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Section 14 Limited Dependent Variables  

What is a limited dependent variable? 
• Our standard assumption of an error term that is normally distributed conditional on the 

regressors implies that the dependent variable can be (with positive probability) any real 

number, positive or negative.  

• Limited dependent variables are dependent variables that have limited ranges: usually 

either discontinuous or range bounded. There are many models of LDVs based on what 

the limitations are: 

o 0/1 dependent variables (dummies) by probit and logit 

o Ordered dependent variables by ordered probit and logit 

o Categorical dependent variables (with more than two categories) by multinomial 

logit 

o Truncated dependent variables by Heckman’s procedure 

o Censored dependent variables by tobit 

o Count (integer) dependent variables by Poisson regression 

o Hazard (length) dependent variables by hazard models 

• Because of the limited ranges of the dependent variable, the standard additive normal 

error is not tenable for these models. Instead we must model the probability of various 

discrete outcomes. 

• LDV models are usually estimated by maximum likelihood, given the assumed 

distribution of the conditional probabilities of various outcomes. 

Binary dependent variables 

• For binary dependent variable: ( ) [ ]| Pr 1| .i i i iE y x y x= =  

• Linear probability model: using OLS with a binary dependent variable 

o We can model, as usual in OLS, ( ) 1 2 2| .i i i K KiE y x x x= β + β + + β  

o Show graph of [ ]Pr 1|i iy x=  as linear function of xβ. 

o However, we can’t just stick a normal error term onto this function. If we write 

( ) 1 2 2| ,i i i i i K Ki iy E y x e x x e= + = β + β + + β +  then since yi is either zero or one, 

ei can only take on the values ( )1 2 2i K Kix x1− β + β + + β  and 

( )1 2 2i K Kix x0 − β + β + + β . 
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o  If ( ) [ ] 1 2 2| Pr 1 ,i i i i K Ki iE y x y x x x= = = β + β + + β ≡ β  then the error term must 

have a conditional Bernoulli distribution with ( )Pr ,i i ie x x =1− β  = β   and 

( ) ( )Pr 1 .i i ie x x = − β  = − β   

o Sums of random variables with the Bernoulli distribution do converge to normal, 

so the coefficient estimates will still be asymptotically normal. 

o However, the immediate problem with this is that the linear function 

1 2 2i K Kix xβ + β + + β  will not lie in the range [0, 1] that is required for 

probabilities for all values of x.  

o This problem is mirrored by the fact that the predicted values of y for some 

observations is likely to be outside [0, 1], which does not make sense as a 

prediction of Pr[yi = 1| x]. 

 Show diagram of straight-line prediction of probability and possibility of 

predictions outside of [0, 1]. 

o Finally, there is heteroskedasticity in the model as the variance of the Bernoulli 

error term is ( ) [ ]1 ,i ix x− β  − β   which varies with x. 

 This is easily accommodated with robust standard errors. 

o Bottom line on linear probability model: 

 Simple 

 Probably OK as long as x is close to sample means, so that predicted Pr[yi 

= 1 | x] stays in [0, 1]. 

 Not the best model when the dependent variable is binary. 

• Logit (logistic) and probit regression 

o These are the standard models when the dependent variable is binary. They differ 

only in the assumed distribution of the error term and are in practice virtually 

equivalent. 

o Structure of the models: ( ) [ ]1 2 2| Pr[ 1| ] ,i i i K KiE y x y x G x x= = = β + β + + β  

where G is a cumulative probability function that is either 

 Logistic: ( ) ( ) 1
1 1

z

z z

e
G z z

e e−= Λ = =
+ +

 for the logit model or 

 Normal: ( ) ( ) ( )
21

21

2

z z

G z z d e d
− ζ

−∞ −∞

= Φ = φ ζ ζ = ζ
π   for probit. 

o Draw graph of cumulative distribution function and show interpretation of z and 

implied probability of y = 1. 

 Compare to linear probability model’s assumption of linear relationship 

between z and probability. 

