
A KHINCHIN SEQUENCE

THOMAS WIETING

Abstract. We prove that the geometric and harmonic means of the sequence
Z2 of positive integers proposed by Bailey, Borwein, and Crandall converge to
the corresponding Khinchin Constants.

1. Khinchin Sequences

One defines the Khinchin Constant K by the following relation:

log(K) =
1

log(2)

∞∑

k=1

log(k) log
(

(k + 1)2

k(k + 2)

)
= log(2.685452001...)

For any sequence A = (aj):

A : a1, a2, a3, . . . , aj , . . .

of positive integers, let us refer to A as a Khinchin Sequence iff the geometric
means of A converge to K:

lim
n→∞

( n∏

j

aj

)1/n = K

That is:

lim
n→∞

1
n

n∑

j=1

log (aj) = log(K)

For any irrational number x in the interval (0, 1), let us refer to x as a Khinchin
Number iff the countinued fraction expansion A(x) = (aj(x)):

A(x) : a1(x), a2(x), a3(x), . . . , aj(x), . . .

for x is a Khinchin Sequence. In this paper, our objective is to prove that the
particular sequence C = (cj):

C : 2, 5, 1, 11, 1, 3, 1, 22, 2, 4, 1, 7, 1, 2, 1, 45, 2, 4, 1, 8, . . . , cj , . . .

of positive integers proposed by Bailey, Borwein, and Crandall is a Khinchin Se-
quence. See reference [1].

In the paper just cited, the authors denote C by Z2. They define the sequence
C in terms of two auxiliary sequences U = (uj) and V = (vk), defined in turn as
follows. The first sequence, U , is the van der Corput Sequence:

U :
1
2
,

1
4
,
3
4
,

1
8
,
5
8
,
3
8
,
7
8
,

1
16

,
9
16

,
5
16

,
13
16

,
3
16

,
11
16

,
7
16

,
15
16

, . . . , uj , . . .
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Specifically, for each positive integer j, uj is the dyadic rational number obtained
by reflecting the binary representation of j in the binary point. For example,
u12 := 0.0011 = 3/16 because 12 = 1100.0. See reference [2]. The second sequence,
V , describes a particular partition of the interval (0, 1]:

V : . . . < vk =
1

log(2)
log

(
k + 1

k

)
< . . . < v3 < v2 < v1 = 1

Now, in terms of U and V , Bailey, Borwein, and Crandall define the sequence C as
follows:

C : cj = k ⇐⇒ vk+1 < uj ≤ vk

For example, c12 = 7 because v8 < u12 ≤ v7.

2. Motivation

To set a context for our study of the sequence C, let us describe a special case
of the Ergodic Theorem. Let λ stand for Lebesgue Measure, defined as usual on
R. Let X be the set of all irrational numbers in the interval (0, 1). Let µ stand for
Gauss Measure, defined on X as follows:

µ(E) :=
1

log(2)

∫

E

1
1 + x

λ(dx)

where E is any Borel subset of X. Note that µ(E) = 0 iff λ(E) = 0. Let F be the
mapping carrying X to itself defined as follows:

F (x) :=
1
x
−

⌊
1
x

⌋

where x is any number in X. Of course, %1/x& denotes the largest among all integers
" for which " ≤ 1/x. Note that F is continuous. One may view the ordered pair
(X, F ) as a (discrete) dynamical system. For any x in X, one may say that if the
system is in state x at time 0 then the system is in state F (x) one unit of time
later. By elementary argument, one can show that µ is invariant under F , in the
sense that, for any Borel subset E of X, µ(F−1(E)) = µ(E). By more substantial
argument, one can also show that µ is ergodic under F , in the sense that, for any
Borel subset E of X, if F−1(E) = E then either µ(E) = 0 or µ(E) = 1. See
reference [4]. Let h be the function defined on X as follows:

h(x) :=
⌊

1
x

⌋

where x is any number in X. Note that h is continuous and that the values of h
are positive integers. One may refer to h as an observable for the given dynamical
system.

For any x in X, one obtains the orbit O(x) = (xj) of x under F :

O(x) : x = x1, x2, x3, . . .

and one obtains the corresponding (discrete) time sequence A(x) = (aj(x)):

A(x) : a1(x), a2(x), a3(x), ...

where:
xj := F j−1(x), aj(x) := h(xj)

The sequence A(x) is the Continued Fraction Expansion for x.
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For the assembly X, µ, F , and log(h), the Ergodic Theorem states that, for
almost every x in X:

lim
n→∞

1
n

n∑

j=1

log(h(F j−1(x))) =
∫

X
log(h(y))µ(dy)

That is, the time average of log(h) over O(x) equals the space average of log(h)
over X. See reference [5]. Hence:

lim
n→∞

1
n

n∑

j=1

log(aj(x)) =
∫

X
log(h(y))µ(dy)

=
∞∑

k=1

log(k)µ
(

1
k + 1

,
1
k

)

=
1

log(2)

∞∑

k=1

log(k) log
(

(k + 1)2

k(k + 2)

)

= log(K)

Now it is plain that, for almost every irrational number x in the interval (0, 1), x is
a Khinchin Number. However, no particular examples of such numbers are known.
The beguiling cases of π−3 and even of K−2 itself have been studied energetically
but to no analytic decision as yet. In reference [3], one may find the optimistic
opinion that π − 3 is a Khinchin Number. The graphs displayed in Figures 1 and
2 suggest a more cautious, though still hopeful opinion on π − 3 and on K − 2 as
well. The graphs are list plots of the following data:

1
n

n∑

j=1

log (aj(x))− log(K) (1 ≤ n ≤ 4096)

where x = π − 3 and x = K − 2.

