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Why economists need econometrics 
 Economic theories such as the supply-demand theory of competitive markets and 
the theory of rational consumer behavior can often tell us the general direction in 
which we should expect changes in economic conditions to influence decisions and 
economic outcomes. For example, the law of demand tells us that an increase in the 
price of cheese should (other things equal) decrease consumer purchases. However, 
such theories rarely answer the often equally important questions about the 
magnitude of these effects, for example, how much the quantity demanded will 
decrease if cheese becomes $0.20 per pound more expensive.  
 The sub-discipline of econometrics provides the link between economic theories 
and the real world. Econometric methods allow us to test whether observed data 
conform to the predictions of a theory and to estimate important parameters that 
measure the effects of variables on one another. 
 Narrowly speaking, econometrics is the application of statistical procedures to 
economic data. However, econometricians have developed many statistical models 
specifically for economic applications. Moreover, the practice of econometrics also 
requires an understanding of how economic data are measured, which functional 
forms tend to be most useful specifications for economic models, and other details 
involved in relating economic theory to observed data. 

Why you need a little econometrics 
 Reed has two econometrics courses: Economics 311 for those who want to learn 
how to read and understand econometric applications in published literature and 
Economics 312 for those who want to learn to use econometric techniques. 
However, applied courses in every field of economics rely extensively on 
econometric tests and estimates. This brief and simple introduction is designed to 
make you familiar with a few of the most important concepts and methods of 
econometrics that you are likely to encounter frequently in your study of economics. 
 It introduces you to the concept of linear regression, which is the building block 
on which most of econometrics is based. Most econometric techniques are a 
variation of some kind on the use of linear regression to estimate and test hypotheses 
about a bivariate or multivariate relationship. 
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Simple regression: Fitting a line to a scatter of points 
 The simplest example of linear regression is the case of two variables where 
causality is known to run only in one direction. Suppose that economic theory tells 
us that local income in Portland x should have an effect on the quantity of parsnips 
purchased in Portland y. We assume that changes in y occurring for other reasons do 
not affect x, presumably because Portland citizens do not buy or sell enough parsnips 

to have a significant effect on their income.
1
 In order to determine the magnitude of 

the effect of x on y, we will need to collect some observations on the two variables. 

Once we have a sample of observation—say, several years of corresponding values 
for x and y—regression analysis can be used to calculate and test hypotheses about 
estimates of the sensitivity of y with respect to changes in x. 
 The basic idea of linear regression is to fit a straight line to the collection of data 
points that we observe for y and x. A linear (straight-line) relationship between the 
variables can be represented by the equation 
 

 0 1 ,t ty x= β +β   (1) 

 

where β0 and β1 are unknown parameters whose values we wish to estimate.
2
 These 

parameters define the nature of the linear relationship between y and x—whether it 

slopes upward or downward and how high or low the line lies. The parameter β1 

measures the effect on y of a one-unit change in x. This is the slope ∆y/∆x of the line 

representing the relationship. In terms of economic interpretation, we expect β1 to be 
positive if parsnips are a normal good. The value of y at which the function intersects 

the vertical axis is given by β0. A larger value of β0 is associated with a line that lies 
vertically higher. 

Regression with two observations 
   Suppose first that we have exactly two observations on y and x. In other words, we 
observe two independently generated pairs of values for the variables from different 
years. Let us call these two observations (x1, y1) and (x2, y2), where observation 1 is a 
measure of the two variables in year 1 and observation 2 is a measure of the variables 
in year 2. 
 If we plot these two “data points” on a graph with x on the horizontal axis and y 
on the vertical axis, we might get a diagram similar to the one in Figure 1, where the 

                                                      
1
 This assumption of “exogeneity” is extremely important. There are more advanced 

econometric technique that, in some cases, can be used if both variables affect one another. 
2
 Of course, not all economic relationship are well approximated by straight lines. Linear 

regression analysis can be used with equal ease on any mathematical relationship in which 

the parameters enter in a linear way. For example, the logarithmic relationship log y = β0 + 

β1  log x is one of the most commonly used functional forms in economics. 