 Show how actual data points would look on this graph. 

o Estimation of probit and logit models: 

 These models are always estimated by (nonlinear) maximum likelihood.  
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 The (discrete) density function of yi conditional on xi is 

( ) ( ) ( ) ( )1
| , 1 , 0,1,i iy y

i i i i if y x G x G x y
−

β =  β   − β  =     which can be 

rewritten less compactly (but more intuitively) as 

[ ] ( )
[ ] ( )

Pr 1| , ,

Pr 0| , 1 .

i i i

i i i

y x G x

y x G x

= β = β

= β = − β
 

 The likelihood function, assuming that all observations in the sample are 

IID, is ( ) ( ) ( ) ( )1

1

, 1 .i i
N

y y

i i
i

L y x G x G x
−

=

β; =  β   − β    ∏  

 The likelihood maximization is always done in terms of the log-

likelihood function: 

( ) ( ) ( ) ( )
1

ln , ln 1 ln 1 .
N

i i i i
i

L y x y G x y G x
=

 β; =  β  + −  − β       

 This function can be evaluated for any choice of β. By searching over the 

parameter space for the value of β that maximizes this value, we can 

calculate the logit or probit coefficient estimator as the β that leads to the 

highest value of the likelihood function. 

 Maximum likelihood estimators are known to be consistent, 

asymptotically normal, and asymptotically efficient under broadly 

applicable conditions. 

 Calculating the standard errors of the coefficient estimators is 

complicated, but is handled by Stata. The asymptotic covariance matrix 

of any MLE is the inverse of the “information matrix”: 

( ) ( ) ( )
1

2
1 ln ; ,ˆcov .

L Y X
I E

−
−   ∂ β

β =  β  = −    ′∂β∂β   
 The information matrix 

involves the expected values of the matrix of second partial derivatives of 

the log-likelihood function with respect to the β parameters. It can be 

approximated for the sample numerically to get an estimated covariance 

matrix for the parameter vector. 

 Hypothesis tests in this, as in any ML model, are easiest as likelihood 

ratio tests: [ ] 22 ln ln ~ .u r qL L− χ  Stata test command also works and does 

a Wald test: ( ) ( )

ˆ
~

ˆ
j

N K

j

c
t t

se
−

β −
=

β
 where the t distribution is asymptotic. 

 Goodness of fit: 

• Fraction predicted correctly:  

o If you take the prediction of yi to be 1 if ( )ˆ 0.5iG x β >  and 

zero otherwise, then you get a prediction of zero or one 
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for each yi. The fraction predicted correctly is just what it 

sounds like. 

• Pseudo-R2: 

o In the spirit of the usual R2, this is 

( )
( ) ( )

ˆln ; ,
1 , , 0, 0, , 0 .

ln ; , Z
Z

L x y
y

L x y
′− ≡

β
ββ   

o [Note: This formula is very strange and looks upside 

down, but it’s not. The reason it looks weird is because 

we are taking the ratio of logs (we usually subtract them). 

Because (with a discrete dependent variable) the 

likelihood function is a product of probabilities, it is 

always less than one. This means that the logs are 

negative, with the denominator being more negative than 

the numerator. This, an improvement in fit increases the 

likelihood in the numerator by decreasing its absolute 

value, making the ratio smaller and the R2 value closer to 

one.] 

o This ratio is the likelihood function with the best 

parameter estimate divided by the likelihood function if 

we just predict each y by the sample proportion of y 

values that are one. 

o Interpretation of β in probit and logit regressions: 

 In the usual OLS model, 
[ ]|i i

j
j

E y x

x

∂
β =

∂
, which is what we are 

interested in knowing.  

 In probit or logit model, j
j

z
x

∂β =
∂

 is not in useful units because z has no 

direct interpretation. 

• Use graph to demonstrate β as horizontal movement 

 What we’re interested in knowing (for a continuous regressor x) is 

[ ] [ ] ( ) ( )Pr 1 Pr 1
,j j

j j

y d y z
G z g z

x dz x

∂ = = ∂ ′= = β = β
∂ ∂

 where g is the 

probability density function associated with the cumulative distribution 

function G. 

