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Project overview 

 In this project you will use a numerical software package called Dynare to simulate 
Romer’s real-business-cycle model of Chapter 5. In particular, you will construct your own 
versions of Figure 5.2 through Figure 5.7, and compare the correlations and autocorrelations 
of the variables in stochastic simulations to those of the actual U.S. economy. 
 In order to facilitate solution in Dynare, we must simplify the model by expressing it in 
terms of log-deviations from the model’s steady-state values, then calculating a linear ap-
proximation of the model’s equations near the steady state in terms of these log-deviations. 
Parts of this process are done below; the remainder are part of the assignment, which may be 
done on paper. 
 Once you have achieved the log-linearization, you will use Dynare (operating within the 
commercial numerical package MATLAB or the open-source substitute Octave) to perform 
various deterministic and stochastic simulations. This part is done on a computer (either 
your own or a Reed computer) on which Dynare and MATLAB/Octave have been installed 
and should be submitted electronically in a Word file. (Both Dynare and Octave can be 
downloaded without cost.) This project is still something of a “work in progress,” so if you encounter 
problems with the software, please ask ASAP so that some combination of me and CUS can solve them 
for you and for others. 
 In the following pages, the tasks that you are to perform are listed in sans-serif text with 
three bold lines on the left margin: 
 

This is how an assigned task will look. 
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Preparing the model for simulation with Dynare 

Some small changes in notation 
 Romer’s model is a variation of the model discussed by Campbell (1994). You may wish 
to refer to this paper when doing this assignment. Romer’s version makes two essential 
changes to the Campbell model: (1) Romer adds government spending as a component of 
output demand and (2) Romer’s model restricts the labor/leisure term of the additive utility 
function to be logarithmic rather than using the CRRA form.  
 Our focus here is on business cycles, so we approximate the deviations of the variables 
around the steady state and ignore changes in the steady-state values themselves over time. 
In Romer’s model, the population N grows at a constant rate n and never deviates from its 
steady-state path. Thus, the deviations from steady-state never arise from changes in popula-
tion and we can ignore population growth in the population. Without loss of generality, we 
set the constant value of the population at N = 1.  
 In converting the model to a log-linear approximation to deviations from the steady 
state, it is useful to follow Campbell’s notation convention of using lower-case letters to rep-
resent the logs of capital-letter variables. This requires some minor notation changes from 

Romer’s Chapter 5. For example, k ≡ lnK, not K/AL as in the growth models that we have 

studied. Moreover, in this assignment, c ≡ lnC and l ≡ lnL, whereas Romer’s Chapter 5 uses c 
and l to refer to C/N and L/N, respectively. (We don’t need the per-capita variables here be-
cause we have set N = 1.) We will try to be careful in the following pages to remind ourselves 
of the exact definitions of these variables. 
 In addition, we shall make a couple of trivial modifications to Romer’s equations.  

• We use Kt to refer to the capital stock at the end of period t rather than (as Romer us-
es it) the beginning. This is a mere change in timing convention that conforms better 
to Dynare’s requirements; it does not change the structure of the model at all.  

• We define Rt to be the “gross” return on capital, which is one plus the net return that 
Romer calls rt. Intuitively, the gross return on a bond includes the repayment of the 
bond plus the interest earned. Following our logarithmic-notation convention, we 

will define rt to be rt ≡ lnRt ≅ Rt – 1, so rt is (within our approximation) the same as 

Romer’s variable.  

• To reserve lower-case letters for logs, we denote the real wage by W and its log by w.  

• Finally, because we will need g to be the log of G, we will denote the growth rate of 

productivity (Romer’s g) as γ, with eγ ≅ 1 + γ. 

