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Section 2 Simple Regression 

What regression does 
• Relationship between variables 

o Often in economics we believe that there is a (perhaps causal) relationship 

between two variables. 

o Usually more than two, but that’s deferred to another day. 

o We call this the economic model. 

o Example: Grade in Econ 201 vs. number of dorm-mates taking Econ 201 

• Functional form 

o Is the relationship linear?  

 1 2y x= β + β  

 x is called the “regressor” 

 The linear form is a natural first assumption, unless theory rejects it. 

 β2 is slope, which determines whether relationship between x and y is 

positive or negative. 

 β1 is intercept or constant term, which determines where the linear 

relationship intersects the y axis. 

o Is it plausible that this is an exact, “deterministic” relationship? 

 No. Data (almost) never fit exactly along line. 

 Why? 

• Measurement error (incorrect definition or mismeasurement) 

• Other variables that affect y 

• Relationship is not purely linear 

• Relationship may be different for different observations 

o So the economic model must be modeled as determining the expected value of y 

 ( ) 1 2|E y x x= β + β : The conditional mean of y given x is 1 2 xβ + β  

• Note that this says nothing about other aspects of the distribution 

• How does a change in x affect the variance of y? (We assume that 

it does not.) 

• How does a change in x affect the median, or the 75th percentile, 

or any other aspect of the distribution of y? (If y is assumed to be 

normal, then everything about the distribution depends only on 

mean and variance.) 

• Other regression techniques (in particular, quantile regression) 

allow us to examine the impact of x on aspects of the distribution 

of y other than the mean. 
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  Adding an error term for a “stochastic” relationship gives us the actual 

value of y: 1 2y x e= β + β +  

 Error term e captures all of the above problems. 

• Error term is considered to be a random variable and is not 

observed directly. 

• Variance of e is σ2, which is the conditional variance of y given x, 

the variance of the conditional distribution of y given x. 

• The simplest, but not usually valid, assumption is that the 

conditional variance is the same for all observations in our 

sample (homoskedasticity) 

 ( )
2

|dE y x

dx
β = , which means that the expected value of y increases by β2 

units when x increases by one unit 

o Does it matter which variable is on the left-hand side? 

 At one level, no:  

• ( )1
2

1
,x y e= − β −

β
 so 

• 1 2 ,x y v= γ + γ +  where 1
1 2

2 2 2

1 1
, , .v e

βγ ≡ − γ = = −
β β β

 

 For purposes of most estimators, yes: 

• We shall see that a critically important assumption is that the 

error term is independent of the “regressors” or exogenous 

variables. 

• Are the errors shocks to y for given x or shocks to x for given y? 

o It might not seem like there is much difference, but the 

assumption is crucial to valid estimation. 

 Exogeneity: x is exogenous with respect to y if shocks to y do not affect x, 

i.e., y does not cause x. 

• Where do the data come from? Sample and “population” 

o We observe a sample of observations on y and x. 

o Depending on context these samples may be 

 Drawn from a larger population, such as census data or surveys 

 Generated by a specific “data-generating process” (DGP) as in time-

series observations 

o We usually would like to assume that the observations in our sample are 

statistically independent, or at least uncorrelated: ( )cov , 0, .i jy y i j= ∀ ≠  

o We will assume initially (for a few weeks) that the values of x are chosen as in an 

experiment: they are not random. 



~ 17 ~ 

 

 We will add random regressors soon and discover that they don’t change 

things much as long as x is independent of e. 

• Goals of regression 

o True regression line: actual relationship in population or DGP 

 True β and f (e|x) 

 Sample of observations comes from drawing random realizations of e 

from f (e|x) and plotting points appropriately above and below the true 

regression line. 

o We want to find an estimated regression line that comes as close to the true 

regression line as possible, based on the observed sample of y and x pairs: 

 Estimate values of parameters β1 and β2 

 Estimate properties of probability distribution of error term e 

 Make inferences about the above estimates 

 Use the estimates to make conditional forecasts of y 

 Determine the statistical reliability of these forecasts 

Summarizing assumptions of simple regression model 
• Assumption #0: (Implicit and unstated) The model as specified applies to all units in the 

population and therefore all units in the sample. 

o All units in the population under consideration have the same form of the 

relationship, the same coefficients, and error terms with the same properties. 

o If the United States and Mali are in the population, do they really have the same 

parameters? 

o This assumption underlies everything we do in econometrics, and thus it must 

always be considered very carefully in choosing a specification and a sample, and 

in deciding for what population the results carry implications. 

