
CHAPTER 2  

Regression with Stationary 
Time Series 

2.1 Spurious Regressions: Why Stationarity Is Important 

 For many decades, economists (particularly macroeconomists) ran time-series regres-
sions based on the Gauss-Markov methodology that we studied earlier. The results appeared 
to be remarkable! R-squared values were commonly over 0.95 and often in the neighborhood 
of 0.999. The t statistics testing the null hypothesis that a coefficient was zero were nearly 
always significant and often in excess of 10. The regression methodology seemed to find 
great application in time-series analysis using aggregate data. 

 However, most of the time series that macroeconomists of the time used—GDP, the 
money supply, consumption spending, etc.—contained strong trends. Thinking about it intu-
itively, it is not surprising that two trended series will tend to be highly and positively corre-
lated: both series are smaller at the beginning of the sample than at the end. This correlation 
will be strong even if the non-trend movements in the two series are independent. 

 Consider the time plot in Figure 0-1, which depicts two series: total attendance at Ameri-
can League baseball games and real per-capita GDP from 1960 to 2007.  The series seem to 
be highly correlated, largely due to the strong trends in both. Regressing AL attendance on 
per-capita GDP yields the regression in the first column of Table 2-1 with an R-square value 
of nearly 0.94 and an overwhelming t statistic of 26. An economist seeing column (1) would 
seem justified in concluding that increases in income per person have very strong and statis-
tically reliable effects on baseball attendance, which seems entirely plausible—except that the 
regressor in (1) is per-capita GDP in Botswana, not in the United States! 

 Is American baseball attendance really strongly affected by income in a small, sparsely 
populated African nation? It seems unlikely, yet the conventional statistical measures of R-
square and t are overwhelming: the p value associated with the t-statistic is 3×10–29. 

 This is an example of spurious regression, a term coined by Granger and Newbold (1974) 
in their seminal article on regressions with nonstationary variables. When the variables in a 
regression are nonstationary, R-square values and t-statistics no longer follow the usual dis-
tributions and can be wildly inflated. Consider the regression in column (2) of Table 2-1, 
which relates the first difference of attendance to the first difference of Botswana GDP. In 
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contrast to the levels equation (1), there is no evidence of a relationship in the differenced 
regression of column (2), with R-square of 0.005 and a t-statistic less than 1. 

 

Figure 2-1. Baseball attendance and GDP 

  

1.
0e

+0
7

1.
5e

+0
7

2.
0e

+0
7

2.
5e

+0
7

3.
0e

+0
7

3.
5e

+0
7

A
m

er
ic

an
 L

ea
gu

e 
A

tte
nd

an
ce

0
20

00
40

00
60

00
80

00
10

00
0

R
ea

l P
er

-C
ap

ita
 G

D
P

1940 1960 1980 2000 2020
year

 (1) (2) 
 AL Attendance ∆ AL Att. 
   
GDP 3,323***  
 (126.8)  
∆GDP  765.5 
  (1,599) 
Constant 7.073e+06*** 406,547 
 (640,361) (464,611) 
   
Observations 47 46 
R-squared 0.939 0.005 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

 

Table 2-1. Regressions of baseball attendance on GDP 
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 The case for spurious correlation between two strongly trended series as in Figure 2-1 is 
intuitive. But beyond this, Granger and Newbold demonstrated that nonstationary regres-
sion is also unreliable in a less obvious case: random walks with no trend or “drift” that 
moves the series in the same direction over time. The only thing that these two series have in 
common is that the (independent) shocks to both series are highly persistent, yet Granger 
and Newbold’s Monte Carlo regressions rejected the null hypothesis of a zero coefficient 76 
percent of the time (rather than the appropriate 5 percent) in bivariate regressions. As ex-
pected, differenced regressions (which would involve two unrelated white-noise series be-
cause the first difference of a random walk is white noise) yielded conventional frequencies 
of rejection. Moreover, as the sample size gets larger, the problem of spurious regressions 
with nonstationary variables gets worse, not better. The t statistic between unrelated random 

walks goes to infinity rather than zero as T → ∞. 