The Romer model in our notation 
 We now proceed to state the equations of the Romer model with these notation changes. 
To make it convenient to refer back to the full set of equations in a compact location, all 
eight equations are listed first, with descriptions following: 
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 Equation (1) is Romer’s (5.1), the production function. The only change here is that the 
beginning-of-period capital stock is now Kt – 1 rather than Kt. 
 Equation (2) is Romer’s (5.2), the capital-accumulation equation. Again, the only change 
is the adjustment of the time subscripts of capital. 
 Equation (3) is Romer’s (5.3), which sets the wage equal to the marginal product of la-
bor. The sole change here is that we are using capital W for the wage (and reserving lower-
case w for its log). 
 Equation (4) is Romer’s (5.4), which sets the interest rate equal to the marginal product 
of capital minus the depreciation rate. Note that we have added one to both sides of (5.4) to 

get (4): Rt on the left is 1tr
te r≅ + , and the term –δ on the end of the right-hand expression 

has changed to 1 – δ. 
 Equation (5) is Romer’s (5.23), the Euler equation for intertemporal consumption. We 
use capital C here because our variables are already in per-capita terms (and we want lower-

case c to be its log) and our Rt + 1 ≡ 1 + rt + 1. 

 Equation (6) is Romer’s (5.26), which equates the marginal utility of consumption to that 
of leisure. Again, C and W are in capitals rather than Romer’s lower-case, but otherwise the 
equations are identical. 
 Equations (7) and (8) are the equations of motion for technology and government spend-
ing, corresponding to Romer’s (5.8) through (5.11). The equations are identical except for 
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introducing lower-case a and g as the logs of A and G, setting n = 0 (because we ignore popu-

lation growth) and replacing Romer’s growth rate g by γ. 
 Equations (1) through (8) constitute eight equations in Y, K, L, A, W, R, C, and G, in-
cluding lags of K and expected future values of C and R. To gain some insight into how such 
a model is solved, suppose that we consider an economy that starts at time zero in a steady 
state with a given, known value of K0. Whatever shocks hit the system at time 0, we expect 
that the economy will re-converge to a steady state after some large number of periods, say 
T. We can iterate the evolution of capital forward through the T periods from its initial value 
K0 using equation (2) (and the other equations of the model). Similarly, because we know 
that the shock will have died out by period T + 1, we assume that C and R will be back to 
their steady-state values by then. This allows us to solve the model as 8 × T equations in the 
8 × T variables corresponding to periods 1 through T. This solution is much more feasible if 
the equations of the model are linear (not to mention making handing the expectations feasi-
ble), so our next step will be the express the model as a linear approximation of deviations 
from the steady state. 

Calibration of the model 
 Recent advances in numerical simulation methods allow one to estimate parameters of 
the model based on macroeconomic data. (Indeed, Dynare is capable of doing such estima-
tion.) However, the econometrics of this are beyond our scope and the emphasis here is less 
of achieving an ideal fit than on understanding how the model works, so we will assume a 
set of parameter values for the model. 
 In the first paragraph of Romer’s Section 5.7, he suggests the following values for the 
parameters of a model (assuming that each period is one quarter):  

• α = 1/3, which corresponds roughly to capital’s share of income, 

• γ = 0.005, which is a 2% per year growth rate of productivity,  

• δ = 0.025, a 10% per year rate of depreciation,  

• ρA = ρG = 0.95, which means that both productivity and government spending re-

turn to their steady-state paths at a rate of 5% per quarter.  

 The other parameters (ρ, b, and g ) will be set in such a way that the steady-state gov-

ernment/output ratio is (G/Y)* = 0.2, the steady-state interest rate is r* = 0.015 (per quarter), 
and steady-state L* = 1/3 (meaning that our representative agent works one-third of the 
time). 