• SR1: 1 2y x e= β + β +  

• SR2: ( ) 0E e = , so ( ) 1 2E y x= β + β  

o Note that if x is random, we make these conditional expectations 

o 
( )
( ) 1 2

| 0

|

E e x

E y x x

=

= β + β
 

• SR3: ( ) ( )2var vare y= σ =  

o If x is random, this becomes ( ) ( )2var | var |e x y x= σ =  

o We should (and will) consider the more general case in which variance varies 

across observations: heteroskedasticity 

• SR4: ( ) ( )cov , cov , 0i j i je e y y= =  

o This, too, can be relaxed: autocorrelation 
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• SR5: x is non-random and takes on at least two values 

o We will allow random x later and see that ( )| 0E e x =  implies that e must be 

uncorrelated with x. 

• SR6: (optional) ( )2~ 0,e N σ  

o This is convenient, but not critical since the law of large numbers assures that for 

a wide variety of distributions of e, our estimators converge to normal as the 

sample gets large 

• Example: Assess the validity of these assumptions for 201 dorm-mate model 

Strategies for obtaining regression estimators 
• What is an estimator? 

o A rule (formula) for calculating an estimate of a parameter (β1, β2, or σ2) based on 

the sample values y, x 

o Estimators are often denoted by ^ over the variable being estimated: An 

estimator of β2 might be denoted 2β̂  

• How might we estimate the β coefficients of the simple regression model?  

o Three strategies: 

 Method of least-squares 

 Method of maximum likelihood 

 Method of moments 

o All three strategies with the SR assumptions lead to the same estimator rule: the 

ordinary least-squares regression estimator: (b1, b2, s2) 

• Method of least squares 

o Estimation strategy: Make sum of squared y-deviations (“residuals”) of observed 

values from the estimated regression line as small as possible. 

o Given coefficient estimates 1 2,b b , residuals are defined as 1 2î i ie y b b x≡ − −  

 Or ˆ ˆi i ie y y= − , with 1 2ˆi iy b b x≡ +  

o Why not minimize the sum of the residuals? 

 We don’t want sum of residuals to be large negative number: Minimize 

sum of residuals by having all residuals infinitely negative. 

 Many alternative lines that make sum of residuals zero (which is 

desirable) because positives and negatives cancel out. 

o Why use square rather than absolute value to deal with cancellation of positives 

and negatives? 

 Square function is continuously differentiable; absolute value function is 

not. 

• Least-squares estimation is much easier than least-absolute-

deviation estimation. 
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 Prominence of Gaussian (normal) distribution in nature and statistical 

theory focuses us on variance, which is expectation of square. 

 Least-absolute-deviation estimation is occasionally done (special case of 

quantile regression), but not common. 

 Least-absolute-deviation regression gives less importance to large outliers 

than least-squares because squaring gives large emphasis to residuals with 

large absolute value. Tends to draw the regression line toward these 

points to eliminate large squared residuals. 

o Least-squares criterion function: ( )22
1 2

1 1

ˆ
N N

i i i
i i

S e y b b x
= =

= = − −   

 Least-squares estimators is the solution to 
1 2,

min
b b

S . Since S is a 

continuously differentiable function of the estimated parameters, we can 

differentiate and set the partial derivatives equal to zero to get the least-

squares normal equations: 

• 
( )( )1 2

12

2
1 2

1 1 1

2 0,

0.

N

i i i
i

N N N

i i i i
i i i

S
y b b x x

b

y x b x b x

=

= = =

∂ = − − − =
∂

− + + =



  
 

• 

( )1 2
11

1 2
1 1

1 2

1 2

2 0

0

0

.

N

i i
i

N N

i i
i i

S
y b b x

b

y Nb b x

y b b x

b y b x

=

= =

∂ = − − − =
∂

− − =

− − =
= −



   

 Note that the b1 condition assures that the regression line passes through 

the point ( ),x y . 