 Much recent research in time-series econometrics has focused on appropriate regression 
models when the variables are non-stationary. We examine these models in subsequent 
chapters, but first we adapt our regression model to time-series data assuming that the varia-
bles in the regression are all stationary. 

2.2 Gauss-Markov Assumptions in Time-Series Regressions 

2.2.1 Exogeneity in a time-series context 

 For cross-section samples, we defined a variable x to be exogenous if for all observations 

i in the sample, ( )1 2| , , ..., 0i NE x x xε = . This means that each observation i in the sample 

must be independent of every observation of x, not just the ith observation of x. With inde-
pendent cross-section observations, the only value of x that is likely to be related to εi is xi 
corresponding to the same observation.  

 In a time-series setting, observations that are near each other in time are likely to be re-

lated. The strict exogeneity condition ( )2 1 1 2|..., , , , , , ... 0t t t t t tE x x x x x+ + − −ε =  requires that the 

regressor’s value in period t be unrelated to the disturbance term in every period. This means 
that we cannot have dynamic feedback effects in which the past or future value of the regres-
sor might depend on the current disturbance. 

  For some properties of time-series regression a weaker form of exogeneity is sufficient. 

We say that a variable x is weakly exogenous if ( )1 2| , , , ... 0t t t tE x x x− −ε = , which means that 

the period t disturbance is  independent of current and past values of x, but not necessarily 
independent of future x. 

2.2.2 Applying the Gauss-Markov Theorem to time series 

 For us to apply the Gauss-Markov Theorem to a time-series context, we require the fol-
lowing assumptions: 
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• TS-1. Linear model: The joint data-generating process of y, x2, …, xK is  

1 2 ,2 ,... , 1, 2, ..., ,t t K t K ty x x u t T= β +β + +β + =  

with ut a sequence of disturbances. 

• TS-2. Strict exogeneity: The explanatory variables x.,j are strictly exogenous with re-
spect to the disturbance term. Mathematically, 

( )| 0, 1, 2, ..., ,tE u t T= =X  

where X includes all K – 1 regressors and all T time periods: 

1,2 1,3 1, 1 1,

2,2 2,3 2, 1 2,

,2 ,3 , 1 ,

.

K K

K K

T T T K T K

x x x x

x x x x

x x x x

−

−

−

 
 
 =
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• TS-3. No perfect collinearity: No regressor x.,j is constant or can be expressed as a 
linear function of other regressors. In other words, there is no set of constants aj that 
are not all zero and for which  

1 2 ,2 ,... 0, 1, 2, ..., .t K t Ka a x a x t T+ + + = ∀ =  

This condition means that X as defined in TS-2 has full rank K – 1. 

• TS-4. Homoskedasticity: The conditional variance of ut is constant: 

( ) 2var | , 1, 2, ..., .tu t T= σ =X  

• TS-5. No serial correlation: The disturbance terms are uncorrelated (conditional on 
X): 

( )cov , | 0, 1, 2, ..., 1.t t su u s T− = = −X  

• TS-6. Normality: The disturbance terms are normally distributed, 

( )2~ 0,tu N σ . 

 When conditions TS-1 through TS-3 hold, the OLS coefficient estimator is unbiased. 
When we add TS-4 and TS-5 we obtain the unbiasedness of the standard OLS estimator of 
the variance of the OLS coefficient estimator, so we can use the standard tools of OLS infer-
ence. Under TS-1 through TS-5, the Gauss-Markov Theorem assures that OLS is BLUE. If 
we add TS-6, then the OLS coefficient vector has a normal distribution and the ratio of each 
coefficient to its standard error has a t distribution. 
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 Thus it appears straightforward to extend our previous analysis to a time-series setting. 
However, the assumptions that are often reasonable when we draw plausibly independent 
observations from a cross-sectional sample frequently fail to hold for sequential, time-series 
observations. In particular, strict exogeneity is rare and serial correlation is common, so as-
sumptions TS-2 and TS-5 often fail. Strict exogeneity requires that every regressor x be inde-
pendent of the entire history of disturbances to y—past, present, and future. No serial corre-
lation requires that positive shocks to y in period t neither tend to persist into period t + 1 
(leading to positive correlation) nor tend to be followed by negative “corrections” in period 
t + 1 (leading to negative correlation). 