3 
 

data points are labeled a1 and a2. As you can see, there is exactly one line that passes 
through the two data points. We shall represent the mathematical equation for this 

line as y = b0 + b1 x. (We are using b to represent out estimates of the true β 

parameters. Many authors is β̂  in place of b.) The line is a “perfect fit” for the data, 

in the sense that both data points lie exactly on the line. In mathematical terms, y1 = 
b0 + b1 x1 and y2 = b0 + b1 x2. In the case of only two data points, fitting the best 
straight line to the data is easy! The slope of this line is b1, which is our empirical 

estimate of β1, while the value of y where the best-fit line intercepts the y axis is b0, 

our estimate of β0. 
 
 

 

Figure 1.  Best-fit line with two data points 

Adding a third observation 
 Suppose now that we obtain a third data point (x3, y3) by observing a third year. 
Should we expect that this data point would lie exactly on the line connecting the 
first two points? If the demand curve of equation (1) holds precisely for all three 
observations, then all three should obey the same linear relationship and they should 
be on the same line.  
 However, measured economic relationships are never that precise. For one 
reason, variables are observed with error. For another, the relationship between any 
two variables is usually subject to disturbances by additional variables that are not 
included in the equation (and often by variables whose values cannot be observed at 
all). Consequently, econometricians usually interpret the hypothesis of a linear 
relationship to assert that all of the data points should lie close to a straight line. 
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However, it would be very unusual for the added data point to lie exactly on the line 
that passed through the first two. 
 In order to allow for this “imperfection” in our two-variable linear relationship, 
we add a disturbance term or error term to equation (1). The resulting equation looks 
like 
 

 0 1 ,t t ty x= β +β + ε   (2) 

 
 

where εt is the disturbance term, which is usually modeled as a random variable.
3
 

 

 

Figure 2. Best-fit line with three data points 

  Suppose that the three data points are as shown in Figure 2, so that they do not 
line up on the same straight line. Now there is no single line that fits all three data 
points exactly. What criterion should we use to select which line best fits the three 
data points? In order to answer that question, we must first choose a method to 
measure “how close” any particular line lies to the collection of three points, and 
second find and choose the line that lies ''closest" to the points according to that 
measure. The measure most often chosen is that of least-squares, and the line that is 
chosen as the best­fit line is the one that minimizes the squares of the vertical 

                                                      
3
 A variable is considered random if we assume nothing about how it is determined except 

that it follows a given probability distribution, meaning that it takes on particular values with 
a probability that is known or can be estimated. The most common random variables in 
econometrics follow the normal probability distribution, which means that the likelihood that 
they take on particular values is given by a “bell curve.” 
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distances of the three points from the line. In Figure 2, the short vertical line 
segments signify the residuals—the vertical deviations of the observed points from 

the best-fit line. If we again denote the best-fit values of β0 and β1 by b0 and b1, then 

the residual for observation t is et = yt – b0 – b1xt·4 
 Some of the residuals are positive—those for observations where the actual value 
of yt lies above the best-fit line such as observations 1 and 2 in Figure 2—and some 
are negative (observation 3 in Figure 2, where the point lies below the line). 
Therefore, we cannot simply minimize the sum of the residuals. If we worked with 
the sum of the residuals, the positive and negative residuals would cancel out. In 
order to avoid this canceling, we square each of the residuals (since the square is 
positive whether the residual is positive or negative) and choose as our best-fit line 
the one that minimizes the sum of the squares of the residuals. The best-fit line we 

determine by this criterion is called the least­ squares regression line. Introductory 
econometrics texts give formulas for calculating the values of b0 and b1 for the best-fit 
line, but you need not be concerned with the precise method of calculation. Many 
computer programs exist to perform these calculations for you. 

