A KHINCHIN SEQUENCE

THOMAS WIETING

Abstract

We prove that the geometric and harmonic means of the sequence Z_{2} of positive integers proposed by Bailey, Borwein, and Crandall converge to the corresponding Khinchin Constants.

1. Khinchin Sequences

One defines the Khinchin Constant K by the following relation:

$$
\log (K)=\frac{1}{\log (2)} \sum_{k=1}^{\infty} \log (k) \log \left(\frac{(k+1)^{2}}{k(k+2)}\right)=\log (2.685452001 \ldots)
$$

For any sequence $A=\left(a_{j}\right)$:

$$
A: \quad a_{1}, a_{2}, a_{3}, \ldots, a_{j}, \ldots
$$

of positive integers, let us refer to A as a Khinchin Sequence iff the geometric means of A converge to K :

$$
\lim _{n \rightarrow \infty}\left(\prod_{j}^{n} a_{j}\right)^{1 / n}=K
$$

That is:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \log \left(a_{j}\right)=\log (K)
$$

For any irrational number x in the interval $(0,1)$, let us refer to x as a Khinchin Number iff the countinued fraction expansion $A(x)=\left(a_{j}(x)\right)$:

$$
A(x): \quad a_{1}(x), a_{2}(x), a_{3}(x), \ldots, a_{j}(x), \ldots
$$

for x is a Khinchin Sequence. In this paper, our objective is to prove that the particular sequence $C=\left(c_{j}\right)$:

$$
C: \quad 2,5,1,11,1,3,1,22,2,4,1,7,1,2,1,45,2,4,1,8, \ldots, c_{j}, \ldots
$$

of positive integers proposed by Bailey, Borwein, and Crandall is a Khinchin Sequence. See reference [1].

In the paper just cited, the authors denote C by Z_{2}. They define the sequence C in terms of two auxiliary sequences $U=\left(u_{j}\right)$ and $V=\left(v_{k}\right)$, defined in turn as follows. The first sequence, U, is the van der Corput Sequence:

$$
U: \quad \frac{1}{2}, \quad \frac{1}{4}, \frac{3}{4}, \quad \frac{1}{8}, \frac{5}{8}, \frac{3}{8}, \frac{7}{8}, \frac{1}{16}, \frac{9}{16}, \frac{5}{16}, \frac{13}{16}, \frac{3}{16}, \frac{11}{16}, \frac{7}{16}, \frac{15}{16}, \ldots, u_{j}, \ldots
$$

[^0]Specifically, for each positive integer j, u_{j} is the dyadic rational number obtained by reflecting the binary representation of j in the binary point. For example, $u_{12}:=0.0011=3 / 16$ because $12=1100.0$. See reference [2]. The second sequence, V, describes a particular partition of the interval $(0,1]$:

$$
V: \quad \ldots<v_{k}=\frac{1}{\log (2)} \log \left(\frac{k+1}{k}\right)<\ldots<v_{3}<v_{2}<v_{1}=1
$$

Now, in terms of U and V, Bailey, Borwein, and Crandall define the sequence C as follows:

$$
C: \quad c_{j}=k \Longleftrightarrow v_{k+1}<u_{j} \leq v_{k}
$$

For example, $c_{12}=7$ because $v_{8}<u_{12} \leq v_{7}$.

2. Motivation

To set a context for our study of the sequence C, let us describe a special case of the Ergodic Theorem. Let λ stand for Lebesgue Measure, defined as usual on \mathbb{R}. Let X be the set of all irrational numbers in the interval $(0,1)$. Let μ stand for Gauss Measure, defined on X as follows:

$$
\mu(E):=\frac{1}{\log (2)} \int_{E} \frac{1}{1+x} \lambda(d x)
$$

where E is any Borel subset of X. Note that $\mu(E)=0$ iff $\lambda(E)=0$. Let F be the mapping carrying X to itself defined as follows:

$$
F(x):=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor
$$

where x is any number in X. Of course, $\lfloor 1 / x\rfloor$ denotes the largest among all integers ℓ for which $\ell \leq 1 / x$. Note that F is continuous. One may view the ordered pair (X, F) as a (discrete) dynamical system. For any x in X, one may say that if the system is in state x at time 0 then the system is in state $F(x)$ one unit of time later. By elementary argument, one can show that μ is invariant under F, in the sense that, for any Borel subset E of $X, \mu\left(F^{-1}(E)\right)=\mu(E)$. By more substantial argument, one can also show that μ is ergodic under F, in the sense that, for any Borel subset E of X, if $F^{-1}(E)=E$ then either $\mu(E)=0$ or $\mu(E)=1$. See reference [4]. Let h be the function defined on X as follows:

$$
h(x):=\left\lfloor\frac{1}{x}\right\rfloor
$$

where x is any number in X. Note that h is continuous and that the values of h are positive integers. One may refer to h as an observable for the given dynamical system.

For any x in X, one obtains the orbit $O(x)=\left(x_{j}\right)$ of x under F :

$$
O(x): \quad x=x_{1}, x_{2}, x_{3}, \ldots
$$

and one obtains the corresponding (discrete) time sequence $A(x)=\left(a_{j}(x)\right)$:

$$
A(x): \quad a_{1}(x), a_{2}(x), a_{3}(x), \ldots
$$

where:

$$
x_{j}:=F^{j-1}(x), \quad a_{j}(x):=h\left(x_{j}\right)
$$

The sequence $A(x)$ is the Continued Fraction Expansion for x.

For the assembly X, μ, F, and $\log (h)$, the Ergodic Theorem states that, for almost every x in X :

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \log \left(h\left(F^{j-1}(x)\right)\right)=\int_{X} \log (h(y)) \mu(d y)
$$

That is, the time average of $\log (h)$ over $O(x)$ equals the space average of $\log (h)$ over X. See reference [5]. Hence:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \log \left(a_{j}(x)\right) & =\int_{X} \log (h(y)) \mu(d y) \\
& =\sum_{k=1}^{\infty} \log (k) \mu\left(\frac{1}{k+1}, \frac{1}{k}\right) \\
& =\frac{1}{\log (2)} \sum_{k=1}^{\infty} \log (k) \log \left(\frac{(k+1)^{2}}{k(k+2)}\right) \\
& =\log (K)
\end{aligned}
$$

Now it is plain that, for almost every irrational number x in the interval $(0,1), x$ is a Khinchin Number. However, no particular examples of such numbers are known. The beguiling cases of $\pi-3$ and even of $K-2$ itself have been studied energetically but to no analytic decision as yet. In reference [3], one may find the optimistic opinion that $\pi-3$ is a Khinchin Number. The graphs displayed in Figures 1 and 2 suggest a more cautious, though still hopeful opinion on $\pi-3$ and on $K-2$ as well. The graphs are list plots of the following data:

$$
\frac{1}{n} \sum_{j=1}^{n} \log \left(a_{j}(x)\right)-\log (K) \quad(1 \leq n \leq 4096)
$$

where $x=\pi-3$ and $x=K-2$.

Figure 1. $x=\pi-3$

Figure 2. $x=K-2$

Failing to identify particular Khinchin Numbers, one naturally turns to the design of particular Khinchin Sequences. One might, for instance, design sequences $A=\left(a_{j}\right)$ such that, for each j, a_{j} equals 2 or 3 and such that the 2 s and 3 s occur in A in correct "limiting proportions," specifically, the proportions p and q, where p and q are the positive numbers for which $p+q=1$ and $\log (K)=p \log (2)+q \log (3)$. However, such a design would be very difficult to implement, since it depends upon the calculation of $\log (K)$ to arbitrary accuracy. In sharp contrast, Bailey, Borwein, and Crandall have proposed a particular candidate for a Khinchin Sequence, namely, the sequence C, which they have defined in constructive and rapidly computable terms. Let us prove formally that C is indeed a Khinchin Sequence.