 The focus in time-series regression analysis is mainly addressed to coping with violations 
of TS-2 and TS-5. If the variables in our model are stationary and ergodic, we can loosen TS-
2 to require only weak exogeneity and our OLS estimator will still have desirable asymptotic 
properties. Coping with serial correlation is discussed in the next section. 

2.2.3 Asymptotic properties of OLS 

 In cross-section samples, the law of large numbers assures us that random variations will 
tend to “even out” with a large enough sample of independent observations. This happens 
because the sample means, variances, and covariances among the variables converge to 
fixed, finite population moments such as 
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 To see why asymptotic properties require careful attention in time-series models, consid-
er what happens to the equations in (2.1) when the x variable is a time trend so that xt = t. 
The mean of a sample of T observations is 
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Therefore the first moment-convergence condition in (2.1) fails when the regressor is a time 
trend. It is straightforward to show that the second condition in (2.1) also fails for the time 
trend—the sample variance also diverges as T gets large. 

 This problem is not restricted to time trends. It occurs with any nonstationary variable 
because the mean and/or variance do not converge in large samples. This is the basis for the 
spurious-regression problem with which we began this chapter.  

 A more subtle difficulty occurs with non-ergodic variables. Recall that these variables 
have “long memory,” so that observations that are far apart in time are still strongly correlat-
ed. What this means for regression analysis is that even as we accumulate a large number of 
observations, the amount of new information in those observations is limited by their corre-
lation with the earlier ones. Intuitively, this means that the information in the sample does 
not grow fast enough as the sample size increases to lead to asymptotic convergence of esti-
mators to the true parameter values. 

 If—and it’s a big if—we are working with stationary and ergodic time series, then we can 
weaken the strict exogeneity assumption TS-2 to weak exogeneity and the OLS estimators 
still have desirable asymptotic properties. Corresponding to the set of assumptions TS-1 
through TS-6 that support the small-sample properties of the OLS estimators, we have ATS-
1 through ATS-6 that foster consistency, asymptotic efficiency, and asymptotic normality. 

• ATS-1. Linear model: The joint data-generating process of y, x2, …, xK is  

1 2 ,2 ,... , 1, 2, ..., ,t t K t K ty x x u t T= β +β + +β + =  

with ut a sequence of disturbances. (Identical to TS-1.) 

• ATS-2. Weak exogeneity, stationarity, and ergodicity: The variables of the model 
are stationary and ergodic, and the explanatory variables x.,j are weakly exogenous 
with respect to the disturbance term. Mathematically, 

( ),2 ,3 ,| , , ..., 0.t t t t KE u x x x =  

Note that this requires ut to be independent only of the current values of the regres-
sors, not of all past, current, and future values. 

• ATS-3. No perfect collinearity: No regressor x.,j is constant or can be expressed as a 
linear function of other regressors. In other words, there is no set of constants aj that 
are not all zero and for which  

1 2 ,2 ,... 0, 1, 2, ..., .t K t Ka a x a x t T+ + + = ∀ =  

(Identical to TS-3.) 

• ATS-4. Homoskedasticity: The conditional variance of εt is constant: 
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( ) 2
,2 ,3 ,var | , , ..., , 1, 2, ..., .t t t t Ku x x x t T= σ =  

(Nearly identical to TS-4 except conditioning is only on current x.) 

• ATS-5. No serial correlation: The disturbance terms are uncorrelated (conditional 
on X): 

( ),2 ,3 ,cov , | , , ..., 0, 1, 2, ..., 1.t t s t t t Ku u x x x s T− = = −  

(Nearly identical to TS-5 except conditioning is only on current x.) 

