Economics 312 Daily Problem \#32

[Note: This problem follows Section 5.2 of the instructor's time-series chapters. Even though the solution is there, I still want you to work out the details for yourself, using the chapter as guidance when it is useful.]

Suppose that we have a two-variable dynamic system involving two stationary variables x and y. There is contemporaneous causality running from x to y, but not vice versa. The structural model is, therefore, given by

$$
\begin{aligned}
& x_{t}=\alpha_{0}+\alpha_{1} x_{t-1}+\theta_{1} y_{t-1}+\varepsilon_{t}^{x} \\
& y_{t}=\phi_{0}+\phi_{1} y_{t-1}+\delta_{0} x_{t}+\delta_{1} x_{t-1}+\varepsilon_{t}^{y}
\end{aligned}
$$

where the ε error terms are (homoskedastic) white noise and $\operatorname{var}\left(\varepsilon_{t}^{x}\right)=\sigma_{x}^{2}, \operatorname{var}\left(\varepsilon_{t}^{y}\right)=\sigma_{y}^{2}$, and $\operatorname{cov}\left(\varepsilon_{t}^{x}, \varepsilon_{t}^{y}\right)=0$. These ε terms are the "pure shocks" to x and y that are unrelated to anything in the past or anything having to do with the other variable.

1. Show that the solution of this system of equations is a VAR system that can be written

$$
\begin{aligned}
& x_{t}=\beta_{x, 0}+\beta_{x, 1} x_{t-1}+\gamma_{x, 1} y_{t-1}+v_{t}^{x} \\
& y_{t}=\beta_{y, 0}+\beta_{y, 1} x_{t-1}+\gamma_{y, 1} y_{t-1}+v_{t}^{y} .
\end{aligned}
$$

What are the β and γ coefficients in terms of the α, θ, ϕ, and δ parameters?
2. Calculate the VAR error terms v in terms of the structural shocks ε. What is the variance of each of the v error terms and what is the covariance between them, expressed in terms of $\sigma_{x}^{2}, \sigma_{y}^{2}$, and the parameters of the model?
3. Suppose that we estimate the VAR and use the residuals \hat{v}_{t}^{x} and \hat{v}_{t}^{y} to calculate $\widehat{\operatorname{var}}\left(v_{t}^{x}\right)$, $\widehat{\operatorname{var}}\left(v_{t}^{y}\right)$, and $\widehat{\operatorname{cov}}\left(v_{t}^{x}, v_{t}^{y}\right)$. Show how we can identify $\sigma_{x}^{2}, \sigma_{y}^{2}$, and δ_{0} from these three parameters, and that given these identifications we can identify all of the α, θ, ϕ, and δ in the structural system from the reduced-form coefficients.
4. Without doing too much actual calculation, why would it be impossible to identify the parameters of the model if y_{t} appeared in the equation for x_{t} ? Why would it be impossible to identify the parameters if $\operatorname{cov}\left(\varepsilon_{t}^{x}, \varepsilon_{t}^{y}\right)=\sigma_{x y} \neq 0$?