1000 2000 3000 4000

-0.04

-0.02

0.02

Figure 1. x = π − 3
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Figure 2. x = K − 2

Failing to identify particular Khinchin Numbers, one naturally turns to the de-
sign of particular Khinchin Sequences. One might, for instance, design sequences
A = (aj) such that, for each j, aj equals 2 or 3 and such that the 2s and 3s occur in
A in correct “limiting proportions,” specifically, the proportions p and q, where p
and q are the positive numbers for which p+q = 1 and log(K) = p log(2)+q log(3).
However, such a design would be very difficult to implement, since it depends upon
the calculation of log(K) to arbitrary accuracy. In sharp contrast, Bailey, Bor-
wein, and Crandall have proposed a particular candidate for a Khinchin Sequence,
namely, the sequence C, which they have defined in constructive and rapidly com-
putable terms. Let us prove formally that C is indeed a Khinchin Sequence.

3. The Function φ

Let φ be the function defined on the interval J = (0, 1] as follows. For each x in
J and for any positive integer k:

φ(x) = log(k) ⇐⇒ vk+1 < x ≤ vk

In particular, for each positive integer j, φ(uj) = log(cj). See Figure 3. Clearly:
∫

J
φ(x)λ(dx) =

1
log(2)

∞∑

k=1

log(k)
(

log
(

k + 1
k

)
− log

(
k + 2
k + 1

))

=
1

log(2)

∞∑

k=1

log(k) log
(

(k + 1)2

k(k + 2)

)

= log(K)

Now it is plain that C is a Khinchin sequence iff:

(1) lim
n→∞

1
n

n∑

j=1

φ(uj) =
∫

J
φ(x)λ(dx)

We proceed to prove relation (1).
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Figure 3. The Function φ

4. Integrating Sequences

Let ψ be a real-valued Borel function defined on J and integrable with respect
to λ. Let us say that the sequence U integrates ψ iff:

lim
n→∞

1
n

n∑

j=1

ψ(uj) =
∫

J
ψ(x)λ(dx)

To prove relation (1), we must prove that U integrates φ. Obviously, the functions
integrated by U comprise a linear space. By elementary argument, one can show
that, for each subinterval I of J , U integrates the characteristic function χI of I.
One summarizes this property of U by saying that U is uniformly distributed in J .
We will prove this property in an appendix to this paper. Presuming the property,
let us prove that U integrates φ. To that end, we require only that:

(1) φ is nonnegative and decreasing
(2) for each positive integer p, U integrates the function:

φp := χ[1/2p,1]φ

Let n be any positive integer. Let αn be the average of the values of φ at the
first n terms of U :

αn :=
1
n

n∑

j=1

φ(uj)

Let:

β :=
∫

J
φ(x)λ(dx)

We must prove that:
lim

n→∞
αn = β



6 THOMAS WIETING

Let p be any positive integer. Let φp be the function defined on J by truncation of
φ, as follows:

φp := χ[1/2p,1]φ

That is:

φp(x) :=

{
0 if 0 < x < 1/2p

φ(x) if 1/2p ≤ x ≤ 1

Obviously, for each x in J :

φ1(x) ≤ φ2(x) ≤ · · · ≤ φp(x) ≤ · · · ↑ φ(x)

Let αn,p be the corresponding average of the values of φp at the first n terms of U :

αn,p :=
1
n

n∑

j=1

φp(uj)

Let:

βp :=
∫

J
φp(x)λ(dx)

Clearly, φp is a linear combination of characteristic functions of subintervals of J .
By our initial remarks, it is plain that U integrates φp:

(2) lim
n→∞

αp,n = βp

Now let ε be any positive real number. By the Monotone Convergence Theorem,
we may introduce a positive integer p such that:

(3) β − ε < βp ≤ β

from which it follows that:

(4)
∫

(0,1/2p)
φ(x)λ(dx) < ε

By relation (2), we may introduce a positive integer m such that, for every positive
integer n, if m ≤ n then:

(5) βp − ε < αn,p < βp + ε

We may as well arrange that 2p ≤ m. Let n be any positive integer for which m ≤ n.
Let q be the positive integer for which 2q−1 − 1 < n ≤ 2q − 1. Clearly, p < q. One
may say that the first n terms of U have run through the first q − 1 “cycles” of
U and have at least begun (perhaps even finished) the q-th cycle. The smallest
term of the q-th cycle is 1/2q. Hence, for each positive integer j, if 1 ≤ j ≤ n then
1/2q ≤ uj . Consequently:

(6) αn,q = αn

Now let:
t1, t2, . . . , t! (" = 2q−p − 1)

be the terms among:
u1, u2, . . . , ur (r = 2q − 1)
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which are less than 1/2p. In the following Figure 4, p = 2, q = 4, and " = 3. Since
φ is nonnegative and decreasing, we find that:

αn,q − αn,p ≤
1
n

!∑

j=1

φ(tj)

=
2q

n

1
2q

!∑

j=1

φ(tj)

≤ 4
∫

(0,1/2p)
φ(x)λ(dx) (since 2 2q−1 < 2(n + 1))

< 4ε (by relation (4))

Hence, by relations (3) and (5) and by the foregoing computation:

β − 2ε < βp − ε < αn,p ≤ αn,q < αn,p + 4ε < βp + 5ε ≤ β + 5ε

so that, by relation (6), β − 2ε < αn < β + 5ε. Therefore:

(1) lim
n→∞

1
n

n∑

j=1

φ(uj) =
∫

J
φ(x)λ(dv)

0

0!log!1"
log!2"log!3"log!4"

log!22" Scale 1:3.236

Φ

1v5
t1 t2 t3 u2

Figure 4. Comparison of Areas

5. Questions

The number x in (0, 1) of which C is the continued fraction expansion is approxi-
mately equal to 0.46107049595671951935. Of course, it is a Khinchin Number. Can
one identify x in “familiar” terms?
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In Figures 5 and 6, we display list plots of the following data:

1
n

n∑

j=1

log (cj)− log(K) (1 ≤ n ≤ N)

where N = 4096 and N = 8192. Can one explain, in formally precise terms, the
apparent self-similarity of the data?

1000 2000 3000 4000

-0.004

-0.002

0.002

0.004

0.006

0.008

0.01

Figure 5. N = 4096

2000 4000 6000 8000
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0.002

0.004

0.006

Figure 6. N = 8192

6. Harmonic Means

Let r be any real number for which r < 1 and r (= 0. With reference to Section
4, let us define the function φr on J as follows. For each x in J and for any positive
integer k:

φr(x) = kr ⇐⇒ vk+1 < x ≤ vk
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In particular, for each positive integer j, φr(uj) = cr
j . If r < 0 then 1−φr is similar

to φ, in the sense that it meets the conditions (1) and (2) stated in Section 4. If
0 < r < 1 then φr itself is similar to φ. In either case, U integrates φr. Hence:

lim
n→∞

1
n

n∑

j=1

cr
j = lim

n→∞

1
n

n∑

j=1

φr(uj)

=
∫

J
φr(x)λ(dx)

=
1

log(2)

∞∑

k=1

kr log
(

(k + 1)2

k(k + 2)

)

One defines the Khinchin Constant Kr by the following relation:

Kr
r =

1
log(2)

∞∑

k=1

kr log
(

(k + 1)2

k(k + 2)

)

We infer that the r-th harmonic means of C converge to Kr:

lim
n→∞

( 1
n

n∑

j=1

cr
j

)
1/r = Kr

7. Appendix

The van der Corput Sequence U falls into cycles:

U :
1
2
,

1
4
,
3
4
,

1
8
,
5
8
,
3
8
,
7
8
,

1
16

,
9
16

,
5
16

,
13
16

,
3
16

,
11
16

,
7
16

,
15
16

, . . . , uj , . . .

For each positive integer p, the first term of the p-th cycle is 1/2p and the length
of the p-th cycle is 2p−1. The sum of the lengths of the first p cycles is 2p − 1.
Moreover:

u2p+j =
1

2p+1
+ uj (0 < j < 2p)

By these observations, it is plain that, for any dyadic interval I of the form:

I = [j/2p, (j + 1)/2p) (p ∈ Z+, 0 < j < 2p)

the sequence U visits I precisely once in the course of its first p cycles. Thereafter,
it visits I periodically with period 2p. Hence, for any positive integer n, if 2p ≤ n
then:

m

n
≤ 1

n

n∑

j=1

χI(uj) ≤
m + 1

n

where m is the positive integer for which:

m2p − 1 < n ≤ (m + 1)2p − 1

Consequently:

lim
n→∞

1
n

n∑

j=1

χI(uj) =
1
2p

= λ(I)

which is to say that U integrates χI .
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In turn, for any subinterval I of the interval (0, 1) and for any positive real
number ε, we may introduce finite disjoint unions I ′ and I ′′ of dyadic intervals of
the foregoing form such that I ′ ⊆ I ⊆ I ′′ and λ(I ′′\I ′) < ε. Hence:

lim sup
n→∞

1
n

n∑

j=1

χI(uj) ≤ lim
j→∞

1
n

n∑

j=1

χI′′(uj)

= λ(I ′′)

< λ(I ′) + ε

= lim
n→∞

1
n

n∑

j=1

χI′(uj) + ε

≤ lim inf
n→∞

1
n

n∑

j=1

χI(uj) + ε

Consequently:

lim
n→∞

1
n

n∑

j=1

χI(uj) = λ(I)

which is to say that U integrates χI .
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