 Under assumptions ATS-1 through ATS-3, the OLS estimator is consistent. If we add 
assumptions ATS-4 and ATS-5, it is asymptotically efficient and asymptotically normal. 
Note that we do not require an asymptotic analog to TS-6, which imposed normality of u. 
That is because assumptions ATS-1 through ATS-5 allow us to use central limit theorems to 
show that the OLS estimators will converge to a normal distribution in large samples. This 
allows us to use the normal distribution to assess the asymptotic significance of our t statis-
tics and the chi-square distribution to evaluate the asymptotic distribution of F statistics. 

2.3 Regression with Serially Correlated Errors 

2.3.1 Implications of serial correlation 

 In discussing the small-sample properties of OLS with time-series data, we identified TS-
2 (strict exogeneity) and TS-5 (no serial correlation) as assumptions that were often violated 
in economic data. We then showed that we can relax TS-2 to the more data-friendly ATS-2 
(weak exogeneity) if our variables are stationary and ergodic and if our sample is large 
enough that asymptotic distributions are reasonably close approximations. In the remainder 
of this chapter we assume that stationarity and ergodicity assumptions in ATS-2 are valid. 

 We now consider the issue of TS-5 or ATS-5. In economic data, what happens at t is of-
ten related to what happened at t – 1. If that is true of the disturbance terms in our regres-
sion, then we have serial correlation. We know from our discussion above that the con-
sistency of the OLS coefficient estimator requires only ATS-1 through ATS-3, so it does not 
depend on the absence of serial correlation in the disturbance. However, in the presence of 
serial correlation the variance of the OLS estimator will be larger than some other estima-
tors, so it is not efficient, and the traditional OLS variance estimator will not estimate the 
true variance accurately so our OLS test statistics will not follow the same distribution that 
they would if ATS-5 were not violated. 

 To see the problem, let us suppose that assumptions ATS-1 through ATS-4 are satisfied, 
but that the disturbance term u follows an AR(1) process: 

 1t t tu u −= ρ + ε  (2.2) 
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with |ρ| < 1 and ε being white noise with variance 2
εσ . For simplicity, let K = 2 so there is 

only one (non-constant) regressor: 1 2t t ty x u= β +β + . [This follows Wooldridge (2009, 409).] 

 Following the standard derivation, the OLS estimator of β2 is 

( )( )
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2 2
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t t
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Just to simplify this expression, assume that we have normalized the regressor so that 0x = . 
(This is not a restrictive assumption; it just makes the algebra more transparent.) In this case, 
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 In general, the squared-summation term involves all of the cross-products of the ut terms 
with ut – s terms. In the special case of no serial correlation, all of the cross-products are zero 

and the expectation expression reduces to 2 2

1

T

t
t
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σ ∑ , leading to our usual OLS formula for 

the variance. But this does not happen if the disturbance terms are serially correlated. 

 In the general case, 

 

( ) ( )

( ) ( )

2 1
2 2

1 1 1 1

1
2 2

1 1 1

1
2

1 1 1

2 2 2

1

| 2 |

| 2 |

var | 2 cov , |

2

T T T T t

t t t t t t s t t s
t t t s

T T T t

t t t t s t t s
t t s

T T T t

t t t t s t t s
t t s

T

u t u t t
t

E u x E x u x x u u

x E u x x E u u

x u x x u u

x x x

− −

+ +
= = = =

− −

+ +
= = =

− −

+ +
= = =

+
=

      
= +      

       

= +

= +

= σ + σ

∑ ∑ ∑∑

∑ ∑∑

∑ ∑∑

∑

X X

X X

X X

( )
1

1 1

1
2 2 2

1 1 1

corr , |

2 .