Some key steady-state values 
 When we do the log-linear approximations to the model, it will be very useful to know 
some key values in the steady state. The long-run behavior of this model is essentially identi-
cal to that of the Ramsey growth model: compare equations (1), (2), and (5) to the corre-
sponding equations from Chapter 2. Thus, we can confidently expect that Y, K, C, G, W, and 

A should all grow at constant rate γ on their steady-state growth paths and that R and L 

should be constant in the steady state. Indeed, we assumed in the calibration discussion 
above that the steady-state values are R* = 1 + r* = 1.015 and L* = 1/3.  
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 Because many of the variables are growing in the steady state, it makes sense to think 
about ratios among them that might be constant, much like the K/AL variable we used in the 
Solow and Ramsey growth models. It will be convenient later to know the steady-state val-

ues of three ratios: At/Kt – 1, Yt/Kt – 1, and Ct/Yt, which we denote respectively as 
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Given our calibrations of steady-state r and γ, this allows us to determine ρ. (For the values 

suggested above, R* ≅ 1.015 = eρ + 0.005, or ρ = 0.0099 ≅ 0.01.) 
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Recall that we are setting L* = 1/3 as a calibration parameter, so equation (10) gives us a 
steady-state value for the ratio of A to last period’s K that depends only on parameters we 
assume that we know. 
 Following a similar process, you can  
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1. Show that the steady-state value of Yt/Kt – 1 is (ρ + γ + δ)/α and that the steady-

state value of Ct/Yt is 1 – (G/Y)* – α(γ + δ)/(ρ + γ + δ). 
 
(Remember that you may turn in the algebraic sections in on paper if you wish.) 

Log-linearization of deviations from the steady state 
 To log-linearize the model, we introduce an additional bit of notation. For a variable Xt, 

the log-deviation is defined as * *ln ln ,t t t t tx X X x x≡ − = −  where *
tX is the value that X 

would have if the economy were in a steady state at t. The goal of log-linearization is the ex-
press the equations of the model as a linear function of these log-deviation variables. Some 
equations are already linear in the logs of the variables. Others are not linear in logs and 
must the approximated using Taylor series. 
 We will work through equations (1), (2), and (5) here. Equations (7) and (8) are already 
in terms of log-deviations. Part of your task for the project is to develop log-linear versions of 
equations (3), (4), and (6). 
 Equation (1) is an example of an equation that is already linear in logs. Such equations 
do not require approximation and are easy to handle. Taking the logs of both sides of (1) 
yields  

( )( )1 1 ,t t t ty k a l−= α + −α +  (11) 

in terms of the lower-case logged variables. Because this equation must hold in the steady 
state, we know that 

( )( )* * * *
1 1 .t t t ty k a l−= α + −α +  (12) 

Subtracting (12) from (11) gives us 

( )( )1 1 .t t t ty k a l−= α + −α + 

   (13) 

Equation (13) is linear in the log-deviation (tilde) variables, so it is the first equation of our 
log-linearized system. 
 Equation (2) is linear in the levels of the variables, not in their logs. Thus, while it appears 
to be a very simple equation it is actually the most challenging to put in log-linear form, re-
quiring us to use a Taylor-series approximation around the steady-state value.  
 Taylor’s Theorem allows us to approximate a function by a straight line around a point 
at which the function’s value is known. We used first-order Taylor series in our analysis of 
the rate of convergence in the Solow model. (See the related section near the end of Course-
book Chapter 3.) The basic idea of the Taylor series is that a general function f (x) can be ap-
proximated near a specified value x* by  
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( ) ( ) ( )( )* * * ,f x f x f x x x′≅ + −  (14) 

where, at the specified value x*, the value of the function  f (x*) and its first derivative f ′ (x*) 

are known or can be readily calculated. 
 In the figure below, the straight line is the linear approximation to the nonlinear function 
f (x) around the value x*. You can see that the first-order (linear) Taylor approximation is just 
the line that is tangent to the function at x*. This approximation will be a good one if x is very 
close to x* or if f (x) is nearly linear. 