3. The Function ϕ

Let ϕ be the function defined on the interval $J=(0,1]$ as follows. For each x in J and for any positive integer k :

$$
\phi(x)=\log (k) \Longleftrightarrow v_{k+1}<x \leq v_{k}
$$

In particular, for each positive integer $j, \phi\left(u_{j}\right)=\log \left(c_{j}\right)$. See Figure 3. Clearly:

$$
\begin{aligned}
\int_{J} \phi(x) \lambda(d x) & =\frac{1}{\log (2)} \sum_{k=1}^{\infty} \log (k)\left(\log \left(\frac{k+1}{k}\right)-\log \left(\frac{k+2}{k+1}\right)\right) \\
& =\frac{1}{\log (2)} \sum_{k=1}^{\infty} \log (k) \log \left(\frac{(k+1)^{2}}{k(k+2)}\right) \\
& =\log (K)
\end{aligned}
$$

Now it is plain that C is a Khinchin sequence iff:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \phi\left(u_{j}\right)=\int_{J} \phi(x) \lambda(d x) \tag{1}
\end{equation*}
$$

We proceed to prove relation (1).

Figure 3. The Function ϕ

4. Integrating Sequences

Let ψ be a real-valued Borel function defined on J and integrable with respect to λ. Let us say that the sequence U integrates ψ iff:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \psi\left(u_{j}\right)=\int_{J} \psi(x) \lambda(d x)
$$

To prove relation (1), we must prove that U integrates ϕ. Obviously, the functions integrated by U comprise a linear space. By elementary argument, one can show that, for each subinterval I of J, U integrates the characteristic function χ_{I} of I. One summarizes this property of U by saying that U is uniformly distributed in J. We will prove this property in an appendix to this paper. Presuming the property, let us prove that U integrates ϕ. To that end, we require only that:
(1) ϕ is nonnegative and decreasing
(2) for each positive integer p, U integrates the function:

$$
\phi_{p}:=\chi_{\left[1 / 2^{p}, 1\right]} \phi
$$

Let n be any positive integer. Let α_{n} be the average of the values of ϕ at the first n terms of U :

$$
\alpha_{n}:=\frac{1}{n} \sum_{j=1}^{n} \phi\left(u_{j}\right)
$$

Let:

$$
\beta:=\int_{J} \phi(x) \lambda(d x)
$$

We must prove that:

$$
\lim _{n \rightarrow \infty} \alpha_{n}=\beta
$$

Let p be any positive integer. Let ϕ_{p} be the function defined on J by truncation of ϕ, as follows:

$$
\phi_{p}:=\chi_{\left[1 / 2^{p}, 1\right]} \phi
$$

That is:

$$
\phi_{p}(x):=\left\{\begin{array}{lll}
0 & \text { if } \quad 0<x<1 / 2^{p} \\
\phi(x) & \text { if } \quad 1 / 2^{p} \leq x \leq 1
\end{array}\right.
$$

Obviously, for each x in J :

$$
\phi_{1}(x) \leq \phi_{2}(x) \leq \cdots \leq \phi_{p}(x) \leq \cdots \uparrow \phi(x)
$$

Let $\alpha_{n, p}$ be the corresponding average of the values of ϕ_{p} at the first n terms of U :

$$
\alpha_{n, p}:=\frac{1}{n} \sum_{j=1}^{n} \phi_{p}\left(u_{j}\right)
$$

Let:

$$
\beta_{p}:=\int_{J} \phi_{p}(x) \lambda(d x)
$$

Clearly, ϕ_{p} is a linear combination of characteristic functions of subintervals of J. By our initial remarks, it is plain that U integrates ϕ_{p} :

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha_{p, n}=\beta_{p} \tag{2}
\end{equation*}
$$

Now let ϵ be any positive real number. By the Monotone Convergence Theorem, we may introduce a positive integer p such that:

$$
\begin{equation*}
\beta-\epsilon<\beta_{p} \leq \beta \tag{3}
\end{equation*}
$$

from which it follows that:

$$
\begin{equation*}
\int_{\left(0,1 / 2^{p}\right)} \phi(x) \lambda(d x)<\epsilon \tag{4}
\end{equation*}
$$