T T t

s t t s
t s

T T T t
s

u t u t t s
t t s

u u

x x x

− −

+
= =

− −

+
= = =

= σ + σ ρ

∑∑

∑ ∑∑

X

 



Chapter 2:  Regression with Stationary Time Series 27 

The final expression uses the property that corr(ut, ut + s) = ρs for an AR(1) process. Substitut-
ing this expression into the variance formula yields 
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 (2.3) 

 The standard expression for the OLS variance (assuming no serial correlation) is just the 
first term of (2.3) and neglects the second. The second term is zero only if either the disturb-
ance term is not serially correlated (ρ = 0) or the regressor is not serially correlated in our 
sample (in which case the cross-product terms would add up to zero). In economic data it is 
common for ρ > 0 and for x to be positively serially correlated as well, which means that the 
second term in (2.3) is likely to be positive and the true variance of the OLS estimator will be 
larger than when there is no serial correlation.  

 Because the usual OLS standard errors neglect the second term, they will generally be 
inconsistent in the presence of serial correlation, meaning that our t and F statistics based on 
them will not be valid. We will see below that there are two methods for dealing with a seri-
ally correlated disturbance: we can try to transform the model to eliminate the serial correla-
tion or we can use the (inefficient) OLS estimator and correct the standard errors to reflect 
the second term in (2.3). 

2.3.2 Testing for serial correlation 

 Serial correlation in the error occurs when the condition ( )corr , 0t t su u − =  is violated for 

some s. We can test the null hypothesis of no serial correlation if we have estimators of the 

error terms ut that are consistent (when the null hypothesis is true). The OLS residuals ˆtu  are 

the obvious choice, so our tests for serial correlation will involve testing for correlation be-
tween ˆtu  and ˆt su −  for positive values of s up to some chosen limit p. The null hypothesis is 

therefore ( )corr , 0, 1, 2, ...,t t su u s p− = = . 

 The oldest test for (first-order) serial correlation is the Durbin-Watson test. This test has 
fallen into disuse for three reasons. First, the critical values of the test statistic depend on the 
regressors in the model, so they cannot be tabulated for a general case. Users of the Durbin-
Watson test traditionally relied on upper and lower bounds for the critical values, meaning 
that it was impossible to draw a conclusion for calculated test statistics lying in the interval 
between the bounds. Second, the Durbin-Watson test has been shown to be invalid if a 
lagged dependent variable is among the regressors. This rules out its use for any model with 
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an autoregressive structure of y. Third, the Durbin-Watson statistic only tests for first-order 
serial correlation and cannot easily be extended to p > 1. 

 The Breusch-Godfrey Lagrange multiplier test is a regression-based test for order-p autocor-
relation of the disturbance. The null hypothesis is that the disturbance is white noise. If the 
disturbance is white noise, then the current OLS residual ˆtu  should be independent of the 

lagged residuals 1 2ˆ ˆ, , ...t tu u− − . The Breusch-Godfrey test uses the regression 

 1 1 .ˆ ˆ ˆ... ,t t p t p t tu u u v− −= γ + + γ + +x β  (2.4) 

where xt.. is the row vector of all explanatory variables in the model corresponding to period t 
(including the constant) and β is the coefficient vector of the model. 

 The dependent variable in regression (2.4) is the residual ˆtu  from the regression of yt on 

xt., which is by construction uncorrelated with xt.. If there is no autocorrelation in u, then the 

p lagged residuals should also be uncorrelated with ˆtu . Thus, under the null hypothesis of no 

serial correlation the regressors in (2.4) should have no explanatory power whatsoever for 

the dependent variable; if they do explain ˆtu , then there must be serial correlation. 

 The Breusch-Godfrey test statistic for autocorrelation of order 1 through p is 

( ) 2
0 ,BG p T R= ×  

where T0 is the number of observations and R2 is the coefficient of determination from re-
gression (2.4). BG(p) is asymptotically distributed as a χ2(p) variable under the null hypothe-
sis. No autocorrelation and no explanatory power in (2.4) would imply an R2 near zero and a 
small test statistic, failing to reject the null hypothesis of white noise.  