• Graphical interpretation: β measures horizontal movement due to 

unit change in x; G′ (z) measures effect of unit horizontal 

movement on probability of y = 1. 



~ 150 ~ 

 

• They have the same sign, so tests of β = 0 are equivalent to tests 

of 
[ ]Pr 1

0
j

y

x

∂ =
=

∂
. 

• For logit, ( )
( )

( ) ( ) ( ) ( )2 1 1 .
1

z

z

e
g z z z G z G z

e
= = Λ  − Λ  =  −    

+
 

o The results of the logit model is often expressed in terms 

of odds ratios: 

[ ] ( )

( ) ( )
( ) ( ) ( )( )

( )
( )

[ ]
[ ]

Pr 1|
1

1

1

Pr 1|
"odds ratio"

1 Pr 0|

i

i

i i

i i i

i

x

i i i x

x x
i

x x x
i i i

i iix

i i i

e
y x x

e

e x e

x e x e x e

y xx
e

x y x

β

β

β β

β β β

β

= = Λ β =
+

+ Λ β =

Λ β = − Λ β = − Λ β

=Λ β
= = =

− Λ β =

 

o βj is the effect of xj on the “log odds ratio” 

• For probit, ( ) ( )
21

2
1

.
2

z
g z z e

−
= φ =

π
 

• Because they are density functions, g(z) ≥ 0 for all z, so the 

“partial effects” 
[ ]Pr 1

j

y

x

∂ =
∂

 have the same sign as βj. 

• For dummy regressors, we are interested in 

Pr 1| 1 Pr 1| 0 .j jy x y x   = = − = =     

• In Stata: probit reports the coefficients and dprobit reports the 

partial effects. The regression is identical for each. 

o Note that the partial effects depend on z and thus on x. 

You can specify the values at which to evaluate the partial 

effects in dprobit with the default being at the means. 

o Partial effects of dummy variables are reported (by 

default) as difference in probabilities above, with other 

variables at means. 

• In Stata: logit reports coefficients and logistic reports the “odds-

ratio” 
ˆ

jeβ . (This is really the proportional effect of the variable on 

the odds ratio, not the odds ratio itself.) 

o If xji increases by one, ixe β  increases to ,i j jix xe e eβ+β ββ=  so 
ˆ

jeβ  measures the estimated proportion by which a one-

unit change in xji changes the odds ratio. 

o Interpretation can be tricky: 
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 All eβ values are positive. 

 A zero effect means that β = 0 and eβ = 1. 

 A variable that reduces the odds ratio has a β < 1. 

 A variable that increases the odds ratio has a 

β > 1. 

 Example: If eβj = 2 and the initial probability p of 

y = 1 for this observation is .2, (so the initial odds-

ratio p/(1 – p) is (.2) / (.8) = 0.25), then a one-unit 

increase in xj  multiplies the odds ratio by eβj = 2, 

making it 0.5, which means that the probability of 

y = 1 has increased from 0.2 to 0.333 = 0.5/(1 + 

0.5). 

 If we do the same example for an observation 

with an initial p = 0.5, then the initial odds ratio is 

1, the unit increase in xj multiplies it by 2, making 

the new odds ratio 2, and thus the probability has 

increased from 0.5 to 2/(1 + 2) = 0.667. 

o Reliability of probit and logit estimators 

 Omitted-variable bias 

• This is more of a problem in probit and logit models because a 

coefficient of an included variable can be inconsistent even when 

it is uncorrelated with the omitted variable 

 Heteroskedasticity 

• Again, more of a problem in probit and logit because the standard 

MLE based on an assumption of homoskedasticity is 

inconsistent. 

• You can use the White robust estimator for the covariance 

(“robust standard errors”), but you are calculating a valid 

standard error for a coefficient that does not converge to the true 

parameter value, so it is of  less utility than in OLS, 

 How to deal with these issues? 