 Substituting the second condition into the first divided by N: 

( )
( ) ( )

( )( )
( )

2
2 2

2 2
2

2 22 2 2

0

0

ˆ
.

ˆ

i i i

i i i

i i i i XY

i Xi

y x y b x Nx b x

y x Nyx b x Nx

y x Nyx y y x x
b

x Nx x x

− + − + =

− − + − =

− − − σ= = =
− σ−

 
 
 
 

 

 The b2 estimator is the sample covariance of x and y divided by the 

sample variance of x. 

 What happens if x is constant across all observations in our sample? 

• Denominator is zero and we can’t calculate b2. 
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• This is our first encounter with the problem of collinearity: if x is 

a constant then x is a linear combination of the “other 

regressor”—the constant one that is multiplied by b1. 

• Collinearity (or multicollinearity) will be more of a problem in 

multiple regression. If it is extreme (or perfect), it means that we 

can’t calculate the slope estimates. 

o The above equations are the “ordinary least-squares” (OLS) coefficient 

estimators. 

• Method of maximum likelihood  

o Consider the joint probability density function of yi and xi, fi (yi, xi |β1, β2). The 

function is written is conditional on the coefficients β to make explicit that the 

joint distribution of y and x are affected by the parameters.  

 This function measures the probability density of any particular 

combination of y and x values, which can be loosely thought of as how 

probable that outcome is, given the parameter values. 

 For a given set of parameters, some observations of y and x are less likely 

than others. For example, if β1 = 0 and β2 < 0, then it is less likely that we 

would see observations where y > 0 when x > 0, than observations with 

y < 0. 

o The idea of maximum-likelihood estimation is to choose a set of parameters that 

makes the likelihood of observing the sample that we actually have as high as 

possible. 

o The likelihood function is just the joint density function turned on its head: 

( ) ( )1 2 1 2, | , , | , .i i i i i iL x y f x yβ β ≡ β β   

o If the observations are independent random draws from identical probability 

distributions (they are IID), then the overall sample density (likelihood) function 

is the product of the density (likelihood) function of the individual observations: 

 
( ) ( )

( ) ( )

1 1 2 2 1 2 1 2
1

1 2 1 1 2 2 1 2
1

, , , , , , | , , | ,

, | , , , , , , , | , .

N

n n i i i
i

n

n n i i i
i

f x y x y x y f x y

L x y x y x y L x y

=

=

β β = β β

β β = β β

∏

∏




 

o If the conditional probability distribution of e conditional on x is Gaussian 

(normal) with mean zero and variance σ2: 

 ( ) ( )
( )21

1 22
2

1 2 1 2 2

1
, | , , | ,

2

i iy x

i i i i i if x y L x y e

 − −β −β 
 σ β β = β β =

πσ
 

 Because of the exponential function, Gaussian likelihood functions are 

usually manipulated in logs. 
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• Note that because the log function is monotonic, maximizing the 

log-likelihood function is equivalent to maximizing the likelihood 

function itself. 

 For an individual observation: ( ) ( )22
212

1 1
ln ln 2

2 2i i iL y x= − πσ − − β − β
σ

 

 Aggregating over the sample: 

( ) ( )

( ) ( )

( ) ( )

1 2 1 2
11

22
1 22

1

22
1 22

1

ln , | , ln , | ,

1 1
ln 2

2 2

1
ln 2 .

2 2

N N

i i i i i i
ii

N

i i
i

N

i i
i

L x y L x y

y x

N
y x

==

=

=

β β = β β

 = − πσ − − β − β σ 

= − πσ − − β − β
σ

∏





 

o The only part of this expression that depends on β or on the sample is the final 

summation. Because of the negative sign, maximizing the likelihood function 

(with respect to β) is equivalent to minimizing the summation. 

 But this summation is just the sum of squared residuals that we 

minimized in OLS. 

o Thus, OLS is MLE if the distribution of e conditional on x is Gaussian with 

mean zero and constant variance σ2, and if the observations are IID. 

• Method of moments  

o Another general strategy for obtaining estimators is to set estimates of selected 

population moments equal to their sample counterparts. This is called the 

method of moments. 

o In order to employ the method of moments, we have to make some specific 

assumptions about the population/DGP moments. 

 Assume ( ) 0, .iE e i= ∀ This means that the population/DGP mean of the 

error term is zero. 