 If there are T observations in the original model, then we have values for ˆtu  and xt. for 

all of these T observations. However, we cannot observe 1ˆ ˆ, ...,t t pu u− −  for the first p observa-

tions. There are two strategies for handling this difficulty. We can either omit these observa-
tions and estimate (2.4) for the T – p observations t = p + 1, p + 2, …, T or we can use all T 
observations and substitute zero (the expected value) for the missing lagged residuals. In ei-
ther case, the T0 used to calculate BG(p) is the number of observations used in (2.4), T0 = T – 
p if the observations are dropped and T0 = T if zero is substituted. 

 To perform the Breusch-Godfrey test in Stata, we can use the estat bgodfrey com-
mand. The order of autocorrelation to be tested (p) is specified by the lags( ) option. By 
default, Stata substitutes zero for the missing lagged residuals and uses the full sample. To 
use the shorter sample without substituting, we specify the nomiss0 option. 

 An alternative to the Breusch-Godfrey test is the Box-Ljung “portmanteau” test or Q test. 
The Q test can be applied to any time series, not just regression residuals, and is based on 

correlation coefficients. When applied to the residuals û , the test statistic is 
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≡
∑
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is the sample autocorrelation coefficient at lag s. Like the Breusch-Godfrey test statistic, Q(p) 

converges asymptotically to a 2
pχ  distribution. The Q test and the Breusch-Godfrey test are 

asymptotically equivalent under the null hypothesis if there are no lagged dependent varia-
bles among the regressors, but Greene (2012, 923) argues that the Breusch-Godfrey test is 
more powerful because it controls for the regressors when testing for correlation between the 
current and lagged residuals. 

 The Stata command wntestq implements the Q test with the option lags( ) specify-
ing p. The residuals must be explicitly retrieved and included in the command. For example, 
to test the first 12 autocorrelations of a residual series stored in uhat, we would type 
wntestq uhat , lags(12). The general command corrgram for calculating autocor-
relations also shows the successive Q statistics at each order p up to the limit specified. It is 
important to remember that Q (p) (like the Breusch-Godfrey test) tests the joint null hypothe-
sis that the first p autocorrelations are zero, not the simple null that the individual pth-order 
autocorrelation is zero. 

2.3.3 Generalized least squares estimation of models with autoregressive errors 

 Generalized least squares estimation allows us to transform a model whose error term 
has a non-classical distribution into one whose error term follows the classical assumptions. 
In the case of autoregressive error terms, the transformation consists of a “quasi-
differencing” filter that purges the error term of autocorrelation. If ut is an order-p autoregres-
sive process 

1 1 ... ,t t p t p tu u u− −= ρ + + ρ + ε  

where εt is white noise, then 

*
1 1 ...t t t p t p tu u u u− −≡ − ρ − −ρ = ε  

has no autocorrelation.  

 The most common case is p = 1, where the error term follows an AR(1) process. In this 

case, ( )*
1 1 11 .t t t t tu u u L u−= − ρ = −ρ = ε  If we begin with the model t t ty x u= α +β +  and apply 
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the quasi-differencing transformation ( )11 L−ρ  to each term on both sides of the equation, 

we get 

( ) ( )
( ) ( ) ( )

1 1 1 1 1

1 1 1 1 11 ,

t t t t t t

t t t t

y y x u x u

x x u u
− − −

− −

− ρ = α +β + −ρ α +β +

= α −ρ +β −ρ + −ρ
 

or  

 * * * *
t t t ty c x u= α +β + ,  (2.5) 

where 
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1 1
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1 1
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t t t
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t t t t

y y y
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x x x

u u u
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−

−

≡ − ρ

≡ −ρ

≡ −ρ

≡ −ρ = ε

 (2.6) 

The transformed model (2.5) has an error term *
t tu = ε  that is serially uncorrelated, so it can 

be estimated efficiently by OLS. But in order to apply GLS to this model we must solve two 
problems: (1) what to do about the first observation and (2) how to obtain an estimate of ρ1. 

