Economics 312 Daily Problem \#28

Note: This problem uses HGL's dataset ex9-13.dta, which is also used for several exercises in Chapter 9. The data are weekly data on advertising and sales for a Midwest department store. The advertising variable in this dataset was also used as x in your first Monte Carlo exercise.

The following table gives an OLS regression of the model sales $_{t}=\alpha+\beta_{0} a d v_{t}+\beta_{1} a d v_{t-1}+\gamma$ sales $_{t-1}+u_{t}$.

1. Give an assessment of this regression. Do the signs and magnitudes of the coefficients seem reasonable? What additional information would you like to have to determine whether it accurately captures the dynamic relationship between advertising and sales?
2. Use the estimated coefficients to get a point estimate of the "impact multiplier" $\frac{\partial \text { sales }_{t}}{\partial a d v_{t}}$.
3. Calculate the first 3 dynamic "s-period delay" multipliers $\frac{\partial \text { sales }_{t}}{\partial a d v_{t-s}}$ and the corresponding cumulative "interim multipliers" $\sum_{\tau=0}^{s} \frac{\partial \text { sales }_{t}}{\partial a d v_{t-\tau}}$. Is the pattern what you would expect?
4. Calculate the long-run "total multiplier" $\sum_{\tau=0}^{\infty} \frac{\partial s \text { ales }_{t}}{\partial a d v_{t-\tau}}=\lim _{s \rightarrow \infty} \sum_{\tau=0}^{s} \frac{\partial s a l e s_{t}}{\partial a d v_{t-\tau}}$.

Suppose that we are concerned about possible autocorrelation of the error term, so we rerun this regression with Newey-West (HAC) standard errors. The result (using four lags) is

```
. newey sales l.sales l(0/1)adv , lag(4)
Regression with Newey-West standard errors
maximum lag: 4
```

Number of obs	$=$	156
F $3, ~ 152)$	$=$	44.99
Prob $>$ F	$=$	0.0000

sales	Coef.	Newey-West Std. Err.	t	$P>\|t\|$	[95\% Conf	Interval]
sales						
L1.	. 1430939	. 0663963	2.16	0.033	. 0119152	. 2742726
adv						
--.	2.818347	. 7823502	3.60	0.000	1.272663	4.364032
L1.	3.540486	1.064071	3.33	0.001	1.438208	5.642764
_cons	17.52318	1.648464	10.63	0.000	14.26632	20.78004

5. Stock and Watson argue that the appropriate number of lags to use for the Newey-West approximation to the error covariance matrix is $m=\frac{3}{4} \sqrt[3]{T}$. Does the choice of four lags seem appropriate here? How, if at all, does using the Newey-West standard errors change our results?