• Be careful about omitted variables 

• Try to specify the model in a scaled way that makes variance as 

constant as possible  

Discrete-choice dependent variables 
• What if there are more than two choices?  
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o Instead of the dependent variable being whether someone attends Reed or not, it 

could be whether someone attends Reed (y = 3), attends another private college 

(2), attends a public college (1), or doesn’t attend college at all (y = 0). 

o This would be four choices rather than two. 

o This is an “unordered-choice model:” There is no obvious order to these choices. 

If we define y as above and say that changes in characteristics of the individual 

(not of the choices) x (say, higher SAT) that make y more likely to move from 0 

to 1, we can’t also be confident that these changes in x are more likely to make y 

move from 1 to 2 or from 2 to 3. 

• Multinomial (polytomous) logit model (Greene 6/e, section 23.11) 

o [ ]
1

Pr | ,
i j

i m

x

i i M
x

m

e
y j x

e

β

β

=

= =


 where there are M distinct choices. This model has 

M(k  + 1) β parameters, but only (M – 1)(k + 1) of them are unique because the 

sum of the probabilities must be one. (If an increase in family income raises the 

probabilities that you will choose y = 2, 3, and 4, it must lower the probability of 

choosing y = 1 by an equivalent amount. Thus, βi, 1 can be determined from βi, 2, 

βi, 3, and βi, 4. Where the second subscript refers to the choice and the first to the 

independent variable.) We usually normalize by setting the vector β1 = 0, which 

makes the numerator of the probability fraction 1 for choice 1. 

o In the multinomial logit model, 
[ ]
[ ]

Pr |
ln .

Pr 1|
i i

i j
i i

y j x
x

y x

 =
= β  = 

 The coefficients thus 

can be interpreted as the effect of x on the log odds ratio. 

o Independence of irrelevant alternatives assumption is implicit in multinomial 

logit model 

 It shouldn’t matter for the coefficients of the attending-Reed equation 

whether one adds attending Lewis & Clark as a special case of attending 

a private college (making 5 alternatives) or not 

 This assumption may not be reasonable in some cases, making the model 

inappropriate. 

o Multinomial logit models can be estimated by maximum likelihood methods. In 

Stata, use mlogit. 

• Related models: 

o Conditional logit model: The x variables relate to properties of the choices 

instead of or in addition to the individual. (Not clogit in Stata; that’s something 

else.) 

o Nested logit model: Decisions are nested. For example, decision whether to 

attend college, then if attending whether to attend Reed, another private college, 

or a public. In Stata, use nlogit. 
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o Multinomial probit: Same thing with normal rather than logistic function. Very 

time-consuming to estimate, so it’s not used often. 

Ordered dependent variables 
• Many variables are ordinal in nature: we know that 4 is bigger than 3 and that 3 is bigger 

than 2, but we don’t know the 4 is the same amount bigger than 3 as 3 is bigger than 2. 

o Examples would include bond ratings, opinion-survey responses, academic 

actions, and perhaps grades and SAT scores. 

• We can think of the ordinal dependent variable y as representing levels of the outcomes 

of some underlying latent variable y*. 

o We assume that *
i i iy x e= β + , and that we observe the ordinal choice yi: 

*
1

*
1 2

*
2 3

*
1

1 if ,

2 if ,

3 if ,

if .

i

i

i i

M i

y

y

y y

M y−

 ≤ μ


μ < ≤ μ
= μ < ≤ μ


 μ <


 

o If the error term is normal, then we can use ordered probit to estimate the β 

vector and the thresholds μ corresponding to the different levels of the variables. 

o Ordered logit is used when the error term follows the logistic distribution. 

o Ordered probit/logit involves estimating the β vector and the threshold values μ1 

through μM – 1 by maximum likelihood. 

o If we normalize the model to give the error term unit variance (divide y and x by 

the standard deviation), then we have 

[ ] ( )
[ ] ( ) ( )
[ ] ( ) ( )

[ ] ( )

1

2 1

3 2

1

Pr 1|

Pr 2|

Pr 3|

Pr | 1 .