• Corresponding to this assumption about the population mean of e 

is the sample mean condition 
1

ˆ 0ie
N

= . Thus we set the 

sample mean to the value we have assumed for the population 

mean. 

 Assume ( )cov , 0x e = , which is equivalent to ( )( ) 0.i iE x E x e −  =   

• Corresponding to this assumption about the population 

covariance between the regressor and the error term is the sample 

covariance condition: ( )1
ˆ 0.i ix x e

N
− =  Again, we set the 

sample moment to the zero value that we have assumed for the 

population moment. 
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o Plugging the expression for the residual into the sample moment expressions 

above: 

 ( )1 2

1 2

1
0,

.

i iy b b x
N
b y b x

− − =

= −

  

 This is the same as the intercept estimate equation for the least-squares 

estimator above. 

 

( )( )

( )( )
( )( ) ( )( )

( )( )
( )

1 2

2 2

2

2 2

1
0,

0,

0,

.

i i i

i i i

i i i i

i i

i

x x y b b x
N

x x y y b x b x

x x y y b x x x x

x x y y
b

x x

− − − =

− − + − =

− − − − − =

− −
=

−



 




 

 This is exactly the same equation as for the OLS estimator. 

o Thus, if we assume that ( ) 0,iE e i= ∀  and ( )cov , 0x e =  in the population, then 

the OLS estimator can be derived by the method of moments as well. 

o (Note that both of these moment conditions follow from the extended 

assumption SR2 that E(e|x) = 0.) 

• Evaluating alternative estimators (not important for comparison here since all three are 

same, but are they any good?) 

o Desirable criteria 

 Unbiasedness: estimator is on average equal to the true value 

•  ( )ˆE β = β  

 Small variance: estimator is usually close to its expected value 

• ( ) ( )2ˆ ˆ ˆvar E E β = β − β  
 

 Small RMSE can balance variance with bias: 

• ( )2ˆ

RMSE MSE

MSE E

=

 ≡ β − β  

 

o We will talk about BLUE estimators as minimum variance within the class of 

unbiased estimators. 

Sampling distribution of OLS estimators 
• b1 and b2 are random variables: they are functions of the random variables y and e. 

o We can think of the probability distribution of b as occurring over repeated 

random samples from the underlying population or DGP. 
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• In many (most) cases, we cannot derive the distribution of an estimator theoretically, but 

must rely on Monte Carlo simulation to estimate it. (See below) 

o Because OLS estimator (under our assumptions) is linear, we can derive its 

distribution. 

• We can write the OLS slope estimator as 

( )( )

( )

( )( )

( )

( )( )( )

( )

( )( )( )

( )

( )

( )

1
2

2

1 2
1

2

1 2 1 2
1

2

2
1

2

1
2

2

1

1

1

1

1

1

1

1

1

1

N

i i
i

i

N

i i i
i

i

N

i i i
i

i

N

i i i
i

i

N

i i
i

i

y y x x
Nb

x x
N

x e y x x
N

x x
N

x e x x x
N

x x
N

x x e x x
N

x x
N

e x x
N

x x
N

=

=

=

=

=

− −
=

−

β + β + − −
=

−

β + β + − β + β −
=

−

β − + −
=

−

−
= β +

−











 The third step uses the property

 

1 2y x= β + β  , since the expected value of e is zero. 

• For now, we are assuming that x is non-random, as in a controlled experiment. 

o If x is fixed, then the only part of the formula above that is random is e. 

o The formula shows that the slope estimate is linear in e. 

o This means that if e is Gaussian, then the slope estimate will also be Gaussian. 

 Even if e is not Gaussian, the slope estimate will converge to a Gaussian 

distribution as long as some modest assumptions about its distribution 

are satisfied. 

o Because all the x variables are non-random, they can come outside when we take 

expectations, so  

( )
( )

( )

( ) ( )

( )
1 1

2 2 2 2
2 2

1 1

1 1

1 1

N N

i i i i
i i
N N

i i
i i

x x e x x E e
N NE b E

x x x x
N N

= =

= =

 − − 
 = β + = β + = β
 − −  

 

 
. 

o What about the variance of b2? 
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 We will do the details of the analytical work in matrix form because it’s 

easier 

 

( ) ( )

( ) ( )

( )

( )

2

2 2 2

2

1

2

1

2

2

1

var

1

1

.