 
 The Taylor approximation of equation (2) will be accomplished by transforming the 
equation into two additive parts, then taking the approximation of each part. We begin by 
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This expression is convenient because we know the steady-state values of Kt/Kt – 1, Yt/Kt – 1, 
Ct/Yt, and Gt/Yt:  

• K grows at rate γ in the steady state, so the steady-state value of Kt/Kt – 1 is e
γ ≅ 1 + γ, 

• We calibrate the model to a chosen steady-state value of Gt/Yt, 

• You will show as part of the project that the steady-state value of Yt/Kt – 1 is 

(ρ + γ + δ)/α, 
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• You will likewise show that the steady-state value of Ct/Yt is 1 – (G/Y)* – 

α(γ + δ)/(ρ + γ + δ). 
 
 Taking logs of both sides of this equation, 

( ) ( ) ( ) ( )1ln exp 1 ln 1 exp exp .t t t t t t tk y k c y g y− ∆ − − δ  = − +  − − − −      (15) 

Two parts of equation (15) warrant clarification. First, on the left-hand side,  
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so Kt/Kt – 1 = exp(∆kt). Second, on the right-hand side, ln(Ct/Yt) = ct – yt, so Ct/Yt  =  

exp(ct – yt), and similarly for G. 
 Equation (15) expresses equation (2) in terms of the logs of the variables, but it is highly 
nonlinear. We therefore approximate the nonlinear parts of (15) with first-order Taylor se-
ries, first for the function on the left of the equal sign then for the one on the right.  
 Working first with the left-hand side, define the function 
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We can approximate ( )1 tf k∆  in a neighborhood around the steady state by 
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where the growth rate γ is known to be the steady-state value of ∆kt. Because we are going to 
express the model in terms of deviations from the steady state, we need worry only about the 
second term. Using the chain rule, 
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Evaluating this expression at the steady-state value ∆kt = γ and taking advantage of the ap-

proximation exp(γ) ≅ 1 + γ gives 
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 Turning to the right-hand side of (15), we now tackle the nonlinear function 
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For this function of two variables, the first-order Taylor-series approximation is 
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where (c – y)* and (g – y)* are the steady-state values. The steady-state value of (g – y)* is the 
log of the calibration parameter (G/Y)*. From the expression in the bullets above,  
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 As before, our interest in deviations around the steady state focuses our attention on the 
last two terms of the Taylor approximation. Computing the partial derivative with respect to 
(ct – yt), 
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Evaluating this at the steady-state values gives 
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Since (G/Y)* is a calibrated parameter, this partial derivative can be evaluated numerically at 
the steady state in terms of the parameters of the model. Following similar logic, it is 
straightforward to show that 
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Substituting from the Taylor-series approximations for the expression on the left and the ex-
pression on the second line of the right: 
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Collecting terms in ty  and 1tk −
  simplifies this to 
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 (17) 

Equation (17) is an approximation of equation (2) that is linear in terms of the log-deviations 
from the steady state, which is what we require in order to solve the model. Note again that 

all of the coefficients appearing in (17)—γ, δ, λ, and (G/Y)* —are parameters that we assume 

to be known. 
 Leaving equations (3) and (4) for you to examine as part of the exercise, we now turn to 
the log-linearization of equation (5), which needs special attention because of the expectation 
operator on the right-hand side. If we take logs of both sides, we get 

( )1 1ln / .t t t tc E R C+ +− = −ρ +      (18) 

If we could just take the expectation operator outside the log operator, this could easily be 

reduced to an expression in tc , 1tr + , and 1tc + . However, the log of an expectation is not equal 

to the expectation of the log, so it is not so simple. 
 In order to simplify (18) we must make a simple assumption about the distribution of the 

random shocks. If the ε shocks both follow the normal probability distribution, then all of the 
log variables in the linearized system will also be normal random variables and the capital-
letter variables will follow the log-normal distribution. If R and C are distributed log-normally, 
then  
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1 1

1
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t t t t

t
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E E r c

C
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where ζ (zeta) is a constant. Because ζ is the same in the steady state as outside, it will cancel 
when we take deviations from the steady state, so we need not evaluate it. 
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 Applying this convenient solution to the expectation problem and taking deviations from 
the steady state in (18) yields 

1 1,t t t t tc E r E c+ +− = −    (19) 

which is our log-deviation version of equation (5). 
 