i i i

i i i i

i i i i

i i M i

y x x

y x x x

y x x x

y M x x−

= = Φ μ − β

= = Φ μ − β − Φ μ − β

= = Φ μ − β − Φ μ − β

= = − Φ μ − β


 

o The likelihood function is ( ) ( ) [ ]
1

, ; , Pr | , ,
M

i i i
m

L y x I y m y m x
=

β μ = = = ;β μ∏  where 

I(yi = m) is an indicator function that is one if the condition is true and the 

probability is given by the formulas above. The likelihood function is maximized 

by searching over alternative values of β and μ to find those that maximize. 
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o The most common alternative is the negative binomial regression model, which 

is implemented as nbreg in Stata. 

Tobit, censored, and truncated regression models 
• These three models are very easy to confuse! 

o All involve situations where we have no observations from some region of the 

(usually normal) distribution. 

o Example: Sometimes we have corner solutions in economic decisions: many 

people choose to consume zero of many commodities. (This is the tobit model.) 

o Example: Sometimes surveys are “top-coded” with the maximum response being 

50,001 or something like that. (This is censored regression.) 

o Example: If the dependent variable is duration until death of patients after 

treatment, some patients will not yet have died. (Another censored regression.) 

o Example: Some events sell out, meaning that the observed values of demand are 

censored at the site capacity. (Yet another censored regression.) 

o Example: Sample consists only of people with values of y below a limit c. (This is 

truncated regression model.) 

• Tobit estimator for corner solutions 

o Suppose that some finite fraction α of observations choose zero, but those 

choosing positive quantities follow the remainder of the normal distribution 

(lopping off the left-end α of probability). 

o Why can’t we just use OLS? 

 Like linear probability model, we ignore restrictions on the distribution of 

e and we predict values < 0. 

o Why can’t we just use the observations with yi  > 0? 

 This would imply selection on e because we’d be more likely to eliminate 

observations with e < 0. 

o Why can’t we use ln(y)? 

 Observations with y = 0 would have ln(y) = –∞. 

o We can model this with a latent variable *
1 2i i iy x e= β + β +  as a latent underlying 

variable with a normal distribution and 
* *,  if 0,

0, otherwise
i i

i

y y
y

 ≥= 


 as the observed 

outcome. 

 This variable has a censored distribution with finite probability of a zero 

outcome but otherwise normally distributed over the positive values. 
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 The conditional density of y is 

( ) 1
| i

i

y x
f y x

− β = φ σ σ 
 for y > 0, and 

[ ] ( )Pr 0| 1 / .i iy x x= = − Φ β σ  

 This density is the basis for the tobit estimator of the vector β. 

• Tobit maximizes (over β, σ) the log-likelihood function: 

( )
: 0 : 0

1
ln , ; , ln 1 ln

i i

i i i

i y i y

x y x
L y x

= >

   β − β   β σ = − Φ + φ      σ σ σ      
   

 The limit value (zero here, but it could be some value c) must be 

specified. 

 Can also have distributions that are censored above, or both above and 

below (perhaps the share of merlot in total wine consumption), where 

some people choose zero and some choose one). 

o Interpreting tobit coefficients 

 There are two expected values of interest in the tobit model: 

• “Conditional (on yi > 0) expectations” 

( ) [ ]| | 0 | 0,i i i i i iE y x y E y y x >  = >   

o Draw graph showing censorship at 0 and density function 

over yi > 0 = ( ) ( )
( )

| 0 .
1

i
i i

i

y
f y y

y

φ
> =

− Φ
 

o Remarkable and useful property of standard normal 

distribution: [ ] ( )
( )

| .
1

c
E z z c

c

φ
> =

− Φ
 

o yi  > 0 iff ei > –xi β and ei is (by assumption) distributed 

normally with mean 0 and variance σ2. Thus ei/σ is 

standard normal and 
( )

( )
.