Observations and degrees of freedom 
 Before we leave the two-data-point and three-data-point examples, there is one 
additional concept that can be introduced. With two observations, there is only one 
line that makes sense as a best-fit line. Statistically, we would say that there were no 
degrees of freedom in the choice of lines. Adding the third data point means that 
there would generally be at least one point that is off the regression line (unless the 
three happened to line up exactly). This one “extra” point beyond the two needed to 
define a line gives us one “degree of freedom” in choosing the line. 
 If there were four data points, then we would have two degrees of freedom—two 
additional points beyond the two that are required to define a line. In general, a two-
variable regression has N – 2 degrees of freedom, where N is the number of observed 
data points in the sample. Degrees of freedom have important uses in the testing of 
hypotheses about the regression line. 

Three variables and three dimensions 
 Very few economic relationships can be adequately characterized by just two 
variables. For example, the demand for parsnips in Portland may be thought of as a 
function of Portlanders’ incomes, but it is also surely affected by many other 
variables such as the price of parsnips and the prices of eggplants and other 
substitutes. Economists are fortunate that the case of simple regression can be easily 

                                                      
4
 Be careful to notice the distinction between the disturbance term εt and the residual et. The 

disturbance term is the deviation of observation t from the line representing the true 

relationship between the variables: εt = yt – β0 – β1xt. 
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generalized to incorporate more than two variables. A regression equation with more 
than one explanatory variable on the right-hand side is a multiple regression. 
 Suppose that we generalize our parsnip demand curve so that the quantity of 
parsnips demanded is assumed to be influenced not only by income but by the price 

of parsnips p.
5
 Including an error term, we could write this relationship as 

 

 0 1 2 .t t t ty x p= β +β +β + ε   (3) 

 
How would we represent an equation such as (3) geometrically? We need a picture 
that shows how y changes when either x or p changes. In order to produce such a 
picture we must use three dimensions, with y measured vertically and x and p 
measured in two horizontal dimensions. The three-dimensional analogy to the two-
dimensional regression line is a three-dimensional “regression plane.” Just as with 
the two-dimensional case, there is a true regression plane that represents the 
(unknown) data-generating process and an estimated regression plane that is our 

best-fit estimate. The error term for observation t (εt) is the vertical distance between 
any point and the true regression plane, while the corresponding residual et = yt – b0 – 
b1xt – b2pt is the vertical distance from the point to the estimated regression plane. 
 Following the logic of the least-squares estimator for the simple regression (two­ 
variable) case, the least-squares estimator for the multiple regression model is the 
plane that minimizes the sum of the squared residuals for our sample of observations. 
 Mathematically, it is easy to extend least-squares estimation to accommodate 
more than two explanatory variables and three dimensions. However, pictorial 
representation of higher-order models is doomed by our inability to visualize more 
than three dimensions. Modern computer programs are able to find the coefficients 
for least-squares regression “hyperplanes” involving 100 or more dimensions 
(variables). 

Measuring goodness of fit 
 One obvious question that we might ask about our estimated regression line is 
how closely it fits the data. The most common measure of goodness of fit is the R2 
statistic. This measures the share of the variation in the variable we are predicting 
that is explained by the estimated effects of the right-hand variable(s). In our parsnip 
regression with income and price on the right-hand side, if the R2 value was 0.83, 
then we would conclude that 83% of the sample variation in quantity consumed was 
explained by the linear function of income and price on the right-hand side. The 
remaining 17% is unexplained and attributed to the disturbance term. A higher value 

                                                      
5
 Note that we must still assume that the price of parsnips in Portland is not affected by 

Portland demand, perhaps because Portland is a small part of a national market with a 
homogeneous price. 



7 
 

of R2 indicates a better fit, since more of the variation is explained by movements 
along the estimated regression line and less by deviations from the line. 