N

i i
i

N

i
i

N

i
i

b E b

x x E e
NE

x x
N

x x

=

=

=

= − β

 − 
 =
 −  

=
σ=

−









 

 HGL equations 2.14 and 2.16 provide formulas for variance of b1 and the 

covariance between the coefficients: 

• ( )
( )

2

2 1
1

2

1

var

N

i
i

N

i
i

x
b

N x x

=

=

= σ
−




 

• ( )
( )

2
1 2

2

1

cov , 0N

i
i

x
b b

x x
=

−= σ <
−

 

• Note that the covariance between the slope and intercept 

estimators is negative: overestimating one will tend to cause us to 

underestimate the other 

 What determines the variance of b? 

• Smaller variance of error  more precise estimators 

• Larger number of observations  more precise estimators 

• More dispersion of observations around mean  more precise 

estimators 

 What do we know about the overall probability distribution of b? 

• If assumption SR6 is satisfied and e is normal, then b is also 

normal because it is a linear function of the e variables and linear 

functions of normally distributed variables are also normally 

distributed. 

• If assumption SR6 is not satisfied, then b converges to a normal 

distribution as N → ∞ provided some weak conditions on the 

distribution of e are satisfied. 

 These expressions are the true variance/covariance of the estimated coefficient 

vector. However, because we do not know σ2, it is not of practical use to us. We 
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need an estimator for σ2 in order to calculate a standard error of the coefficients: 

an estimate of their standard deviation. 

• The required estimate in the classical case is 2 2

1

1
ˆ

2

N

i
i

s e
N =

≡
−  . 

• We divide by N – 2 because this is the number of “degrees of 

freedom” in our regression. 

• Degrees of freedom are a very important issue in econometrics. It 

refers to how many data points are available in excess of the minimum 
number required to estimate the model. 

• In this case, it takes minimally two points to define a line, so the 

smallest possible number of observations for which we can fit a 

bivariate regression is 2. Any observations beyond 2 make it 

(generally) impossible to fit a line perfectly through all observations. 

Thus, N – 2 is the number of degrees of freedom in the sample. 

• We always divide sums of squared residuals by the number of degrees 

of freedom in order to get unbiased variance estimates. 

o For example, in calculating the sample variance, we use 

( )2

1

1
1

N

i
i

s z z
N =

= −
−   because there are N – 1 degrees of 

freedom left after using one to calculate the mean. 

o Here, we have two coefficients to estimate, not just one, so 

we divide by N – 2. 

• The standard error of each coefficient is the square root of the 

corresponding diagonal element of that estimated covariance matrix. 

• Note that the HGL text uses an alternative formula based on 

2 2

1

1
ˆ ˆ

N

i
i

e
N =

σ =  .  

o This estimator for σ2 is biased because there are only N – 2 

degrees of freedom in the N residuals—2 are used up in 

estimating the 2 β parameters. 

o In large samples they are equivalent. 

Introduction to Stata 
• Stata works on a dataset (.dta file) 

• Stata commands: 

o Enter at prompt 

o Choose from menu/windows 

o Enter into a do file for batch execution 

• The Stata screen 
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o Results window 

o Command window 

o Variables window 

o Review window 

o Properties window 

• Log files 

o Set one up so students can see it later 

• Opening a data set 

o Show data editor/browser 

• Commands to do statistical analysis 

o summarize 

o reg 

• Graphics commands 

o Use menus to get see all options without remembering how to type 

• Sample analysis: Reed Econ 201 grades 

• Dependent variable gpoints 
o Show summary statistics 
o Point out discrete distribution: Is this a problem? 