 The first-observation problem is that we cannot use the transformation in (2.6) when t = 
1 because we generally do not have observations for y0 and x0. There are two choices for 
dealing with this problem. We can omit the first observation and estimate (2.5) for T – 1 ob-
servations starting with t = 2, but this solution loses the information from the omitted obser-

vation, which may be significant in small samples.
1
 Alternatively, we can include the first 

observation, but if we were to add this one untransformed observation to the T – 1 trans-
formed observations, it would have a different error variance. An untransformed observation 

has variance ( ) 2var .uu = σ  The transformed observations have a smaller variance equal to 

( ) ( )2 2
1var 1 uε = −ρ σ . Thus, to make the variance of the untransformed initial observation 

match the transformed observations we must calculate 
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1 1 1

* 2
1 1

* 2
1 1 1
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1 1 1
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1 ,

1

y y

c

x x

u u

= −ρ

= −ρ

= −ρ

= −ρ

 (2.7) 

                                                      
1
 If p > 1, the transformations in (2.6) have p lags and we would lose p observations from the begin-

ning of the sample. 
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in order to add the first observation into the transformed estimating sample. 

 To perform feasible GLS in the AR(1) model, we require an estimate of ρ1. The most 
common way of estimating ρ1 is using the residuals û  from an OLS regression to approxi-

mate u and then calculating ρ1 either as the correlation coefficient between ˆtu  and 1ˆtu −  or as 

the estimated coefficient in a regression 1 1ˆ ˆ .t t tu u −= ρ + ε  The Prais-Winsten estimator uses this 

method to estimate ρ1 and includes all T observations using (2.7) for t = 1. The Cochrane-
Orcutt estimator estimates ρ1 in the same way but omits the first observation. The two estima-
tors are asymptotically equivalent because the importance of the first observation becomes 
negligible as T gets large. Because Prais-Winsten is more efficient in small samples, we shall 
not consider the Cochrane-Orcutt estimator further. 

 Although it is asymptotically efficient as described above, the Prais-Winsten estimator 
can be iterated, which may improve efficiency in small samples. Prais-Winsten calculates ρ1 
based on OLS residuals. The OLS coefficient estimators that are used to compute these re-
siduals are inefficient due to the autocorrelation that we are trying to correct, thus the resid-
uals are inefficient estimators of the true error term. Correcting for autocorrelation improves 
the efficiency of the coefficient estimators, therefore it should produce better estimates of the 
residuals, which can then produce a more efficient estimate of ρ1. Iterative Prais-Winsten 
estimation recalculates ρ1 based on the FGLS residuals, then uses (2.6) and (2.7) to recalcu-
late the transformed variables and calculate more efficient coefficient estimators from a re-
gression of (2.5) on the new transformed variables. Of course, because these estimated coef-
ficients are better than the original FGLS estimates, they can produce even better residuals 

and estimates of ρ1, and so on and so on and so on. The process stops when the estimates 
converge: successive iterations produce estimates that differ by less than a specified conver-
gence criterion. 

 The efficiency of the Prais-Winsten estimator depends on having a consistent estimator 
of ρ1. This, in turn, depends on having residuals that are consistent estimators of the error 
term, which requires consistent initial estimates of the coefficients to use in computing the 
residuals. An important case in which the OLS coefficient estimators and residuals are in-
consistent occurs when there is a lagged dependent variable yt – 1 among the regressors and 

the error is autocorrelated. In this case we cannot use OLS residuals û  to estimate ρ1 so we 
need an alternative to Prais-Winsten. The Hildreth-Lu estimator searches over the stationary 

region –1 ≤ ρ1 ≤ 1 to find the value of ρ1 that minimizes the sum of squared residuals in the 
transformed regression, thus bypassing the use of OLS altogether.  