Accuracy of the least-squares estimator 
Suppose our estimate b2 is –80, meaning that the estimated effect of a 1 cent per 
pound increase in the price of parsnips is to reduce quantity demanded by 80 pounds 
per year. Is this effect “significant”? 
 That question can be answered in two different ways. First of all, –80 represents 
our best available estimate of how much a price change will affect quantity 
consumed. Whether this effect is a little or a lot depends on the economic context in 
which it occurs. Depending on costs and other conditions, it may be small enough 
effect that the big grocery-store chains in Portland decide to raise the price of 
parsnips to increase their profit margins. Alternatively, it may be large enough that 
grocers will resist a price increase as reducing sales volume by too much. To assess 
whether the coefficient’s magnitude is “economically significant” in that sense 
requires more knowledge of the economic setting of the demand equation than we 
have given in this example. 
 However, when econometricians assess the “significance” of an estimated 
coefficient they are usually talking not about the estimated coefficient's economic 
implications but about its statistical significance. Our least-squares estimates are just 
that: estimates. Even good estimates are invariably imperfect, either a little too high 

or a little too low. How confident can we be that the –80 we estimated for β2 should 
not be –60, –120, or even zero or +40? 
 Reliable estimates are ones that we think have a high probability of being close to 
the true parameter value—in this case, to the actual, real-life sensitivity of quantity 
consumed to price. This is usually assessed based on two criteria relating to how the 
estimator would perform in a hypothetical experiment where we had available many 
independent samples to estimate the parameter: (1) Across many samples, would the 
estimator we are using have the right value on average? (2) How widely would the 
values of the estimator (across the repeated samples) vary around the true parameter 
value?  
 Estimators that are correct on average across many samples, though not 
necessarily for any particular sample, are called unbiased estimators. The dispersion 
across samples of the estimates is measured by their variance. A larger variance 
means that the estimates are more widely dispersed (and less desirable). 
 Our assessment of the reliability of an estimator is made using its standard error, 
which is an estimate of the square root of its variance. A small standard error 
indicates a relatively precise estimate; a large standard error shows that our estimate 
is likely to be subject to large errors. 
 The standard error of an estimator is determined largely by two considerations. 
The first is the degree to which the available observations conform to the best-fit line. 
If the observations are all tightly clustered along the line, this gives us considerable 
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confidence about the values of the slope and intercept parameters, leading to small 
standard errors. Second, for a given degree of fit, the more observations we have the 
smaller is the standard error. It gives us more confidence in our estimates if there are 
200 observations tightly arranged near the line than if there only 20. Thus, a sample 
with many observations that fit the line well will lead to precise estimates of the 
parameters (small standard errors) while a small sample where the observations 
deviate substantially from the line gives less precise estimates (larger standard errors). 

Using the least-squares estimator to test hypotheses 
 For many estimators, an interval that is centered on the true parameter value and 
that extends a distance of two times the standard error in each direction will include 
the calculated value of the estimator 95% of the time (in repeated samples). We use 
this property to create a 95% confidence interval for our parameter. Suppose that 
our calculated slope estimate of –80 has a standard error of 15. Two times the 
standard error is 30, so we can be 95% confident that the true parameter value for the 
slope lies within 30 units on either side of –80, i.e., inside the range (–110, –50). If, 
perhaps by obtaining additional observations, we were able to reduce the standard 
error from 15 to 10 (without changing the “point estimate,” which stays at –80), then 
our 95% confidence interval would narrow to (–100, –60). 
 Confidence intervals allow us to make probabilistic statements about our 
estimates. For example, with an estimate of –80 and a standard error of 15, we can 
be pretty confident that the true value of the demand slope parameter is not zero, 
since zero does not fall inside (or even close to) the confidence interval. We would 

feel less sure about rejecting –65 as a possible value for β2, however, since it is 
contained within the confidence interval. 
 The exact same process we used to form confidence intervals is used in reverse to 
perform tests of hypotheses. We do this when we are interested in the answer to a 
question such as “Is it plausible that this sample of observations is generated by a 
process where the true slope of the demand function is r?” The affirmative answer to 

this question is called the null hypothesis. For example, we are often interested in 
the question of whether the estimated coefficients allow us to conclude that the 
demand curve slopes downward. We can cast this as a hypothesis test by formulating 

the null hypothesis that β2 = 0 and determining whether the data stray sufficiently 
from what we would expect if that hypothesis were true that we can statistically 
reject the null hypothesis with, say, a 95% probability of being correct. It turns out 
that our statistical decision can be determined from the 95% confidence interval. It 
the value that the parameter is assumed to have under the null hypothesis (zero, 
here) lies within the confidence interval, then our sample is deemed to be consistent 
with the null hypothesis and we cannot conclude decisively based on our sample that 