• Regression on single variable: hsgpa 
o Interpreting coefficients (note that intercept is automatically included: noint 

option) 
o Point out standard error, t statistic, p value, confident limits 
o Note missing observations 
o Show outreg using graderegs, se 

• Alternative: regress on irdr 
o Show how outreg adds columns 

 outreg using graderegs, se merge 
o Calculate predicted values with predict 

 predict gpahat 
 Graph actual and predicted vs. irdr 

o Display hypothetical predicted values with margins 
 margins , at(irdr=(5 4 3 2)) 

• Transformation: satc100 = satv100 + satm100 
o Regress on satc100 
o Compare N to hsgpa regression 

• Regression on dummy variable 
o Regress on female 
o Interpretation of coefficients 
o Category mean predictions: 

 margins female 
• Multiple regression demonstration 

o Reg gpoints irdr satv100 satm100 female 
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o Show outreg with multiple variables 
 outreg using graderegs , se merge 

o Add taking to regression and interpret 
o Use margins to isolate predictions of hypothetical individual variables with 

others at means 
 margins , at(irdr = (5 4 3 2)) atmeans 
 marginsplot 

Monte Carlo methods 
Based on HGL Appendix 2G 

• How do we evaluate an estimator such as OLS? 

o Under simple assumptions, we can sometimes calculate the estimator’s 

theoretical probability distribution. 

o We can often calculate the theoretical distribution to which the estimator 

converges in large samples even when we cannot calculate the small-sample 

distribution. 

o In general (and, in particular, when we cannot calculate the true distribution), we 

can simulate the model over thousands of samples to estimate its distribution. 

o The estimation of the probability distribution of an estimator through simulation 

is called “Monte Carlo simulation” and is an increasingly important tool in 

econometrics. 

• Consider simple Monte Carlo example: (MC Class Demo.dta) 

o Let’s suppose that we are working with a given, fixed N = 157.  

o We have fixed, given values of the x variable for all 157 observations. 

 Using HGL’s ex9-13.dta with advertising variable as x  

o We assume that the true population values of β1 and β2 are 10 and 3. 

 Close to estimated values for regression of sales on advertising 

o The true error term is IID normal with variance 0.09 (standard deviation 0.3) 

• To use Monte Carlo to simulate the distribution of the OLS estimators, we generate M 

replications of the sampling experiment:  

o M sets of 157 IID N(0, 0.09) simulated observations on e using random number 

generator 

o (We would generate sample values for x if it were not being taken as fixed.) 

o Calculate the M sets of 157 values of yi for each observation as β1 + β2xi + ei with 

known values of the parameters and x and simulated values of e. 

o Run M regressions for the M simulated samples, keeping the estimated values of 

interest (presumably 1β̂  and 2β̂ , but possibly also other values) 

o Look at distribution of the estimators over M replications to approximate the 

actual distribution 

 Mean 
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 Variance/standard deviation/standard error 

 Quantiles for use in inference 

o Demonstrate using Stata 

 Setup data 

• x is already in MC Class Demo.dta 

 Create do file 

• program olstest 

• g e=rnormal(0, 0.3) 

• g y=10 + 3*x+e 

• reg y x 

• drop e y 

• end 

 Load it into memory: run olstest 

 Run simulation with 5000 replications 

• simulate b=_b[x] , reps(5000): olstest 

 Show summary stats, histogram, centiles (2.5, 97.5) 

How good is the OLS estimator? 
• Is OLS the best estimator? Under what conditions? 

• Under “classical” regression assumptions SR1–SR5 (but not necessarily SR6) the Gauss-

Markov Theorem shows that the OLS estimator is BLUE. 

o Any other estimator that is unbiased and linear in e has higher variance than b. 

o Note that (5, 0) is an estimator with zero variance, but it is biased in the general 

case. 

• Violation of any of the SR1–SR5 assumptions usually means that there is a better 

estimator. 

Least-squares regression model in matrix notation 
(From Griffiths, Hill, and Judge, Section 5.4) 

• We can write the ith observation of the bivariate linear regression model as 

1 2 .i i iy x e= β + β +  

• Arranging the N observations vertically gives us N such equations: 

1 1 2 1 1

2 1 2 2 2

1 2

,

,

.N N N

y x e

y x e

y x e

= β + β +
= β + β +

= β + β +
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• This is a system of linear equations that can be conveniently rewritten in matrix form. 

There is no real need for the matrix representation with only one regressor because the 

equations are simple, but when we add regressors the matrix notation is more useful. 

o Let y be an N × 1 column vector: 

1

2 .

