LING 323 : Introductory Syntax

TTh 10:30-11:50, Vollum 126

Course Syllabus
Spring 2010

MATT PEARSON

office: Vollum 313
email: pearsonm@reed.edu
phone: 7618 (from off-campus: 503-517-7618)
office hours: Monday 2:00-4:00, Tuesday 4:00-5:00, or by appointment

PREREQUISITES

There are no prerequisites for this course, other than an interest in language. An introductory linguistics course (LING 211, LING 311, or equivalent) is recommended, but by no means required. Some familiarity with basic ‘school grammar’ terms like noun, adjective, (in)transitive verb, preposition, phrase, sentence, etc., would also be useful. If you would like to brush up on these terms, I recommend the Hurford book listed below.

FOCUS OF THE COURSE

Syntax is that branch of linguistics (the scientific study of human language) that deals with sentence structure. Syntacticians seek to characterize the (largely unconscious) rules that determine how speakers of a language combine words into larger units such as phrases and sentences, and how speakers parse—i.e., assign a structural analysis to—the phrases and sentences which they hear or read. Most syntacticians adopt a universalist perspective: that is, they are concerned not only with determining the sentence rules for some particular language (say, English), but also with determining what structural generalizations hold across all languages, and what these generalizations tell us about the nature of language as a property of the human species.

There are various types of syntactic theories. Here we follow linguists like Noam Chomsky in adopting an explicitly Generative orientation. In Generative Linguistics, the goal of a theory of syntax is not to explain how speakers actually produce and parse sentences (linguistic performance); instead, the goal is to understand the system of knowledge that enables speakers to do this (linguistic competence). A fundamental assumption of Generative Syntax is that speakers’ competence involves a coherent system of highly abstract principles which can be discovered empirically and modeled formally. These principles are argued to be at least partially innate, and at least partially independent of other cognitive domains.

In this introductory course we will engage in basic analysis of syntactic data, mostly from English, and develop theories to account for patterns in those data. The general goals of the course are twofold:

(1) To learn how to construct a syntactic argument. This involves determining what counts as evidence in syntax, and learning how linguists use that evidence to argue for or against a particular analysis of some phenomenon.

(2) To become acquainted with some of the basic terminology, concepts, and formalisms of contemporary Generative Syntactic theory.

Of these, (1) is the more important goal. Most of our attention in this course will be focused on learning how to do syntax. This will involve reading about and discussing the application of scientific methodolo-
gies to language data, as well as working together to construct analyses of actual fragments of English (including many phenomena for which no universally agreed-upon analysis exists). Regarding goal (2): There are a number of different versions of Generative Syntax which we could investigate, each with its own terminology and formal notation. Here we will concentrate on Government and Binding theory (or GB for short), a framework developed in the 1980s and early 1990s out of prior work by Chomsky and many others. The reasons for this choice are largely practical: GB is a highly influential and well-developed theory, with a good deal of empirical coverage. Most current research in syntax assumes the GB framework or one of its off-shoots—or explicitly argues against this framework and its off-shoots. It is therefore useful to have some familiarity with GB jargon and notation in order to be able to read widely in the field.

READINGS

Assigned readings will come from the following books:

Haegeman is the required textbook for this course, and is available for purchase in the bookstore. The other readings are all available on reserve from the library. I have also placed some supplementary materials, listed below, on 24-hour print reserve. These are intended as general reference works which you may consult for additional information on material covered in the primary readings.

EXPECTATIONS AND POLICIES

Students will be expected to attend every class and to participate in discussion and problem-solving exercises on a regular basis. Written work for the course consists of ten problem sets and a final exam. Problem sets will count for approximately 60-70% of the course grade, while participation and the exam will count for 15-20% each.

Participation

This course is structured more like a lecture/lab course than a standard seminar course. Reading assignments will tend to be short and rather technical, while in-class discussion will center on working through problems together. Some of these exercises will originate as informal ‘homework’ assignments, where I ask you to think about a body of data and come to class with a set of generalizations or the beginnings of an analysis. Regular attendance and participation are therefore crucial to the success of the class.

Final exam

The final exam for this course will be comprehensive. It will be an untimed take-home exam, and you will be given a week to work on it. The exam will be handed out towards the end of reading week and due one week later (exact dates TBA). The format of the exam will be similar to that of the problem sets, except of course that you will have to work on it individually rather than in groups.
Problem sets

There will be 10 problem sets, which together will count for the bulk of the course grade. Dates when assignments will be handed out and collected are given in the table below (these dates are tentative; I will notify you of any changes as we go along). Assignments will generally be due on Tuesday, except for problem sets 4 and 5 (the last two before spring break), which will be due on Thursday.