2. Using the methods shown above in the derivation of equations (13) and (17), de-

rive: (a) an expression corresponding to equation (3) in terms of tw , 1tk −
 , ta , and 

tl ; (b) an expression for equation (4) in tr , 1tk −
 , ta , and tl ; and (c) an expression 

for equation (6) in tc , tl , and tw . 

Simulating the model 

Introduction to Dynare 
 Dynare (http://www.dynare.org/) was developed as a software tool to facilitate the 
simulation of dynamic, stochastic, general-equilibrium (DSGE) models. It runs inside the 
computation platform MATLAB, or the open-source alternative Octave 
(http://www.gnu.org/software/octave/). Both Dynare and Octave are available for free 
download, the former running under MATLAB or Octave on all platforms and the latter in 
separate versions for Windows, Mac, or Linux. You will need to run your simulations on a 
computer on which Dynare and either MATLAB or Octave are installed. CUS has installed 
Dynare and MATLAB on all public-access computers in the IRCs, PPW, and elsewhere on 
campus. 
 You input your model, parameter values, and instructors to Dynare through a text file 
with a .mod suffix. The Quick Start guide, Tutorial, User Guide, and Manual available at 
the Dynare Web site (link above) provide details if you want them. We will provide a tem-
plate for the .mod file you will use for this assignment below, so you won’t need to learn the 
details unless you want to. Note that the .mod file must be in plain text format. You can use a 
simple text editor to create such a file. If you instead use Word or another advanced word 
processor, you must set the file format to plain text when you save or Dynare won’t be able 
to read your file. 
 The .mod file consists of five parts: 

• The preamble section defines your variables and parameters. 

• The model section contains the equations of your model in a simple algebraic nota-
tion similar to standard programming languages. 

• The steady state section gives the steady-state (initial) values of the model solution.  

• The shocks section, in which you tell Dynare about the deterministic or random 
shocks that you want to simulate. 

http://www.dynare.org/
http://www.gnu.org/software/octave/


 13 

• The computation section that tells Dynare to simulate the model and report the re-
sults. 

A template Dynare program 
 The easiest way to describe the various sections of the .mod file is by example. The code 
below is the beginning of a file you can use to run your simulations. Lines preceded by // 
are comments. 
 

// ***Preamble section*** 
// Define the endogenous variables 
var k a l c y w r g; 
// Define the exogenous variables (shocks) 
varexo epsg epsa; 
// Define the parameters of the model 
parameters alpha rhoa rhog rho lstar gamma delta gystar; 
// Set the values of the parameters to match Romer’s calibration 
alpha = 1/3; 
rhoa  = .95; 
rhog  = .95; 
rho = 0.01; 
lstar = 1/3; 
gamma = 0.005; 
delta = 0.025; 
gystar = 0.2; 
 
// ***Model section*** 
model; 
 
// Equation (19) from above. Expected future value of x is x(+1) 
-c = r(+1) - c(+1); 
 
// Equation (17) from above. Lags of x denoted by x(-1) 
(1+gamma) * k = (rho + gamma + delta)/alpha  * y 
 + (1-delta) * k(-1) 
 + (gamma + delta - (rho + gamma + delta)*(1-gystar)/alpha) * c 
 - gystar*(rho+gamma+delta)/alpha * g; 
 
// Equation (13) from above. 
y = alpha * k(-1) + (1-alpha) * (a + l); 
 
// YOU WILL NEED TO ADD THREE EQUATIONS HERE 
 
// Equations (7) and (8) from above 
a = rhoa * a(-1) + epsa; 
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g = rhog * g(-1) + epsg; 
 
end; 
// *** Steady-state section *** 
initval; 
c = 0; 
l = 0; 
k = 0; 
y = 0; 
g = 0; 
a = 0; 
w = 0; 
r = 0; 
end; 
 
steady; 
check; 
 