N

y

y

y

 
 
 =
 
 
 

y


 

o Let X be an N × 2 matrix: 

1

2

1

1

1 N

x

x

x

 
 
 =
 
 
 

X


. 

o β is a 2 × 1 column vector of coefficients: 

1

2

.
β 

=  β 
β  

o And e is an N × 1 vector of the error terms: 

1

2 .

N

e

e

e

 
 
 =
 
 
 

e


 

o Then = +y X eβ  expresses the system of N equations very compactly. 

o (Write out matrices and show how multiplication works for single observation.) 

• In matrix notation, ˆ = −e y Xb  is the vector of residuals. 

• Summing squares of the elements of a column vector in matrix notation is just the inner 

product: 2

1

ˆ ˆˆ ,
N

i
i

e
=

′= e e  where prime denotes matrix transpose. Thus we want to minimize 

this expression for least squares. 

o 
( ) ( )
( )( )

ˆ ˆ

2 .

′′ = − −
′ ′ ′= − −

′ ′ ′ ′ ′= − +

e e y Xb y Xb

y b X y Xb

y y b X y b X Xb

 

o Differentiating with respect to the coefficient vector and setting to zero yields 

2 2 ,′ ′− + =X y X Xb 0  or .′ ′=X Xb X y  

o Pre-multiplying by the inverse of X′X yields the OLS coefficient formula: 

( ) 1
.

−′ ′=b X X X y  (This is one of the few formulas that you need to memorize.) 
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• Note symmetry between matrix formula and scalar formula. X′y is the sum of the cross 

product of the two variables and X′X is the sum of squares of the regressor. The former is 

in the numerator (and not inverted) and the latter is in the denominator (and inverted). 

• In matrix notation, we can express our estimator in terms of e as 

( )
( ) ( )
( ) ( )

( )

1

1

1 1

1
.

−

−

− −

−

′ ′=

′ ′= +

′ ′ ′ ′= +

′ ′= +

b X X X y

X X X X e

X X X X X X X e

X X X e

β
β

β

 

o When x is non-stochastic, the covariance matrix of the coefficient estimator is 

also easy to compute under the OLS assumptions. 

 Covariance matrices: The covariance of a vector random variable is a 

matrix with variances on the diagonal and covariances on the off-

diagonals. For an M × 1 vector random variable z, the covariance matrix 

is to the following outer product: 

( )( )( )
( ) ( )( ) ( )( )

( )( ) ( ) ( )( )

( )( ) ( )( ) ( )

2

1 1 2 1

2

1 2 2 2

2

1 2

cov( )

.

M

M

M M M

E E E

E z Ez E z Ez z Ez E z Ez z Ez

E z Ez z Ez E z Ez E z Ez z Ez

E z Ez z Ez E z Ez z Ez E z Ez

′= − −

 − − − − −
 
 − − − − −=  
 
 − − − − − 

z z z z z




   


 

 In our regression model, if e is IID with mean zero and variance σ2, then 

Ee = 0 and ( ) ( ) 2cov ,NE ′= = σe ee I  with IN being the order-N identity 

matrix. 

 We can then compute the covariance matrix of the (unbiased) estimator 

as 

( ) ( )( )

( )( ) ( )( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1 1

1 1

1 1

1 1 12 2

cov

.

E

E

E

E

− −

− −

− −

− − −

 ′= − −  
 ′′ ′ ′ ′=  
 
 ′ ′ ′ ′=  

′ ′ ′ ′=

′ ′ ′ ′= σ = σ

b b b

X X X e X X X e

X X X ee X X X

X X X ee X X X

X X X X X X X X

β β

 

• What happens to ( )var ib  as N gets large? Summations in X′X 

have additional terms, so they get larger. This means that inverse 
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matrix gets “smaller” and variance decreases: more observations 

implies more accurate estimators. 

• Note that variance also increases as the variance of the error term 

goes up. More imprecise fit implies less precise coefficient 

estimates. 

 Our estimated covariance matrix of the coefficients is then 

( ) 12s
−′X X .  

• The (2, 2) element of this matrix is 

( ) ( )

2

2 1

2 2

1 1

ˆ
1 1

2

N

i
i

N N

i i
i i

e
s

Nx x x x

=

= =

=
−− −



 
. 

• This is the formula we calculated in class for the scalar system. 

• Thus, to summarize, when the classical assumptions hold and e is normally distributed, 

( )( )12~ ,N
−′σb X Xβ . 

