Money in the RBC Model

- How can we build a macro model without money?
 - "Classical dichotomy" says that real side operates independently of monetary forces: "money is a veil"
- How would we add money?
 - Need a reason to hold it
 - o Balancing cost of making transactions with less money against forgone interest
- Definition of money
 - o Means of payment or medium of exchange
 - M1 = narrow money (checking accounts and currency)
 - M2 = broader money (savings accounts, small CDs, etc.)
- Supply of money
 - o Central bank controls issue of "monetary base"
 - Ratio of money supply to monetary base is money multiplier that depends on public's propensity to hold currency and banks' propensity to hold reserves
 - \circ Central bank controls *B* and thus attempts to control *M*
- Demand for money
 - Balancing benefits (cheaper transactions) against costs (forgone interest)
 - $\circ \quad M^d = P \cdot L(Y, i, TC) = PY^{\eta} i^{\varepsilon} TC^{\xi}$
- Monetary equilibrium in a growth model
 - Suppose that *Y* grows at n + g
 - \circ Central bank increases money supply at rate μ

• In equilibrium:
$$\mu = \frac{\dot{M}^s}{M^s} = \frac{\dot{M}^d}{M^d} = \frac{\dot{P}}{P} + \eta \frac{\dot{Y}}{Y} + \varepsilon \frac{\dot{i}}{i} + \xi \frac{\dot{T}C}{TC}$$

In steady state:

•
$$\frac{P}{P} = \pi$$

• $\frac{\dot{Y}}{Y} = n + g$

- *i* and *TC* are unchanging
- $\mu = \pi + \eta (g + n)$
- Some evidence that $\eta = 1$, so $\pi = \mu (n + g)$
- If growth of money supply exceeds growth of money demand, inflation makes up the difference
- Steady-state properties:

$$-\frac{\partial\pi}{\partial\mu}=1$$

•
$$\frac{\partial \pi}{\partial (g+n)} = -\eta \approx -1$$

• Note that we assume that the real economy affects monetary conditions (inflation) but not vice versa

• Change in interest rate?

- If $r\uparrow$ then (given π) $i\uparrow$, so $M^d\downarrow$, $M^d < M^s$, $P\uparrow$ and $W\uparrow$
- Similar kind of adjustment occurs to raise or lower prices and wages after change in *Y* or M^{s}
- Note that $Y\uparrow$ implies $P\downarrow$, which means that prices are countercyclical in RBC framework
- Roles of price in economy
 - Monetary role: aggregate P balances M^s and M^d
 - Resource allocation role: relative prices signal scarcity
 - This role is masked in RBC because there is only one good, but it is crucially important in microeconomics
- Can all prices adjust at once?
 - \circ Our model suggests that it is a simple matter for *P* to move up or down
 - In a world with perfect information and perfect coordination, all prices could instantly adjust upward or downward
 - In the real world, there is no such coordination
 - Prices and wages may be sticky
 - Some may be stickier than others
 - This can lead to relative prices changes that alter resource allocation and cause inefficiency
- Keynesian models: stickiness of *P* and/or *W*
 - Prices in different markets adjust at different speeds
 - Stock market: very fast
 - Goods market: much slower
 - Labor market: probably very slow
 - If *P* cannot establish $M^s = M^d$ quickly, then other variables are likely to respond to this imbalance in the short run
 - For example, a change the interest rate could re-establish equilibrium between M^{s} and M^{d} immediately, whereas a change in *P* and *W* could take months or years
 - This is the essence of Keynesian model
- Modeling strategy:
 - Start by examining behavior of economy with fixed prices/wages
 - Examine microeconomic basis for price/wage stickiness