β2 < 0. In the case discussed above, however, zero was well outside of the confidence 

interval. Thus, in this case, we reject the null hypothesis that β2 = 0 and conclude 
that the slope of the demand curve is negative. 
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 Hypothesis tests are often presented in the form of a t-statistic or an associated 

probability value (p-value). The t-statistic takes its name from the probability 
distribution that applies to many test statistics in econometrics. We calculate the t-
statistic for the test of the null hypothesis that the parameter is zero by dividing the 
estimate of the parameter by its standard error. For example, with a parameter 
estimate of –80 and a standard error of 15, the associated t-statistic would be –80/15 
= –5.33. The decision rule for our hypothesis test then becomes rejecting the null 
hypothesis that the parameter is zero if the absolute value of the t-statistic 
is larger than some “critical value,” which (for a 95% level of confidence) is usually 
close to two. Since 5.33 is much larger than 2, we reach the same conclusion here 
that we did above: it is unlikely that our sample came from a world in which price 
has no effect on quantity demanded. 
 Although 95% is a very common confidence level at which to perform hypothesis 
tests, one can choose a higher or lower significance level as well. For example, even 
if we cannot be 95% sure that a parameter is not zero (i.e., we cannot reject the null 
hypothesis of a zero parameter at the 5% significance level) we may still feel quite 

sure of our result if we can be 94% or even 90% confident.
6
 Many computer 

programs that are used for regression analysis make it very easy to know the exact 
level of confidence that can be associated with a statistical test. These programs 
report a p­value for each estimated coefficient. This value is the smallest significance 
level at which the null hypothesis can be rejected, which is one minus the largest 
confidence level at which we reject the null. Thus, a reported p-value of 0.035 for a 
test of whether a coefficient is zero would indicate that zero lies just on the border of 
a 1 – 0.035 = 0.965 (96.5%) confidence interval for the parameter. If we choose a 
confidence level higher than 96.5%, say, 99%, (a significance level smaller than 3.5%, 
say, 1%) then we cannot reject the null hypothesis. In this example, we cannot be 
99% certain that the data did not come from a world with a true parameter value of 
zero, but we can be 95% certain of this. 

A sample regression table 
 In reading regression results in a published paper, there will usually be a 

regression table that looks something like the one shown below.
7
 The variables 

shown in the left-hand column as the right-hand regressors in the equation. The three 
columns refer to three different econometric estimation procedures that are described 
in the text of the paper. 

                                                      
6
 Note the distinction between two closely related numbers. The “confidence level” is the 

level of certainty at which we desired to know that the null hypothesis is false, while the 
“significance level” is the smallest probability we wish to allow of the null hypothesis being 
true. The confidence level is equal to one minus the significance level. 
7
 From Diego Useche. 2014. "Are Patents Signals for the IPO Market? An EU–US 

Comparison for the Software Industry."  Research Policy 43 (8):1299-1311. 
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 Focus on column (1). The number shown in each row is the estimated coefficient 
of that variable in the equation. For example, the variables log (total assets) has an 
estimated coefficient of 0.622, meaning that an increase of one unit in that variable 
causes an increase of 0.622 units in the dependent variable. Below the coefficient is 
its standard error, shown in parentheses. The asterisks to the right of some of the 
coefficients indicate the level of statistical significance that we can attach to the 
coefficient. As clarified by the note below the table, three asterisks means that we can 
reject the null hypothesis that the coefficient equals zero at the 1% level of 
significance. 
 At the bottom of the table, the number of observations and the (adjusted) R2 are 
shown. The rows with “Yes” in the table refer to the presence of various sets of 
control variables whose coefficients are not of direct interest but which are included 
to control for other possible sources of variation in the dependent variable. This sort 
of entry is common when there are so many such variables that the full table with all 
of their coefficients wouldn’t fit on one page. 
 Sometimes a cell in the table will be empty, although this is not the case in this 
particular table. That means that the variable in that row was omitted from the 
regression being shown in that column. Sometimes we are not sure which variables 
should be included and we present alternative models with and without certain 
variables so that the reader can compare the results. 

