[Note: This problem follows Section 5.2 of the instructor's time-series chapters. Even though the solution is there, I still want you to work out the details for yourself, using the chapter as guidance when it is useful.]

Suppose that we have a two-variable dynamic system involving two stationary variables x and y. There is contemporaneous causality running from x to y, but not vice versa. The structural model is, therefore, given by

$$x_{t} = \alpha_{0} + \alpha_{1}x_{t-1} + \theta_{1}y_{t-1} + \varepsilon_{t}^{x}$$
$$y_{t} = \phi_{0} + \phi_{1}y_{t-1} + \delta_{0}x_{t} + \delta_{1}x_{t-1} + \varepsilon_{t}^{y}$$

where the ε error terms are (homoskedastic) white noise and $\operatorname{var}\left(\varepsilon_t^x\right) = \sigma_x^2$, $\operatorname{var}\left(\varepsilon_t^y\right) = \sigma_y^2$, and $\operatorname{cov}\left(\varepsilon_t^x, \varepsilon_t^y\right) = 0$. These ε terms are the "pure shocks" to x and y that are unrelated to anything in the past or anything having to do with the other variable.

1. Show that the solution of this system of equations is a VAR system that can be written

$$x_{t} = \beta_{x,0} + \beta_{x,1}x_{t-1} + \gamma_{x,1}y_{t-1} + \nu_{t}^{x}$$
$$y_{t} = \beta_{y,0} + \beta_{y,1}x_{t-1} + \gamma_{y,1}y_{t-1} + \nu_{t}^{y}.$$

What are the β and γ coefficients in terms of the α , θ , ϕ , and δ parameters?

- 2. Calculate the VAR error terms ν in terms of the structural shocks ε . What is the variance of each of the ν error terms and what is the covariance between them, expressed in terms of σ_x^2 , σ_y^2 , and the parameters of the model?
- 3. Suppose that we estimate the VAR and use the residuals \hat{v}_t^x and \hat{v}_t^y to calculate $\widehat{\text{var}}(v_t^x)$, $\widehat{\text{var}}(v_t^y)$, and $\widehat{\text{cov}}(v_t^x, v_t^y)$. Show how we can identify σ_x^2 , σ_y^2 , and δ_0 from these three parameters, and that given these identifications we can identify all of the α , θ , ϕ , and δ in the structural system from the reduced-form coefficients.
- 4. Without doing too much actual calculation, why would it be impossible to identify the parameters of the model if y_t appeared in the equation for x_t ? Why would it be impossible to identify the parameters if $cov(\varepsilon_t^x, \varepsilon_t^y) = \sigma_{xy} \neq 0$?