// *** Shocks section *** 
shocks; 
var epsa; 
periods 1; 
values .01; 
end; 
 
// *** Computation section *** 
simul(periods=200); 
// *** Some MATLAB plot commands similar to those below  
subplot(3,3,1); 
plot(k, ";K;"); 
subplot(3,3,2); 
plot(a, ";A;"); 
subplot(3,3,3); 
plot(l, ";L;"); 
subplot(3,3,4); 
plot(c, ";C;"); 
subplot(3,3,5); 
plot(y, ";Y;"); 
subplot(3,3,6); 
plot(w, ";w;"); 
subplot(3,3,7); 
plot(r, ";r;"); 
subplot(3,3,8); 
plot(g, ";g;"); 
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 Before we get into details, note several features of the Dynare program: 

• Variables are case-sensitive. 

• All commands end with a semi-colon. 

• Blocks of commands such as model equations, steady-state (initial) values, and 
shocks end with the end; statement. 

• Options for any command are entered in parentheses immediate after the name of 
the command. 

Preamble section 
 The definitions of the variables are straightforward. I’ve used lower-case letters corre-
sponding to the notation in the text (but without tildes). Similarly, the parameters are named 
in ways that correspond to the equations of the model. The parameter values correspond to 
those at the beginning of Romer’s Section 5.7. 
 The preamble section should not need to be altered from the above in order to run your 
simulations. 

Model section 
 The equations are entered in standard computer-algebraic notation, with +, –, *, /, and ^ 
as the principal operators and nested sets of parentheses used to indicate the order of opera-
tion. Note that it is not necessary to “solve” the individual equations to isolate an endoge-
nous variable alone on the left-hand side. Suffix parentheses are used to indicate leads and 

lags, with x(–1) denoting last period’s value of x and x(+1) indicating today’s expectation of 

next year’s value of x. Equations can span more than one line of the program, but be sure 
that each equation ends with a semi-colon. 
 You will need to add Dynare code for the three linearized log-deviation equations that 
you derive in Problem 2 above based on equations (3), (4), and (6). 

Steady-state section 
 The variables of our Dynare model are all log-deviations from the steady state, thus their 
steady-state values are simply zero: when the economy is in the steady state there are no de-
viations. This makes the steady-state section trivial and it need not be changed for your simu-

lations. The steady and check commands simply direct Dynare to verify that these are indeed 

a steady state and that certain dynamic-stability conditions hold. 

Shocks section 
 This section defines the shocks that you want to simulate. There are two kinds of simula-
tions that you can run in Dynare: deterministic and stochastic. In a deterministic simulation, 

you set all shocks to zero except those specified in the shocks section and you use the simul 

command in the computation section. The file shown above is set up to run a deterministic 

simulation in which the value of epsa (εA) is set to +0.01 (one percent) in period one. All 



 16 

other shocks (the government spending shock) and values of epsa in periods other than peri-

od one are set to zero. This command should generate simulations that match those shown 
in Romer’s Figures 5.2 through 5.4. To perform simulations of the government spending 

shock, you could change epsa to epsg in the var command of the shocks section. 

 Stochastic simulations involve drawing a random value for each shock in each period 
from a normal probability distribution with specified standard deviations and correlations for 

the shocks. For example, to simulate the model with random shocks to both epsa and epsg 

each having a standard deviation of 0.005 (one-half percent) and no correlation between 
them, you would enter the shocks section as follows:  
 

// *** Shocks section for stochastic simulation*** 
shocks; 
var epsa; stderr 0.005; 
var epsg; stderr 0.005; 
end; 

 
 The fact that you have not entered a correlation value means that Dynare sets it to zero. 
In fact, any standard deviation or correlation that is not explicitly set in the shocks section is 

assumed to be zero, so if you left out the var epsg line, you would get a simulation with the 

technology shock varying randomly but the government-spending shock set to zero through-
out (because a random variable with a standard deviation of zero is just a constant). 