1
i i ce e

E c
c

φ 
> = σ σ − Φ 

 

o Conditional on x, E(xβ) = xβ, so 

( ) ( )| 0, |

,

i i i i i i i i

i i i
i i

i

i
i

E y y x x E e e x x

e e x
x E x

x

x
x

> = β + > − β, 

 β
= β + σ > − ,  σ σ σ 

β φ σ = β + σ
β Φ  σ 

 

where we use the properties that φ(–z) = φ(z) and 1 – Φ(–z) 

= Φ(z). 
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o We define the inverse Mills ratio as ( ) ( )
( )

.
c

c
c

φ
λ =

Φ
 

o Then ( )| 0, i
i i i i

x
E y y x x

β > = β + σλ  σ 
 is the “conditional 

expectation” of y given that y is positive. 

• “Unconditional (on y > 0) expectation” (which is still 

conditional on x) [ ]|i iE y x : 

o 

[ ] [ ] [ ] [ ]
[ ] [ ]

| 0 Pr 0| | 0, Pr 0|

| 0, Pr 0|

Pr

.

i i i i i i i i i

i i i i i

i i i
i

i

i
i

i

i i
i

E y x y x E y y x y x

E y y x y x

x e x
x

x
x

x
x

x x
x

= ⋅ = + > ⋅ >

= > ⋅ >

 β − β   = β + σλ ⋅ >    σ σ σ    
 β φ   βσ    = β + σ Φ β σ    Φ  σ  

β β   = Φ β + σφ   σ σ   
 

 Interpretation of βj? 

• In the usual OLS model, 
[ ]|

.i i
j

j

E y x

x

∂
β =

∂
 

• Here,  

[ ] ( )
( )

( )

( )
( )

| 0, / /

/

/
.

/

i i i i i
j

j i j

i
j j

i

E y y x x x

x x x

x

x

∂ > ∂λ β σ ∂ β σ
= β + σ

∂ ∂ β σ

∂λ β σ
= β + β

∂ β σ

 

o By quotient rule, 
( ) ( ) ( ) ( ) ( )

( ) 2 .
c c c c c

c c

′ ′∂λ Φ φ − φ Φ
=

∂ Φ  
 

o But Φ′(c) = φ(c) by definition and using the definition of 

the normal density function, φ′(c) = –c φ(c), so 

( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( )

2

2

2

.

c c c cc

c c

c c c

c c c

− Φ φ − φ ∂λ  =
∂ Φ  

= − λ − λ  
= −λ  + λ  
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o Therefore, 

[ ]| 0,
.i i i i i i

j
j

E y y x x x x
x

∂ >   β β β   = β 1− λ + λ     ∂ σ σ σ     
 

 The expression in braces is between 0 and 1, so 

the effect of xj on the conditional expectation of y 

is of the same sign as βj but smaller magnitude. 

 Testing βj = 0 is a valid test for the partial effect 

being zero. 

• Given that [ ] [ ] [ ]| | 0, Pr 0| ,i i i i i i iE y x E y y x y x= > ⋅ >

[ ] [ ] [ ]

[ ] [ ]

| | 0,
Pr 0|

Pr 0|
| 0, .

i i i i i
i i

j j

i i
i i i

j

E y x E y y x
y x

x x

y x
E y y x

x

∂ ∂ >
= ⋅ >

∂ ∂

∂ >
+ ⋅ >

∂

 

o [ ]Pr 0|
.

i

ji i i

j j

x
y x x

x

β ∂Φ   β∂ > βσ   = = φ ∂ ∂ξ σ σ 
 

o 
[ ]| 0,

.i i i i i i
j

j

E y y x x x x
x

∂ >   β β β   = β 1− λ + λ     ∂ σ σ σ     
 

o So (with all Φ, φ, and λ functions evaluated at xiβ/σ) 

[ ] ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

|

.

ji i i
j i

j

i i
j

i
j

E y x x
x

x

x x

x

β∂  β = β Φ 1− λ + λ + φ  β + σλ     ∂ σ σ  

 β β   = β Φ − φ + λ + φ + λ    σ σ    
β = β Φ σ 

 

o Doing tobit estimation in Stata 

 tobit depvar indvars , ll(0) does tobit with zero lower censorship 

• ul( ) option specifies possible upper point of censorship 

 After estimation, can use the predict command to generate some useful 

series: 

