## The Diamond Model: Overlapping Generations

Differences from the Ramsey model

- Discrete time
- Finite (two-period) lifetimes
- Distinct phases of life (work and retirement)

Similarities to Ramsey model

- Same basic idea of consumption/saving
- Same production and growth dynamics


## Dynamic assumptions

- Lifetime assumptions
- Individual lives two periods
- No links to earlier or later generations
- Works first period and lives off saving (with interest) second period
- Old gradually sell off capital to the young throughout the old-age period
- Young save by buying capital from old, then diverting output from consumption to create additional new capital as desired
- Size of population
- $L_{t}=$ number of young in year $t$
- They are the only workers
- $L_{t+1}=(1+n) L_{t}$
- Labor force and population grow at annually compounded rate $n$
- Consumption notation
- $\quad C_{1, t}=$ consumption per person by young in period $t$
- $\quad C_{2, t}=$ consumption per person by old in period $t$


## Utility

- Period felicity function is again CRRA
- Consumption choices by person who is young in $t$
- Consumes $C_{1, t}$ when young and $C_{2, t+1}$ when old
- Utility is $U=\frac{C_{1, t}^{1-\theta}}{1-\theta}+\frac{1}{1+\rho} \frac{C_{2, t+1}^{1-\theta}}{1-\theta}$, with $\theta>0$ and $\rho>0$.
- Utility is discounted at annually compounded rate $\rho$


## Production and dynamics

- $Y_{t}=F\left(K_{t}, A_{t} L_{t}\right)$ with constant returns to scale and usual marginal product conditions
- $y_{t}=f\left(k_{t}\right)$ as before
- $r_{t}=f^{\prime}\left(k_{t}\right)$ (assume no depreciation)
- $w_{t}=f\left(k_{t}\right)-k_{t} f^{\prime}\left(k_{t}\right)=$ wage of each effective labor unit
- $A_{t} w_{t}=$ wage per worker
- $\quad A_{t} w_{t} L_{t}=$ total wages earned in economy (= income of young)
- All capital is owned by the old at the beginning of each period
- $K_{t+1}=L_{t}\left(w_{t} A_{t}-C_{1, t}\right)$
- Expression in parentheses is saving by each young person, which consists of buying up capital from oldies plus perhaps diverting some new production to further capital.
- Multiply by number of young people to get total capital put away for next period


## Budget constraint and utility maximization

- Budget constraint over lifetime is $C_{1, t}+\frac{C_{2, t+1}}{1+r_{t+1}}=A_{t} w_{t}$
- Or $C_{2, t+1}=\left(1+r_{t+1}\right)\left(w_{t} A_{t}-C_{1, t}\right)$
- Individual maximization problem:

$$
\max _{C_{1, t}, C_{2, t+1}}\left[\frac{C_{1, t}^{1-\theta}}{1-\theta}+\frac{1}{1+\rho} \frac{C_{2, t+1}^{1-\theta}}{1-\theta}\right] \text {, subject to } C_{1, t}+\frac{C_{2, t+1}}{1+r_{t+1}}=A_{t} w_{t}
$$

- Can do this as a Lagrangean, but just as easy to solve and substitute for $C_{2, t+1}$ :

$$
\circ \quad \max _{C_{1, t}}\left[\frac{C_{\frac{1}{1, t}}^{1-\theta}}{1-\theta}+\frac{1}{1+\rho} \frac{\left[\left(1+r_{t+1}\right)\left(w_{t} A_{t}-C_{1, t}\right)\right]^{1-\theta}}{1-\theta}\right]
$$

- First-order conditions for this maximization come from $\frac{d U}{d C_{1, t}}=0$
- $\frac{C_{2, t+1}}{C_{1, t}}=\left(\frac{1+r_{t+1}}{1+\rho}\right)^{\frac{1}{\theta}}$
- Budget constraint: $C_{2, t+1}=\left(1+r_{t+1}\right)\left(w_{t} A_{t}-C_{1, t}\right)$
- Note similarity of first condition to Euler equation in Ramsey model:
- $C$ increases or decreases over time as $r>\rho$ or $r<\rho$
- Sensitivity of consumption path to $r$ depends on $1 / \theta$
- Plugging the budget constraint back into the other first-order condition yields
$C_{1, t}=\frac{(1+\rho)^{\frac{1}{\theta}}}{(1+\rho)^{\frac{1}{\theta}}+\left(1+r_{t+1}\right)^{\frac{1-\theta}{\theta}}} A_{t} w_{t} \equiv\left(1-s\left(r_{t+1}\right)\right) A_{t} w_{t}$
- Note that numerator and denominator terms are always positive and that the denominator is always larger
- If $\rho \approx r$ then we consume about $1 / 2$ of income in first period and $1 / 2$ in second, which is consistent with basic consumption smoothing
- We can show that $s^{\prime}\left(r_{t+1}\right)=\frac{\left(1+r_{t+1}\right)^{\frac{1-\theta}{\theta}}}{(1+\rho)^{\frac{1}{\theta}}+\left(1+r_{t+1}\right)^{\frac{1-\theta}{\theta}}}>0$ iff $\theta<1$
- Change in $r$ has income and substitution effects
- Reward to saving is higher if $r \uparrow$
- Don't need to save as much for retirement if $r \uparrow$
- Remember that $1 / \theta$ is elasticity of intertemporal substitution
- If $1 / \theta$ is large, then substitution effect is strong and $s^{\prime}>0$
- If $1 / \theta$ is small, then income effect dominates and $s^{\prime}<0$
- Intermediate case $\theta=1$ has $s^{\prime}=0$ and saving rate does not depend on interest rate
- Recall that the CRRA utility function approaches $u=\ln (c)$ as $\theta \rightarrow 1$.
- If $\theta=1$, then $s=\frac{1}{2+\rho}=$ constant
- We shall use log utility as a special case because it is simple
- What does this mean in terms of indifference curves?



