The Diamond Model: Overlapping Generations

Differences from the Ramsey model

- Discrete time
- Finite (two-period) lifetimes
- Distinct phases of life (work and retirement)

Similarities to Ramsey model

- Same basic idea of consumption/saving
- Same production and growth dynamics

Dynamic assumptions

- Lifetime assumptions
 - o Individual lives two periods
 - o No links to earlier or later generations
 - o Works first period and lives off saving (with interest) second period
 - o Old gradually sell off capital to the young throughout the old-age period
 - Young save by buying capital from old, then diverting output from consumption to create additional new capital as desired
- Size of population
 - o L_t = number of young in year t
 - They are the only workers
 - $\circ L_{t+1} = (1+n)L_t$
 - Labor force and population grow at annually compounded rate n
- Consumption notation
 - \circ $C_{1,t}$ = consumption per person by young in period t
 - \circ $C_{2,t}$ = consumption per person by old in period t

Utility

- Period felicity function is again CRRA
- Consumption choices by person who is young in t
 - o Consumes $C_{1,t}$ when young and $C_{2,t+1}$ when old
- Utility is $U = \frac{C_{1,t}^{1-\theta}}{1-\theta} + \frac{1}{1+\rho} \frac{C_{2,t+1}^{1-\theta}}{1-\theta}$, with $\theta > 0$ and $\rho > 0$.
 - Utility is discounted at annually compounded rate ρ

Production and dynamics

- $Y_t = F(K_t, A_t L_t)$ with constant returns to scale and usual marginal product conditions
 - $y_t = f(k_t)$ as before
 - o $r_t = f'(k_t)$ (assume no depreciation)
 - o $w_t = f(k_t) k_t f'(k_t)$ = wage of each effective labor unit
 - $A_t w_t = \text{wage per worker}$
 - $A_t w_t L_t$ = total wages earned in economy (= income of young)
- All capital is owned by the old at the beginning of each period
- $\bullet \qquad K_{t+1} = L_t \left(w_t A_t C_{1,t} \right)$
 - Expression in parentheses is saving by each young person, which consists of buying up capital from oldies plus perhaps diverting some new production to further capital.
 - o Multiply by number of young people to get total capital put away for next period

Budget constraint and utility maximization

- Budget constraint over lifetime is $C_{1,t} + \frac{C_{2,t+1}}{1 + r_{t+1}} = A_t w_t$
 - o Or $C_{2,t+1} = (1 + r_{t+1})(w_t A_t C_{1,t})$
- Individual maximization problem:

$$\max_{C_{1,t},C_{2,t+1}} \left[\frac{C_{1,t}^{1-\theta}}{1-\theta} + \frac{1}{1+\rho} \frac{C_{2,t+1}^{1-\theta}}{1-\theta} \right], \text{ subject to } C_{1,t} + \frac{C_{2,t+1}}{1+r_{t+1}} = A_t w_t$$

• Can do this as a Lagrangean, but just as easy to solve and substitute for $C_{2,t+1}$:

$$\circ \max_{C_{1,t}} \left[\frac{C_{1,t}^{1-\theta}}{1-\theta} + \frac{1}{1+\rho} \frac{\left[(1+r_{t+1})(w_t A_t - C_{1,t}) \right]^{1-\theta}}{1-\theta} \right]$$

- First-order conditions for this maximization come from $\frac{dU}{dC_{1,t}} = 0$
 - $\circ \frac{C_{2,t+1}}{C_{1,t}} = \left(\frac{1+r_{t+1}}{1+\rho}\right)^{\frac{1}{\theta}}$
 - O Budget constraint: $C_{2,t+1} = (1 + r_{t+1})(w_t A_t C_{1,t})$
 - o Note similarity of first condition to Euler equation in Ramsey model:
 - C increases or decreases over time as $r > \rho$ or $r < \rho$
 - Sensitivity of consumption path to r depends on $1/\theta$

Plugging the budget constraint back into the other first-order condition yields

$$C_{1,t} = \frac{\left(1+\rho\right)^{\frac{1}{\theta}}}{\left(1+\rho\right)^{\frac{1}{\theta}} + \left(1+r_{t+1}\right)^{\frac{1-\theta}{\theta}}} A_t w_t \equiv \left(1-s(r_{t+1})\right) A_t w_t$$

- o Note that numerator and denominator terms are always positive and that the denominator is always larger
- If $\rho \approx r$ then we consume about $\frac{1}{2}$ of income in first period and $\frac{1}{2}$ in second, which is consistent with basic consumption smoothing
- We can show that $s'(r_{t+1}) = \frac{(1+r_{t+1})^{\frac{1-\theta}{\theta}}}{(1+\rho)^{\frac{1}{\theta}} + (1+r_{t+1})^{\frac{1-\theta}{\theta}}} > 0$ iff $\theta < 1$
 - Change in r has income and substitution effects
 - Reward to saving is higher if $r \uparrow$
 - Don't need to save as much for retirement if $r \uparrow$
 - Remember that $1/\theta$ is elasticity of intertemporal substitution
 - If $1/\theta$ is large, then substitution effect is strong and s' > 0
 - If $1/\theta$ is small, then income effect dominates and s' < 0
 - Intermediate case $\theta = 1$ has s' = 0 and saving rate does not depend on interest rate
 - Recall that the CRRA utility function approaches $u = \ln(c)$ as $\theta \to 1$.
 - If $\theta = 1$, then $s = \frac{1}{2+\rho} = \text{constant}$
 - We shall use log utility as a special case because it is simple
 - What does this mean in terms of indifference curves?