Computation section 
 The computation section directs Dynare to simulate the model and create specific output 
elements that you want. As with the shocks section, the computation section will depend on 
whether you are doing a deterministic or stochastic simulation. 

 The program above shows a deterministic simulation using the simul command. The 

periods=200 option tells Dynare to assume that the model will be back in (or sufficiently 

close to) the steady-state after 200 periods (quarters). Setting this option to a value that is too 
small will cause the simulation to be incorrect. Examine your results closely to see if there is 
a “jump” at the end of the simulations. If there is, then you haven’t set this option high 

enough. There are many other options for the simul command that are described in the 

Dynare documentation. 

 If you are doing a stochastic simulation, you will use the stoch_simul command. Like the 

simul command, it takes a periods option that determines the number of periods in the simu-

lation. In a stochastic simulation, you may want to set the number of periods to be much 
larger (2000?) so that the summary statistics of the simulation can be averaged over a larger 
number of periods. 
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 The stochastic simulation automatically generates useful output that is printed on your 
screen. This includes the basic summary statistics of your endogenous variables over the pe-
riods of the simulation, the pairwise correlations between them, and the autocorrelations of 
each variable. This output may be inconvenient to copy and paste from the screen window, 
but it is replicated in a text file with the suffix .log following the same name that your .mod 
file has. Dynare creates this .log and places it in the same folder as your .mod file. You can 
easily open this file in a text editor and copy results into your report. The stochastic simula-
tion also generates impulse-response graphs for each shock, which should be similar to the 
output of the deterministic simulations of the shocks. 

Producing graphic output 
 Dynare and Octave/MATLAB are capable of graphing your impulse-response functions 
(from either a deterministic or stochastic simulation) and your simulated time series from a 
stochastic simulation. Running Dynare under Octave on the Macintosh platform has some-
times proved troublesome, so there are two practical choices for performing the computa-
tions on this project. If you have a Windows computer, you can download both Dynare and 
Octave onto it and run that way. Or you can use one of the Reed IRC/PPW computers on 
which MATLAB and Dynare are installed. 

Running Dynare under Windows/Octave 
 Once you have created your .mod file, you can execute it with Dynare. To do so requires 
three commands. If you are running Octave under Windows, for example, you first need to 
start Octave, then, at the Octave command prompt, type  

  addpath c:\dynare\4.2.0\matlab 

This command tells Octave where to find the Dynare execution file. (If you put the Dynare 
software in a different folder, you would need to change this command to point to that fold-
er.)  
 You next need to tell Octave where to find your .mod file. The easiest way to do this is 
to make it your default Octave directory. If you put your .mod file in a folder called my-
macroasgn inside the c:\dynare folder, you would say 

  cd c:\dynare\mymacroasgn 

 Now you should be ready to run your Dynare program by typing into Octave: 

  dynare mymodfile.mod 

where mymodfile.mod is the name of your .mod file, which is located in the folder pointed 
to by your cd command above. 

Running Dynare under Macintosh/MATLAB 
 In order to run your Dynare program on Reed’s public computers, you can use 
MATLAB, which is available in the Application folder. After starting MATLAB, you will 
get a command prompt. Type in the (case-sensitive) command 

  addpath /Applications/Dynare/4.2.0/matlab 
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This tells MATLAB where to look for the Dynare program. 
 Next you tell MATLAB where to find your .mod file (and where to put its output files). 
The easiest option is to put your files in an identifiable (i.e., including your name) folder on 
the Mac desktop. (Note that on a public Reed computer this folder might be erased during 
the overnight re-initiation of the computer. Be sure to keep a copy someplace secure.) If you 
use the name “Jane314” for this folder, then you would type 

  cd ~/Desktop/Jane314/ 

to change MATLAB’s default directory. 
 Now you are ready to tell MATLAB to run your Dynare mod file. If your file (inside the 
Jane314 folder) is called mymodfile.mod, then you type 

  dynare mymodfile.mod 

Running DYNARE under Macintosh/Octave 
 Last year’s class had difficulty running Octave on Macs. The magicians at CUS worked 
in this during the summer and have come up with the following instructions for preparing to 
run Octave (and the Gnuplot graphics package) on campus Macs: 
 

Octave was created as an open-source alternative to Matlab. Octave runs on Mac, 
Linux, and Windows systems, but has problems creating graphs on Mac systems. We'll 
walk you through how to set up Octave, and how to connect Octave to its graphing tools. 
 