Assumptions of least-squares regression 
   In the previous sections, we considered mathematical and geometric interpretations 
of the problem of finding the best fit for a set of data points. We asserted that the 
method of least-squares was the technique most often used to estimate such a best-fit 
line (or plane or hyperplane), and we examined some of the statistical properties of 
this estimator under a set of assumptions. In practice, the choice of estimation 
method is not so simple. In this section, we examine briefly the assumptions that one 
must make about the underlying data-generating process in order for the ordinary 
least­squares (OLS) estimator to be optimal. For some cases in which the OLS 
estimator is not desirable, econometricians have devised better estimators. (You can 
study all about these by taking Econ 312!) 
 In order for the OLS estimator to have desirable properties such as unbiasedness 
and efficiently low variance, the error terms of the data-generating process must obey 
several properties. First, the error term of each observation must follow an identical 
probability distribution (usually assumed to be a normal distribution). Second, the 
error terms must be statistically independent of one another, so that the value of the 
error term of one observation is not correlated with the values of the error terms of 
other observations. Third, the error term must be statistically independent of all of 
the variables on the right-hand side of the equation (the regressors). In other words, a 
positive error term must be equally likely when any given explanatory variable has a 
small value as when it is large. 
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 Under these assumptions, the Gauss-Markov Theorem demonstrates that the 
OLS estimator has the smallest variance (or standard error) of all linear, unbiased 
estimators. We therefore say that under these conditions OLS is BLUE, which stands 
for Best Linear Unbiased Estimator. However, when one or more of these 
conditions is violated, OLS is no longer BLUE and we should consider other 
estimation techniques. 
 A common violation of the first assumption is the case of heteroskedasticity, 
which occurs when some observations have error terms that tend to be more variable 
than others. For example, in many macroeconomic applications researchers have 
found that observations after 1974 tend to be distributed more widely around the 
fitted regression line than observations from 1973 and before. One “eyeball” test for 
heteroskedasticity is to look at a plot of the residuals from the regression. If there are 
some intervals of time in which the residuals are far away from zero and others in 
which the residuals cluster very close to zero, then heteroskedasticity may be a 
problem. Of course, any random sample will have some variation from period to 
period in the magnitude of the residuals. Statistical tests can be used to determine 
whether the degree of variation in residuals is large enough that it is unlikely to have 
occurred through such random variation. 
 If heteroskedasticity is present, then the OLS estimator is still unbiased (correct 
on average), but it is no longer the best linear unbiased estimator. Moreover, the 
estimated standard errors from an OLS regression are biased, so that statistical tests 
based on these OLS standard errors are not valid. 
 Autocorrelation occurs when there is correlation across observations in the error 
terms. In a time-series context, this is often called serial correlation. Most time-series 
models have serious problems with serial correlation because if a substantial positive 
(negative) disturbance occurs in period t, it is usually the case that the disturbance in 
period t + 1 is likely to be positive (negative) as well. As with heteroskedasticity, 