 To estimate FGLS models with AR(1) error terms in Stata, we use the prais com-
mand, which has a format similar to regress. The default method is iterated Prais-Winsten 
estimation. We can alter the method used by specifying options: corc produces Cochrane-
Orcutt estimates; twostep disables iteration; ssesearch specifies the Hildreth-Lu search 
procedure. 
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2.3.4 Newey-West HAC-robust standard errors 

 As noted above, autocorrelation introduces two problems with the OLS model: ineffi-
cient estimators and inconsistent standard errors. GLS methods seek to achieve efficient es-
timation of parameters in the presence of autocorrelated errors. An alternative is to accept 
the inefficiency of the OLS estimators but correct the standard errors so that valid inference 
can be performed. 

 The Newey-West HAC-robust standard errors for the OLS estimators are consistent when 
the error term is heteroskedastic, autocorrelated, or both, as long as the regressors are sta-
tionary and ergodic. These robust standard errors are kin to White’s heteroskedasticity-
robust standard errors, but the formulas are more complex. 

 We begin with the standard regression model (with one variable, for simplicity): 

 ,t t ty x u= α +β +  (2.8) 

where ( )cov , 0t t su u − ≠  for s ≠ 0. For this derivation, we assume that ( ) 2var t uu = σ  for all ob-

servations, although the Newey-West standard errors are consistent even when the error 
term is heteroskedastic. 

 The derivation of equation (2.3) suggests how the OLS standard errors can be corrected 
to account for the presence of serial correlation . [The derivation here is based on Stock and 
Watson (2011, 595-600).] We know that the OLS estimator for β in equation (2.8) can be 
written 
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Recall that probability limits are very forgiving in that ( ) ( )plim plimf x f x  =       quite gen-

erally. We know that plim xx = µ  and, if x is stationary and ergodic, then  
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 In large samples where we can assume that b is arbitrarily close to plim (b), 

( ) ( )
2 4

var
var var

x x

vv
b

 
= = σ σ 

. 

If there is no autocorrelation in u, then the variance of the average v  is just 

( ) ( )
21

var var ,v
tv v

T T
σ

= =  

which simplifies to the usual formula for the OLS standard error. But with serial correlation, 
when we take the variance of the sum in v the covariance terms are not zero. 

In the case where there is serial correlation we have to take into account the covariance of 
the vt terms: 
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var ,v

T
x

b f
T

 σ
=  σ 

 which expresses the variance as the product of the no-

autocorrelation variance and the fT factor that corrects for autocorrelation. In order to im-
plement this, we need to know fT, which depends on the autocorrelations of v for orders 1 
through T – 1. 

 In practice, just as in GLS estimation, these are not known and must be estimated. As 
usual, we use the OLS residuals ˆtu  as estimators for ut, which allows us to compute esti-

mates of vt for each observation in the sample. For ρ1 we have lots of information because 
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there are T – 1 pairs of values for (vt, vt – 1) in the sample. Similarly, we have T – 2 pairs to use 

in estimating ρ2, T – 3 pairs for ρ3, and so on.  

 As the order of autocorrelation j gets larger, there are fewer and fewer observations from 
which to estimate ρj. When we get to ρT – 1, there is only one pair of observations that are T – 
1 periods apart—namely (uT, u1)—on which to base an estimate, so this correlation cannot be 
calculated at all. 

 The Newey-West procedure truncates the summation in fT at some value m, so we esti-
mate the first m autocorrelations of v using the OLS residuals and compute 

1

ˆ 1 2 .
m

T j
j

m j
f r

m=

− = +  
 

∑ We must choose m to be large enough to provide a reasonable correc-

tion but small enough relative to T to allow the ρ values to be estimated well. Stock and 

Watson suggest choosing 
1
30.75m T=  as a reasonable rule of thumb. Greene (2012, 920) 

suggests m = T1/4. 

 To implement Newey-West HAC-robust standard errors in Stata, we use the command 
newey, which has a format similar to the regress command. You must include the option 
lags(m) in order to get the Newey-West estimator; omitting this option causes the proce-
dure to calculate the White heteroskedasticity-robust standard errors without correcting for 
autocorrelation. 
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