Analysis of the Diamond Model

Dynamics

- The basic equation of motion of this model is $K_{t+1} = s(r_{t+1})L_tA_tw_t$
- We want to translate this into k_{t+1} :

$$\begin{split} k_{t+1} &\equiv \frac{K_{t+1}}{A_{t+1}L_{t+1}} = s(r_{t+1}) \frac{A_t w_t L_t}{A_{t+1}L_{t+1}} \\ &= s(r_{t+1}) \frac{w_t}{L_{t+1}} = s \left[f'(k_{t+1}) \right] \frac{f(k_t) - k_t f'(k_t)}{(1+n)(1+g)} \end{split}$$

• This equation gives k_{t+1} implicitly as a function of k_t , but it can't be solved in the general case.

• Steady-state condition

- What would correspond to $\dot{k} = 0$?
- $\triangle k_{t+1} \equiv k_{t+1} k_t = 0$ would be the equivalent in discrete time
- Setting $\Delta k_{t+1} = 0$ (or $k_{t+1} = k_t = k^*$) gives the steady-state condition:

$$k^* = \frac{s[f'(k^*)][f(k^*) - k^* f'(k^*)]}{(1+n)(1+g)}, \text{ which implicitly defines } k^* \text{ the steady-}$$

state value of k.

- O This equation is difficult to work with because we don't know the form of f and we don't even know the sign of s'.
- Depending on the forms of s and f, the function on the right can have a variety of shapes.
- Special case: $\theta = 1$ (log utility) and Cobb-Douglas production function $y = k^{\alpha}$

$$\circ \quad \text{In this case, } s(r) = \frac{1}{2+\rho}, \ f'(k) = \alpha k^{\alpha-1}, \ w = (1-\alpha)k^{\alpha}.$$

$$0 k_{t+1} = \frac{(1-\alpha)k_t^{\alpha}}{(2+\rho)(1+n)(1+g)} = Dk_t^{\alpha} \text{ with positive constant } D$$

o In this case, we can graph k_{t+1} as a function of k_t and know its basic shape:

- In this case, if we start at k_0 , we will converge to $k^* = D^{\frac{1}{1-\alpha}}$ by the "cobweb" path shown
- Note effects of parameters:
 - $\rho \uparrow \Rightarrow D \downarrow$
 - $n\uparrow \Rightarrow D\downarrow$
 - $g\uparrow \Rightarrow D\downarrow$
 - Effects are similar to Ramsey (and Solow) model

Properties of Diamond Steady State

- In steady-state equilibrium
 - \circ k and y are stable
 - o Y/L grows at g
 - \circ Y, K grow at n + g
- Speed of convergence:
 - $\circ k_{t+1} k_t \approx \alpha (k_t k^*)$
 - o $\alpha \approx 1/3$, so economy moves 1/3 of way to equilibrium in each "period"
 - Note that "period" is half a lifetime, so this is not so different from Solow/Ramsey result

Diamond Model General Case?

• If we abandon the comfortable home of log utility and Cobb-Douglas we admit to strange possibilities:

o Can have multiple equilibria

o Can have no non-zero equilibrium at all

Dynamic Inefficiency in Diamond Model

- Equilibrium in Ramsey model was Pareto efficient
- Diamond model admits the possibility of inefficiency
 - \circ It is possible that k^* is greater than Golden Rule k

- Why? Because survival in old age depends on saving lots of income regardless of rate of return.
- o It is possible that the saving rate that is optimal for an individual might be higher than the saving rate that leads to Golden Rule level of k^*
- Suppose that $k^* > k_{GR}$
 - Suppose that there was another (than capital) way of transferring money from youth to old age (Social Security) so that saving could go down
 - o Young would be better off because they could consume more
 - Future generations would be better off because $k^*\downarrow$ means higher steady-state c^*
 - Everyone is made better off and no one worse off, so original equilibrium must not have been Pareto optimal
- How can model by inefficient? Where is the market failure?
 - No externalities, but an absent market: no way for current generation to trade effectively with future generations
 - Only way to provide for retirement is through saving, even if rate of return is zero or negative
 - o From social standpoint, it is desirable to avoid low- or negative-return investment, but for individual facing retirement this is only choice
 - If benevolent government were to establish transfer scheme from young to old (like Social Security), then they would not need to accumulate useless capital in order to eat in retirement
 - You will do a problem this week looking at the effect of alternative Social
 Security regimes in the Diamond model
- Is this empirically relevant?
 - o $k > k_{GR}$ means that $f'(k) \delta < g + n$
 - o Are interest rates lower than the GDP growth rate?
 - Probably not in U.S. steady state