there are both tests and corrections for problems of autocorrelation. An “eyeball” test 
for autocorrelation involves looking for patterns of several positive residuals in a row 
and several negative residuals in a row. If the residuals usually tend to have the same 
sign for several consecutive observations, then serial correlation is likely. 
 As with heteroskedasticity, the OLS estimator is still (usually) unbiased in the 
presence of serial correlation, but it is not the best estimator and the OLS standard 
errors are incorrect, which makes the usual confidence intervals and hypothesis tests 
invalid. 
 Econometricians encountering problems with heteroskedasticity or 
autocorrelation have two choices: (1) use a “generalized least-squares” model that 
corrects for the problem with an estimator that is optimal under those circumstances, 
or (2) use the sub-optimal OLS estimator but correct the standard errors for bias so 
that valid confidence intervals and hypothesis tests are possible. The latter procedure 
is far more common today. This is what is being used if you see an author refer to 
robust standard errors. 
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Endogeneity bias and instrumental variables 
 Violation of the third assumption described above—the lack of independence 
between the regressors (right-hand variables) and the disturbance term—is in many 
ways by far the most serious. This occurs whenever a shock to the dependent 
variable through the disturbance has an effect on one of the supposedly independent 
variables of the regression, so that the right-hand variable in question is endogenous 
rather than exogenous. In this case, OLS estimators are biased. Worse yet, even in 
large samples they will not tend to converge on the true values of the parameters. 
 This endogeneity bias is difficult to detect using statistical tests, so one often 
must use economic theory and reasonable judgment in choosing a model where the 
regressors are likely to be truly exogenous. If regressors are unavoidably endogenous, 
then one must typically use an instrumental variables (IV) estimator. 
 Instrumental variables models rely on finding one or more instruments 
effectively to replace each endogenous right-hand variable in the regression (each one 
that is correlated with the disturbance). Valid instrumental variables, or instruments, 
must satisfy three conditions: (1) they must be exogenous (uncorrelated with the 
disturbance term and unaffected by changes in the dependent variable), (2) they must 
be strongly correlated with the endogenous regressor that they are intended to 
replace, and (3) they must not have an effect, on their own, on the dependent 
variable. 
 If a valid instrument can be identified, then instrumental-variables regression 
replaces the endogenous variable on the right-hand side of the regression with the 
best prediction we can make for that variable based only on the instruments (and 
other exogenous variables). What we are doing is decomposing the endogenous 
regressor into two parts: an exogenous part that is based only on the exogenous 
regressors and the exogenous instrument(s) and an endogenous part—what is left in 
the variable after the exogenous prediction is removed. By using only the exogenous 
part in the IV regression, we avoid the problem of endogeneity bias and have valid 
coefficient estimates. 
 IV regression is very common, but often very controversial. The results are valid 
only if all three of the instrument assumptions above are valid. One can often 
question the exogeneity of the instruments, the strength of the correlation with the 
endogenous regressor, or the absence of an independent effect of the instrument on 
the dependent variable. This leads to frequent debates about how reliable any given 
IV regression result is. 

