both X\Y ′ and X\Y ′′ are countable then Y ′\Y ′′ is pōlish,
perfect, and countable. However, the Category Theorem of Baire implies that,
for any separable metrizable topological space Z, if Z is nonempty, pōlish, and
perfect then Z is uncountable. Hence, Y ′\Y ′′ = ∅. Similarly, Y ′′\Y ′ = ∅. ]

Cantor Topological Spaces

07◦ Let A be a countably infinite set. For each a in A, let Xa be a finite
set containing at least two members and let Xa be supplied with the dis-
crete topology. Let M be the topological product

∏

a∈AXa. Clearly, M is
nonempty, separable, compact, totally disconnected, and perfect. Such are
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called cantor topological spaces. Of course, one may choose the set A and the
various sets Xa according to convenience. The resulting topological space M

would be determined within homeomorphism. [ See the following problem. ]
In practice, one takes A to be Z+ and the various sets Xa to be {0, 1}, so that
M consists of all sequences in {0, 1}:

M := {0, 1}Z
+

Let c be any real number for which 0 < c < 1/2 and let H be the mapping

carrying M := {0, 1}Z
+

to I := [ 0, 1 ] defined as follows:

H(ℓ) :=

∞
∑

j=1

ℓj(1 − c)cj−1 (ℓ ∈ M)

Prove that H is injective and continuous. Conclude that Zc := H(M) is a
compact subspace of I homeomorphic to M, hence that Zc is cantor. One
refers to Zc as the cantor subspace of I defined by c. Note that, when c = 1/3,
Zc coincides with the classical cantor set.

08◦ Let X1 and X2 be (nonempty) separable metrizable topological spaces.
Prove that if X1 is cantor and if X2 is compact then there is a continuous
surjective mapping H carrying X1 to X2. Prove that if both X1 and X2 are
cantor then there is a homeomorphism H carrying X1 to X2.

The Canonical Space P := I \Q

09◦ Let Z be a subset of R. One says that Z is analytic in the sense of
Lebesgue iff there exist an interval X in R, a countable subset Y of X , and
a real-valued function f defined on X such that, for each x in X\Y , f is
continuous at x and such that f(X) = Z. Prove that Z is analytic in the
sense of Lebesgue iff the subspace Z of R is analytic in the sense defined in
article 3.1◦.

[ Let P := I \Q be the suspace of R consisting of all real numbers x
for which 0 < x < 1 and x is irrational. Prove that P and the canonical
topological space L are homeomorphic. Use this fact to verify the foregoing
characterization of analytic subspaces of R.

To prove that P and L are homeomorphic, proceed as follows. For each
real number w, let [w ] stand as usual for the integer part of w, that is, for the
largest among all integers k such that k ≤ w. Let h be the function defined
on P as follows:

h(x) := [
1

x
] (x ∈ P)



1.8 PROBLEMS 41

Of course, the values of h lie in Z+. Let H be the mapping carrying P to
itself defined as follows:

H(x) :=
1

x
− h(x) (x ∈ P)

Finally, let F be the mapping carrying P to L defined as follows:

F (x) := ℓ (x ∈ P)

where:
ℓj := h(Hj−1(x)) (j ∈ Z+)

The terms of ℓ are the elements of the continued fraction expansion for x.
Apply the familiar properties of the corresponding partial quotients to prove
that F is a homeomorphism. ]

Spaces of Mappings

10◦ Let X1 and X2 be separable metrizable topological spaces. Let X1 be
compact. Let C(X1, X2) be the family of all continuous mappings carryingX1

to X2. We intend that C(X1, X2) be supplied with the topology of uniform
convergence. Thus, let d2 be any metric on X2 defining the given topology.
Let D be defined as follows:

D(F,G) := sup
x∈X1

d2(F (x), G(x)) ((F,G) ∈ C(X1, X2)× C(X1, X2))

The metric D on C(X1, X2) defines the topology of uniform convergence on
C(X1, X2). Show that C(X1, X2) is a separable metrizable topological space.

[ First prove that, for any metrics d′2 and d′′2 on X2 defining the given
topology, the topologies on C(X1, X2) defined by the corresponding metrics
D′ and D′′ on C(X1, X2) coincide. To that end, suppose that there are some
F in C(X1, X2) and some positive real number ǫ such that, for any positive
integer j, there is some Gj in C(X1, X2) for which D′(Gj , F ) ≤ 1/j but
ǫ < D′′(Gj , F ). Derive a contradiction.

Now let d1 be any metric on X1 defining the given topology. Let j and k
be any positive integers. Let Yj be a finite partition of X1 such that, for any
Y in Yj , Y 6= ∅ and d1(Y ) ≤ 1/j. Let Zk be a countable open covering of X2

such that, for any Z in Zk, Z 6= ∅ and d2(Z) ≤ 1/k. Let φ be any mapping
carrying Yj to Zk. Let Φjkφ be the (possibly empty) subfamily of C(X1, X2)
consisting of all mappings F such that:

F (Y ) ⊆ φ(Y ) (Y ∈ Yj)

Now let Φ be a subfamily of C(X1, X2) formed by selecting one mapping:

Fjkφ
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from each of those which are nonempty among the various families:

Φjkφ

Note that Φ is countable. Apply the Covering Theorem of Lebesgue to show
that D is dense in C(X1, X2). ]

11◦ In context of the foregoing problem, prove that if X2 is pōlish then
C(X1, X2) is a pōlish topological space.

[ Assume that X2 is complete with respect to d2. Prove that C(X1, X2) is
complete with respect to D. The familiar argument may be applied, by which
one shows that the limit of a uniformly convergent sequence of continuous
functions is itself continuous. ]

Borel Cross Sections

12◦ Design a surjective continuous mapping F carrying L to L for which no
borel cross section G may exist.

[ Incomplete. This problem requires a substantial hint. ]

An Example

13◦ Let X be a borel space. Of course, if X is countably separated then
it is separated. Moreover, if X is separated and coutably generated then it
is countably separated. [ See article 1.2◦. ] Show by example that X may be
countably separated but not countably generated.

[ Incomplete. ]

Inverse Limits

14◦ [ Incomplete. ]

1.9 NOTES

01◦ In these notes, we will call attention to various references and we will
acknowledge sources.

02◦

03◦

04◦