All of the IRC machines should have these tools already loaded and functional. If you 
encounter a problem with the IRC machines, please contact the CUS helpdesk at 
cus@reed.edu . 
 
Note: This write-up also includes Dynare, a program useful for macroeconomic work. 
 
1. Install Dynare in your Applications folder 
2. Install Octave in your Applications folder 
3. Download Maxima, then drag the Gnuplot program icon to your Applications folder 
4. Open a terminal window (e.g. using the application Terminal) 
5. Enter the following text in the terminal window, at the prompt: 
 
ln -s /Applications/Gnuplot.app/Contents/Resources/bin/gnuplot gnuplot 
 
What just happened? You made a "ºsymlink"º between Gnuplot and Octave, which will 
allow Octave to graph using Gnuplot. (This is similar to an "aliasº icon.) 
6. You can launch Octave from the terminal and start working! 
 
exec '/Applications/Octave.app/Contents/Resources/bin/octave' 
 
If you have problems with the installation, contact Kristin Bott in Instructional Technology 
Services at bottk@reed.edu. 
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Your results 
 If Dynare runs your program successfully, you will see the graphic output you have re-
quested in new windows and (for stochastic simulations) tables of results in your Oc-
tave/MATLAB window. The results are also saved in a file called mymacroasgn.log (where 
mymacroasgn is the name of your .mod file) in the same folder as your .mod file. To get 
these results into your report document (or into Excel or another program for further pro-
cessing) it is easier to copy and paste from the .log file than from the Octave screen itself. 
 Dynare diagnostics are largely useless, so if your program does not execute successfully 
you are probably going to be on your own to figure out why. Common errors to watch for 
include misspelling variable names, mismatched parentheses in expressions, and leaving off 
the semi-colon at the end of a command. 
 

3. Replicate Romer’s Figures 5.2 through 5.7 for a deterministic simulation with A, 
then G, shocked by 1% (0.01 shock to the log of the variable). Interpret the re-
sults. Are they the same? 

 
4. Perform stochastic simulations of the RBC model for each of the following values 

of the standard deviations of the shocks:  
   (a) Only productivity shocks: sd(εA) = 0.01, sd(εG) = 0;  

   (b) Both productivity and government spending shocks: sd(εA) = 0.005, sd(εG) 
= 0.005;  

   (c) Only government spending shock: sd(εA) = 0, sd(εG) = 0.01.  
 Create a table to summarize your results. The three columns of the table should 

contain the results of your three stochastic simulations. The rows should contain 
the following results captured from your screen or the log file: (i) the standard de-
viations of log GDP, log consumption, log employment, log real wages, the real 
interest rate, and log government spending; (ii) the correlation coefficients be-
tween log GDP and each of the other variables; (iii) the first-order autocorrela-
tions of all variables. The table below describes these measures for quarterly cy-
clical fluctuations in the U.S. from 1985 to 2009. Which measures correspond 
well to the U.S. economy and which do not? (Compare relative sizes, not abso-
lute levels.) Summarize your results briefly with an overall assessment of your 
RBC simulation results. 

 
 

Variable Standard deviation Correlation with GDP 1st-order autocorrelation 
log GDP 0.0113 (1.000) 0.9110 
log consumption 0.0099 0.9302 0.9239 
log employment 0.0108 0.8369 0.9182 
log real wage 0.0048 0.0133 0.9339 
real interest rate 0.0025 0.5516 0.9250 
log gov’t spending 0.0025 –0.4268 0.9059 
 