<table>
<thead>
<tr>
<th>Problem Set</th>
<th>Handed Out</th>
<th>Due in Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS 1</td>
<td>February 2</td>
<td>February 9</td>
</tr>
<tr>
<td>PS 2</td>
<td>February 9</td>
<td>February 16</td>
</tr>
<tr>
<td>PS 3</td>
<td>February 16</td>
<td>February 23</td>
</tr>
<tr>
<td>PS 4</td>
<td>February 23</td>
<td>March 4</td>
</tr>
<tr>
<td>PS 5</td>
<td>March 4</td>
<td>March 11</td>
</tr>
<tr>
<td>PS 6</td>
<td>March 23</td>
<td>March 30</td>
</tr>
<tr>
<td>PS 7</td>
<td>March 30</td>
<td>April 6</td>
</tr>
<tr>
<td>PS 8</td>
<td>April 6</td>
<td>April 13</td>
</tr>
<tr>
<td>PS 9</td>
<td>April 13</td>
<td>April 20</td>
</tr>
<tr>
<td>PS 10</td>
<td>April 20</td>
<td>April 27</td>
</tr>
</tbody>
</table>

Assignments are due at the beginning of class. Papers must be *typed*, except for trees, which may be drawn by hand (preferably on unlined 8½ x 11 paper). Given the size of the class, I would prefer to receive assignments in hard copy form; however, in exceptional cases where this is not possible—e.g., if you’re out of town, or suffering last-minute printer failure—you may send me your assignment as an email attachment (PDF preferred) prior to the beginning of class.

Written work must be turned in on time if you wish to receive full credit and comments. Late assignments will be penalized 10% of total possible points for each day they are late, unless you receive an extension from me in advance. Late assignments will not be accepted for credit if turned in after the problem set has been returned to students. Moreover, late assignments will probably receive minimal comments, and may not be returned in a timely fashion.

I believe that written work should give students the opportunity to extend and develop what they have learned, rather than simply functioning as review. Consequently I try to make my assignments challenging, and sometimes include previews of material which we have not yet been covered in class or in the reading. Crucially, I do not expect that you will be able to complete the problem sets on your own without help. It is perfectly acceptable to consult me *before* an assignment is due if you are having trouble working it out. In addition, you are encouraged—indeed, expected—to work on problem sets in groups, *so long as you write up your answers in your own words*. So find yourself a study partner (or two, or three) as soon as you can!

COURSE OUTLINE

Below is a numbered list giving the reading assignments for the course, and the topics covered in each (H stands for the Haegeman textbook). This outline is subject to change, depending on how quickly we get through the material. You will notice that I have not assigned specific dates for the readings: I will let you know in class which readings you should be working on for the following week. It makes more sense to me to set the pace as we go along, rather than trying to stick to a predetermined schedule.

1. **Radford, Transformational Grammar**, chapter 1 (pp. 1-46); H, introduction (pp. 3-26) [sections 1 and 2 (pp. 3-9) overlap with the Radford chapter and can be skimmed] – The generative position, ‘grammar’ in its various senses, acceptability judgements and grammaticality.

(3) Radford, Transformational Grammar, chapter 2, sections 2.1-2.2 (pp. 50-56); Ouhalla, chapter 2 (pp. 17-40) - Phrase structure, heads and phrases, representing phrase structure using trees.

(4) H, chapter 1, sections 1-4 (pp. 33-55) – Lexical constraints on phrase structure: predicates and arguments, subcategorization, thematic roles and the Theta Criterion, the Projection Principle.

(5) H, chapter 1, sections 5-8 (pp. 55-73) – Expletive subjects and the extended projection principle (EPP).

(6) Radford, Transformational Grammar, chapter 2, sections 2.4-2.9 (pp. 64-105) – Constituency tests.

(8) H, chapter 2, sections 3-4.1 (pp. 106-131) – Endocentricity, extending X-bar structure to functional categories: IP and CP.

(9) Ouhalla, chapter 8, sections 8.4.1-8.4.3 (pp. 201–208); H, chapter 11, section 5 (pp. 607-611) [optional] – Extending X-bar structure to functional categories: the DP hypothesis.

(10) H, chapter 2, sections 4.2-7 (pp. 132-148) – C-command, tests for c-command, binary branching, double object constructions.

(11) H, chapter 3, sections 1-4 (pp. 155-180) – Licensing of DPs, morphological case and structural Case, the Case Filter, government.

(12) H, chapter 4, sections 1-7 and section 9 (pp. 203-236, 240-241) – Binding theory, c-command and local domains, reflexives, pronouns and R-expressions.

(13) H, chapter 5 (pp. 253-285) – Empty subjects, government, binding and the PRO Theorem.

(14) H, chapter 6, section 1 (pp. 295-306) – Movement transformations, deep structure (DS) and surface structure (SS), evidence for traces, overview of head movement.

(16) H, chapter 6, section 3 (pp. 320-337) – DP-movement continued: Burzio’s generalization and the unaccusative-unergative distinction.

(17) H, chapter 6, sections 4-5 (pp. 337-360) – The structure preservation principle, chains and binding, the VP-internal subject hypothesis.

(19) H, chapter 7, sections 5-9 (pp. 397-424) [section 8 (pp. 418-423) is optional] – Constraints on wh-movement, that-trace effects, island constraints, subjacency and successive cyclic movement, island effects as a diagnostic for movement, relative clauses, crossover.

(20) H, chapter 9, sections 1-2 (pp. 487-507) – Logical Form (LF), quantifier scope, covert wh-movement, multiple-wh constructions.

(21) H, chapter 11, sections 1-3 (pp. 585-605) – More on head movement and functional projections: the split-INFL hypothesis, the split-COMP hypothesis.