• predict , pr(0, .) gives the predicted probability that each 

observation is not censored, [ ]Pr 0| .i
i i

X
Y X

β > = Φ  σ 
 

• predict , e(0, .) gives the predicted value of each observation 

conditional on not being censored, ( )| 0,i i iE Y Y X>  
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• predict , ystar(0, .) gives the unconditional predicted value of each 

observation ( )|i iE y x . 

 New margins command does what used to be done by mfx: mfx 

compute, predict( ) calculates the marginal effects of each variable on the 

item specified in the predict option: 

• mfx compute, predict (pr(0,.)) gives the marginal effects of each 

variable on the probability of not being censored: 
[ ]Pr 0|i i

j

y x

x

∂ >
∂

. 

• mfx compute, predict(e(0,.)) gives the marginal effects on the 

expectation conditional on non-censorship: 
[ ]| 0,

.i i i

j

E y y x

x

∂ >
∂

 

• mfx compute, predict (ystar(0,.)) gives the marginal effects of 

each variable on the unconditional expectation of y: 
[ ]|i i

j

E y x

x

∂
∂

. 

• In mfx, the default is to evaluate at the means of the x variables. 

You can override this with the at( ) option (listing chosen values 

of all variables in order). 

• Censored regression (top-coding problems, unexpired duration models, etc.) 

o We have data on the x variables for all observations, but have no observations on 

y for those at one end (or both ends) of the distribution. 

 If y > c, then we observe c. 

o Let ,i i iy x e= β +  where ei is homoskedastic normal. We don’t observe y but 

instead observe ( )min , ,i i iw y c=  where ci is a known constant that can vary with 

i. 

o Note difference from tobit model: In tobit a finite fraction of people chose the 

limit value. Here they chose something continuous outside the limit but we 

simply do not observe it. 

 This means that we don’t have to model the censorship as part of the 

choice, rather only account for it in the estimation based on our flawed 

data. 

o For uncensored observations, we have the usual distribution of y: 

( ) ( ) 1
| | .i i

i i i i

y x
f w x f y x

− β = = φ σ σ 
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o For censored observations,  

[ ] [ ]
[ ]

Pr | Pr |

Pr |

1 .

i i i i i i

i i i i

i i

w c x y c x

e c x x

c x

= = ≥

= ≥ − β

− β = − Φ σ 

 

o So likelihood function is same as the tobit model, as is estimation. 

o However, in the censored regression case we don’t need to worry about people 

choosing the limit value, we only worry about observing it. Thus, βj is the effect of 

xj on y, period. We don’t need to hassle with the marginal effects calculations as 

in the tobit model. Consequently, we can use the Stata tobit command and just 

neglect the mfx command afterward. 

• Truncated regression models 

o Truncated regression differs from censored regression in that neither y nor x is 

observed for observations beyond the limit point. Thus, we cannot use these data 

points at all, making the tobit estimator impossible to calculate. 

 This is a sample problem again, but truncation of the sample (all 

variables) is more severe than censorship of a single variable because we 

have less (no) information about the missing observations. 

 In the censored model, we can use the x values of the censored 

observations to determine what kinds of observations will be in the 

censored range. In the truncated model, we don’t have that information. 

o Truncated regression model 

 0

2

,

| ~ (0, ).
i i i

i e

y x e

e x N

= β + β +

σ
 

 IID assumption is violated: 

• We observe (xi, yi) only if yi  ≥ ci, where the truncation threshold 

can vary with i and can depend on xi. 

 The conditional density function of yi  given that it is in the sample (> ci) 

is ( ) ( )
( )

2

2

| , ,
| , , .

| , ,

i i

i i e e
i i i i i

i i e i i

e

y x
f y x

g y x c y c
F c x c x

 − βφ β σ σ = = ≤
 β σ − βΦ σ 

 

 The Φ function in the denominator is the probability that observation i is 

not censored, given xi and ci. We divide by this to redistribute the 

truncated amount of probability over the remaining density function. 