Asymptotic properties of OLS bivariate regression estimator 
(Based on S&W, Chapter 17. Not covered in class Spring 2014) 

 

• Convergence in probability (probability limits) 

o Assume that S1, S2, …, SN, … is a sequence of random variables.  

 In practice, they are going to be estimators based on 1, 2, …, N 

observations. 

o p
NS ⎯⎯→μ  if and only if lim Pr 0NN

S
→∞

 − μ ≥ δ =   for any δ > 0. Thus, for any 

small value of δ, we can make the probability that SN is further from μ than δ 

arbitrarily small by choosing N large enough. 

o If p
NS ⎯⎯→μ , then we can write plim SN = μ. 

o This means that the entire probability distribution of SN converges on the value μ 

as N gets large. 

o Estimators that converge in probability to the true parameter value are called 

consistent estimators. 

• Convergence in distribution 

o If the sequence of random variables {SN} has cumulative probability distributions 

F1, F2, …, FN, …, then d
NS S⎯⎯→  if and only if ( ) ( )lim ,NN

F t F t
→∞

=  for all t at 

which F is continuous. 

o If a sequence of random variables converges in distribution to the normal 

distribution, it is called asymptotically normal. 
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• Properties of probability limits and convergence in distribution 

o Probability limits are very forgiving: Slutsky’s Theorem states that 

 plim (SN + RN) = plim SN + plim RN 

 plim (SNRN) = plim SN · plim RN 

 plim (SN / RN) = plim SN / plim RN 

o The continuous-mapping theorem gives us 

 For continuous functions g, plim g(SN) = g(plim SN) 

 And if d
NS S⎯⎯→ , then ( ) ( )d

Ng S g S⎯⎯→ . 

o Further, we can combine probability limits and convergence in distribution to get 

 If plim aN = a and d
NS S⎯⎯→ , then 

• d
N Na S aS⎯⎯→  

• d
N Na S a S± ⎯⎯→ ±  

• / /d
N NS a S a⎯⎯→  

 These are very useful since it means that asymptotically we can treat any 

consistent estimator as a constant equal to the true value. 

• Central limit theorems 

o There is a variety with slightly different conditions. 

o Basic result: If {SN} is a sequence of estimators of μ, then for a wide variety of 

underlying distributions, ( ) ( )20, ,d
NN S N− μ ⎯⎯→ σ  where σ2 is the variance of 

the underlying statistic. 

• Applying asymptotic theory to the OLS model 

o Under the more general conditions than the ones that we have typically assumed 

(including, specifically, the finite kurtosis assumption, but not the 

homoskedasticity assumption or the assumption of fixed regressors), the OLS 

estimator satisfies the conditions for consistency and asymptotic normality. 

o ( ) ( )
( )2 2 2

var ( )
0, .

var

i id

i

x E x e
N b N

x

  −   − β ⎯⎯→
    

 This is general case with 

heteroskedasticity. 

 With homoskedasticity, the variable reduces to the usual formula:  

( )
( )

2

2 2 20, .
var

d

i

N b N
x

 σ − β ⎯⎯→
    

 

o 
2 2

2 2ˆplim ,b bσ = σ  as proven in Section 17.3. 

o 
( ) ( )2 2

2

0,1 .
. .

db
t N

s e b
− β= ⎯⎯→  

• Choice for t statistic: 
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o If homoskedastic, normal error term, then exact distribution is tN–2. 

o If heteroskedastic or non-normal error (with finite 4th moment), then exact 

distribution is unknown, but asymptotic distribution is normal 

o Which is more reasonable for any given application? 

Linearity and nonlinearity 
• The OLS estimator is a linear estimator because b is linear in e (which is because y is 

linear in β), not because y is linear in x. 

• OLS can easily handle nonlinear relationships between y and x. 

o lny = β1 + β2x 

o y = β1 + β2x2 

o etc. 

• Dummy (indicator) variables take the value zero or one. 

o Example: MALE = 1 if male and 0 if female. 

o 1 2i i iy MALE e= β + β +  

 For females, [ ] 1|E y MALE = β  

 For males, [ ] 1 2|E y MALE = β + β  

 Thus, β2 is the difference between the expected value of males and 

females. 