A quick sketch of some common time-series models and concepts 
 There are three main kinds of data samples in econometrics: cross-section (where 
we observe a collection of individual units at the same time), time-series (where we 
have observations on a single unit at many dates), and pooled data which combine 
both of these. Most of what has been discussed above applies in all three settings. In 
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this section and the next one we consider some common models that apply to time-
series data and to special kinds of pooled-data samples. 
 One problem in time-series data is that most economic effects are not immediate 
but instead are spread over time. If x has an effect on y, it is likely that a change in xt 

will not only affect yt but will also have some lagged effect on yt  + 1, yt + 2, and so on. 
Thought of another way, the current value of the dependent variable yt depends not 
just on the current xt but also on lagged values xt – 1, xt – 2, … We can often estimate 

such dynamic effects with distributed-lag models in which we include lagged values 
of x on the right-hand side as regressors.  

 Another common problem in time-series samples is nonstationarity. Basic OLS 
regression is only valid when the variables are “stationary.” This means, roughly, 
that they have the same probability distribution for every date in the sample. This is 
obviously problematic for variables such as GDP, which grow systematically over 
time. The distribution of GDP for 2017 is not the same as for 1997—it is centered 
around a much higher mean (average). 
 One way of dealing with nonstationary is to difference the variables, running the 
regression in terms of changes (or growth rates) of the variables rather than levels. 
Differencing often makes a nonstationary variable stationary, so the differenced 
regression may be valid even if the original regression is not. 
 A special case arises with two or more variables are cointegrated. This means 
that they are both nonstationary (for example, both growing over time), but they are 
nonstationary “together,” so that there is a stable (stationary) relationship between 
them over time. For example, house prices in Portland and house prices in Beaverton 
are both nonstationary because they grow over time. But they may be cointegrated if 
there is a stable, long-run relationship between them. Econometricians have 
developed estimators that can be used in cointegrated models. 
 A final estimation method that is very common in macroeconomics is the vector 
autoregression (VAR). The VAR is a method of estimating the relationships among 
a set of variables without making strong (and perhaps invalid) exogeneity 
assumptions. A VAR model has an equation for each of the set of variables in which 
that variable is regressed on lagged values (up to some specified maximum lag) of all 
of the variables in the set. Because lagged values can usually be assumed to be 
exogenous, the VAR avoids the problem of endogeneity and can be estimated by 
OLS.  
 There are several uses of VARs. They can easily be used for forecasting the future 
behavior of the set of variables. They can also be the basis for Granger causality 
tests, which attempt to assess the causal relationships among the variables under the 
assumption that x causes y if and only if knowing previous values of x helps you 
predict y, taking into account y’s own previous history. 

 VARs can also be used to estimate impulse-response functions (IRFs), which 
are estimates of the effect that a current shock to one of the variables would have on 
all of the variables of the system. IRFs are extremely useful, but require additional 
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“identifying assumption” that are analogous to assuming exogeneity. Since these 
identifying assumptions may be incorrect, it is possible to get invalid IRFs even if the 
VAR is totally satisfactory. 

Fixed-effects estimation of panel-data models 
 One of the best ways of estimating economic relationships is by using a data set 
that varies both over time and across units. For example, using data for a sample of 
years for all 50 U.S. states takes advantage both of variation across states and 
variation over time to estimate the relationship. When we have a pooled cross-
section time-series sample in which we have observations on the same units over 

time (such as states), we call it panel data.
8
 

 One problem with using panel data is that there will always be regression 
variables that we cannot measure. These variables are likely to be correlated state-to-
state with some of the variables that we have included in the regression, which leads 
to omitted-variables bias. One way to try to eliminate this bias is to include dummy 

variables for each state in the regression.
9
 The dummy variables “soak up” the 

variation that is strictly across states and allow the coefficients to measure variation 
across time in all of the states. Specifically, the coefficients on the regression 
variables do not measure why Oregon’s values of the dependent variable are different 
from California’s they only measure why the change in Oregon’s values from year to 
year differs from the change in California’s. 
 When dummy variables are included for each cross-sectional unit, we call it a 
fixed-effects regression. The coefficients on the dummy variables measure the 
“fixed” effect of being in a particular state. We sometimes also include time fixed 
effects, or dummy variables for each time period, to capture variation that is 
common to each state over time. Regressions with both unit and time fixed effects 
require a high standard of correlation between the variables in order to find 
significance. If the relationship between y and x is purely between the states or purely 
over time, the fixed-effects model will attribute it to the dummy variables. The only 
part of the relationship between y and x that will be captured in the regression 
coefficient on x is differences across states in the differences (changes) over time. This 

is an example of a differences-in-differences estimator. 

What you know and what you do not know 
 This brief summary has provided you with a simple description of linear 
regression and a few common variations. These are the most basic methods of 

                                                      
8
 In contrast, consider a survey taken every years, but where the individuals surveyed are not 

the same in each year. That would be time-series cross-section data, but not panel data. 
9
 Dummy variables are variables that take on only the values zero and one. For example, a 

dummy variable for Oregon would have the value 1 for Oregon’s observations and 0 for all 
other states’ observations. 
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econometric analysis. Much has, of course, been skipped. If you are interested in 
learning more about these methods, any basic econometrics text can provide you 
with the details. For the moment, this introduction should allow you to read some 
basic econometric studies and have a pretty good idea what is going on. 