By relation (2), we may introduce a positive integer m such that, for every positive integer n, if $m \leq n$ then:

$$
\begin{equation*}
\beta_{p}-\epsilon<\alpha_{n, p}<\beta_{p}+\epsilon \tag{5}
\end{equation*}
$$

We may as well arrange that $2^{p} \leq m$. Let n be any positive integer for which $m \leq n$. Let q be the positive integer for which $2^{q-1}-1<n \leq 2^{q}-1$. Clearly, $p<q$. One may say that the first n terms of U have run through the first $q-1$ "cycles" of U and have at least begun (perhaps even finished) the q-th cycle. The smallest term of the q-th cycle is $1 / 2^{q}$. Hence, for each positive integer j, if $1 \leq j \leq n$ then $1 / 2^{q} \leq u_{j}$. Consequently:

$$
\begin{equation*}
\alpha_{n, q}=\alpha_{n} \tag{6}
\end{equation*}
$$

Now let:

$$
t_{1}, t_{2}, \ldots, t_{\ell} \quad\left(\ell=2^{q-p}-1\right)
$$

be the terms among:

$$
u_{1}, u_{2}, \ldots, u_{r} \quad\left(r=2^{q}-1\right)
$$

which are less than $1 / 2^{p}$. In the following Figure $4, p=2, q=4$, and $\ell=3$. Since ϕ is nonnegative and decreasing, we find that:

$$
\begin{array}{rlr}
\alpha_{n, q}-\alpha_{n, p} & \leq \frac{1}{n} \sum_{j=1}^{\ell} \phi\left(t_{j}\right) & \\
& =\frac{2^{q}}{n} \frac{1}{2^{q}} \sum_{j=1}^{\ell} \phi\left(t_{j}\right) & \\
& \leq 4 \int_{\left(0,1 / 2^{p}\right)} \phi(x) \lambda(d x) & \\
& \left.\quad \text { (since } 22^{q-1}<2(n+1)\right) \\
& <4 \epsilon & \\
\text { (by relation }(4))
\end{array}
$$

Hence, by relations (3) and (5) and by the foregoing computation:

$$
\beta-2 \epsilon<\beta_{p}-\epsilon<\alpha_{n, p} \leq \alpha_{n, q}<\alpha_{n, p}+4 \epsilon<\beta_{p}+5 \epsilon \leq \beta+5 \epsilon
$$

so that, by relation (6), $\beta-2 \epsilon<\alpha_{n}<\beta+5 \epsilon$. Therefore:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \phi\left(u_{j}\right)=\int_{J} \phi(x) \lambda(d v) \tag{1}
\end{equation*}
$$

Figure 4. Comparison of Areas

5. Questions

The number x in $(0,1)$ of which C is the continued fraction expansion is approximately equal to 0.46107049595671951935 . Of course, it is a Khinchin Number. Can one identify x in "familiar" terms?

In Figures 5 and 6, we display list plots of the following data:

$$
\frac{1}{n} \sum_{j=1}^{n} \log \left(c_{j}\right)-\log (K) \quad(1 \leq n \leq N)
$$

where $N=4096$ and $N=8192$. Can one explain, in formally precise terms, the apparent self-similarity of the data?

Figure 5. $N=4096$

Figure 6. $N=8192$
6. Harmonic Means

Let r be any real number for which $r<1$ and $r \neq 0$. With reference to Section 4, let us define the function ϕ_{r} on J as follows. For each x in J and for any positive integer k :

$$
\phi_{r}(x)=k^{r} \Longleftrightarrow v_{k+1}<x \leq v_{k}
$$

In particular, for each positive integer $j, \phi_{r}\left(u_{j}\right)=c_{j}^{r}$. If $r<0$ then $1-\phi_{r}$ is similar to ϕ, in the sense that it meets the conditions (1) and (2) stated in Section 4. If $0<r<1$ then ϕ_{r} itself is similar to ϕ. In either case, U integrates ϕ_{r}. Hence:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} c_{j}^{r} & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \phi_{r}\left(u_{j}\right) \\
& =\int_{J} \phi_{r}(x) \lambda(d x) \\
& =\frac{1}{\log (2)} \sum_{k=1}^{\infty} k^{r} \log \left(\frac{(k+1)^{2}}{k(k+2)}\right)
\end{aligned}
$$