## Analysis of the Diamond Model

## Dynamics

- The basic equation of motion of this model is $K_{t+1}=s\left(r_{t+1}\right) L_{t} A_{t} w_{t}$
- We want to translate this into $k_{t+1}$ :

$$
\begin{aligned}
k_{t+1} & \equiv \frac{K_{t+1}}{A_{t+1} L_{t+1}}=s\left(r_{t+1}\right) \frac{A_{t} w_{t} L_{t}}{A_{t+1} L_{t+1}} \\
& =s\left(r_{t+1}\right) \frac{w_{t}}{\frac{L_{t+1}}{L_{t}} \cdot \frac{A_{t+1}}{A_{t}}}=s\left[f^{\prime}\left(k_{t+1}\right)\right] \frac{f\left(k_{t}\right)-k_{t} f^{\prime}\left(k_{t}\right)}{(1+n)(1+g)}
\end{aligned}
$$

- This equation gives $k_{t+1}$ implicitly as a function of $k_{t}$, but it can't be solved in the general case.
- Steady-state condition
- What would correspond to $\dot{k}=0$ ?
- $\Delta k_{t+1} \equiv k_{t+1}-k_{t}=0$ would be the equivalent in discrete time
- Setting $\Delta k_{t+1}=0$ (or $k_{t+1}=k_{t}=k^{*}$ ) gives the steady-state condition: $k^{*}=\frac{s\left[f^{\prime}\left(k^{*}\right)\right]\left[f\left(k^{*}\right)-k^{*} f^{\prime}\left(k^{*}\right)\right]}{(1+n)(1+g)}$, which implicitly defines $k^{*}$ the steadystate value of $k$.
- This equation is difficult to work with because we don't know the form of $f$ and we don't even know the sign of $s^{\prime}$.
- Depending on the forms of $s$ and $f$, the function on the right can have a variety of shapes.
- Special case: $\theta=1$ (log utility) and Cobb-Douglas production function $\boldsymbol{y}=\boldsymbol{k}^{\alpha}$
- In this case, $s(r)=\frac{1}{2+\rho}, f^{\prime}(k)=\alpha k^{\alpha-1}, w=(1-\alpha) k^{\alpha}$.
- $k_{t+1}=\frac{(1-\alpha) k_{t}^{\alpha}}{(2+\rho)(1+n)(1+g)} \equiv D k_{t}^{\alpha}$ with positive constant $D$
- In this case, we can graph $k_{t+1}$ as a function of $k_{t}$ and know its basic shape:

- In this case, if we start at $k_{0}$, we will converge to $k^{*}=D^{\frac{1}{1-\alpha}}$ by the "cobweb" path shown
- Note effects of parameters:
- $\rho \uparrow \Rightarrow D \downarrow$
- $n \uparrow \Rightarrow D \downarrow$
- $\quad g \uparrow \Rightarrow D \downarrow$
- Effects are similar to Ramsey (and Solow) model


## Properties of Diamond Steady State

- In steady-state equilibrium
- $k$ and $y$ are stable
- $Y / L$ grows at $g$
- $Y, K$ grow at $n+g$
- Speed of convergence:
- $k_{t+1}-k_{t} \approx \alpha\left(k_{t}-k^{*}\right)$
- $\alpha \approx 1 / 3$, so economy moves $1 / 3$ of way to equilibrium in each "period"
- Note that "period" is half a lifetime, so this is not so different from Solow/Ramsey result


## Diamond Model General Case?

- If we abandon the comfortable home of log utility and Cobb-Douglas we admit to strange possibilities:

- Can have no non-zero equilibrium at all



## Dynamic Inefficiency in Diamond Model

- Equilibrium in Ramsey model was Pareto efficient
- Diamond model admits the possibility of inefficiency
- It is possible that $k^{*}$ is greater than Golden Rule $k$
- Why? Because survival in old age depends on saving lots of income regardless of rate of return.
- It is possible that the saving rate that is optimal for an individual might be higher than the saving rate that leads to Golden Rule level of $k^{*}$
- Suppose that $k^{*}>k_{\mathrm{GR}}$
- Suppose that there was another (than capital) way of transferring money from youth to old age (Social Security) so that saving could go down
- Young would be better off because they could consume more
- Future generations would be better off because $k^{*} \downarrow$ means higher steady-state $c^{*}$
- Everyone is made better off and no one worse off, so original equilibrium must not have been Pareto optimal
- How can model by inefficient? Where is the market failure?
- No externalities, but an absent market: no way for current generation to trade effectively with future generations
- Only way to provide for retirement is through saving, even if rate of return is zero or negative
- From social standpoint, it is desirable to avoid low- or negative-return investment, but for individual facing retirement this is only choice
- If benevolent government were to establish transfer scheme from young to old (like Social Security), then they would not need to accumulate useless capital in order to eat in retirement
- You will do a problem this week looking at the effect of alternative Social Security regimes in the Diamond model
- Is this empirically relevant?
- $k>k_{\mathrm{GR}}$ means that $f^{\prime}(k)-\delta<g+n$
- Are interest rates lower than the GDP growth rate?
- Probably not in U.S. steady state