 The log-likelihood function is just the log of this density summed over all 

the observations in the sample. 

 OLS in this case would give slope estimates that are biased toward zero. 

• Incidental truncation and sample selection 
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o Sample selection does not bias OLS estimators unless the selection criterion is 

related to e. So selection based exclusively on x or on something outside the 

model that is uncorrelated with e does not present a problem. 

o “Incidental truncation” occurs when we observe y for only a subset of the 

population that depends not on y but on another variable, but the other variable 

is correlated with e.  

 The primary (only?) example in the literature is y = ln(wage offer), which 

is observed only for people who work. 

 But people who have unusually low wage offers (given their other 

characteristics) are less likely to work and therefore more likely to be 

truncated, so the variable determining truncation (work status) is 

correlated with the error term of the wage equation. 

o 1,  if 0,

0,  otherwise.

i i i

i i
i

y x e

w u
z

= β +
γ + >

= 


 

 zi is a sample indicator that is one for observations for which we observe y 

and zero otherwise. 

 We assume that ( )| , 0i i iE e x w =  and xi is a strict subset of wi. 

 We also assume that u is a standard normal that is independent of w, but 

that it may be correlated with e. 

 ( ) ( ) ( )| , | , | .i i i i i i i i i iE y w u x E e w u x E e u= β + = β +  

• Let ( )|i i iE e u u= ρ  with ρ being a parameter of their joint normal 

distribution (related to the correlation). 

• This means that  

( )
( ) ( )

| , ,

| , | , .

i i i i i

i i i i i i i

E y w u x u

E y w z x E u w z

= β + ρ

= β + ρ
 

 Since our sample is the set of observations for which z = 1, we need the 

expected value of y conditional on z = 1, and by logic similar to that used 

in the tobit model, ( ) ( )| , 1 ,i i i iE u w z w= = λ γ  where λ is the inverse Mills 

ratio φ/Φ. 

 Thus, ( ) ( )| , 1 .i i i i iE Y Z s X Z= = β + ρλ γ  

o We can’t observe the λ term unless we know γ. The Heckit estimator is a two-

step estimation procedure for estimating first γ, then β. 

 The selection variable z follows a probit model: 

[ ] [ ] [ ]
[ ] ( )

Pr 1 Pr Pr

Pr .

i i i i i

i i i

z w u u w

u w w

= = γ + ≥ 0 = ≥ − γ

= ≤ γ = Φ γ
 



~ 163 ~ 

 

 Thus, we estimate the sample-selection equation as a probit of z on w, 

using all of the observations (because we don’t need to observe y for this 

equation and we observe z for all observations). 

 We then compute the estimated inverse Mills ratio for each observation 

as ( ) ( )
( )

ˆˆ ˆ .
ˆ

i
i i

i

w
w

w

φ γ
λ = λ γ =

Φ γ
 

 We can then estimate β by running OLS on ˆ
i i i iy x e= β + ρλ +  using only 

the observations for which y is observed. The inclusion of the estimated 

inverse Mills ratio on the right-hand side corrects the bias due to sample 

selection and makes the β estimates consistent and approximately 

normal. 

 Testing ρ = 0 with a standard t test is a valid test for whether there was 

sample selection. 

o Note that the regular OLS standard errors are incorrect because they assume that 

λ is exactly known. There will be error in estimating λ by λ̂ , so this error needs 

to be taken into account in calculating the reliability of β̂ . 

 Stata command heckman computes heckit estimator either by full 

maximum likelihood or by the two-step estimation method. This will 

correct the standard errors. 

o In order to apply this model reliably, there must be at least one variable that 

determines sample selection that does not affect y.  

 In the wage equation, it is usually assumed that family variables such as 

number of children would not affect the wage offer but would affect a 

person’s choice of whether or not to accept it and work. 