One defines the Khinchin Constant K_{r} by the following relation:

$$
K_{r}^{r}=\frac{1}{\log (2)} \sum_{k=1}^{\infty} k^{r} \log \left(\frac{(k+1)^{2}}{k(k+2)}\right)
$$

We infer that the r-th harmonic means of C converge to K_{r} :

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{j=1}^{n} c_{j}^{r}\right)^{1 / r}=K_{r}
$$

7. Appendix

The van der Corput Sequence U falls into cycles:

$$
U: \quad \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{5}{8}, \frac{3}{8}, \frac{7}{8}, \frac{1}{16}, \frac{9}{16}, \frac{5}{16}, \frac{13}{16}, \frac{3}{16}, \frac{11}{16}, \frac{7}{16}, \frac{15}{16}, \ldots, u_{j}, \ldots
$$

For each positive integer p, the first term of the p-th cycle is $1 / 2^{p}$ and the length of the p-th cycle is 2^{p-1}. The sum of the lengths of the first p cycles is $2^{p}-1$. Moreover:

$$
u_{2^{p}+j}=\frac{1}{2^{p+1}}+u_{j} \quad\left(0<j<2^{p}\right)
$$

By these observations, it is plain that, for any dyadic interval I of the form:

$$
I=\left[j / 2^{p},(j+1) / 2^{p}\right) \quad\left(p \in \mathbb{Z}^{+}, 0<j<2^{p}\right)
$$

the sequence U visits I precisely once in the course of its first p cycles. Thereafter, it visits I periodically with period 2^{p}. Hence, for any positive integer n, if $2^{p} \leq n$ then:

$$
\frac{m}{n} \leq \frac{1}{n} \sum_{j=1}^{n} \chi_{I}\left(u_{j}\right) \leq \frac{m+1}{n}
$$

where m is the positive integer for which:

$$
m 2^{p}-1<n \leq(m+1) 2^{p}-1
$$

Consequently:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{I}\left(u_{j}\right)=\frac{1}{2^{p}}=\lambda(I)
$$

which is to say that U integrates χ_{I}.

In turn, for any subinterval I of the interval $(0,1)$ and for any positive real number ϵ, we may introduce finite disjoint unions I^{\prime} and $I^{\prime \prime}$ of dyadic intervals of the foregoing form such that $I^{\prime} \subseteq I \subseteq I^{\prime \prime}$ and $\lambda\left(I^{\prime \prime} \backslash I^{\prime}\right)<\epsilon$. Hence:

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{I}\left(u_{j}\right) & \leq \lim _{j \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{I^{\prime \prime}}\left(u_{j}\right) \\
& =\lambda\left(I^{\prime \prime}\right) \\
& <\lambda\left(I^{\prime}\right)+\epsilon \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{I^{\prime}}\left(u_{j}\right)+\epsilon \\
& \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{I}\left(u_{j}\right)+\epsilon
\end{aligned}
$$

Consequently:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{I}\left(u_{j}\right)=\lambda(I)
$$

which is to say that U integrates χ_{I}.

References

[1] D. H. Bailey, J. M. Borwein, R. C. Crandall, On the Khinchin Constant, Math. Comp. 66 (1997) 417-431.
[2] J. G. van der Corput, Verteilungsfunktionen, Proc. Ned. Akad. v. Wet. 38 (1935), 813-821.
[3] D. H. Lehmer, Note on an Absolute Constant of Khinchin, Amer. Math. Monthly, 46 (1939), 148-152.
[4] C. Ryll-Nardzewski, One the Ergodic Theorems (I,II), Studia Math. 12 (1951), 65-79.
[5] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.
Department of Mathematics, Reed College, Portland, Oregon 97202
E-mail address: wieting@reed.edu

[^0]: Thanks to R. C. Crandall for suggesting the subject of this paper.

