Economics 312 Daily Problem \#26

A particular kind of nonstationary time series that is of great importance is the "difference stationary" series. This means a series that can be made stationary by differencing one or more times. Such processes have a "unit root," the intuition of which is explored in this problem.

1. Consider the second-order polynomial $P(x)=x^{2}-5 x+6$ in the variable x. Very specifically, what do we mean by the "roots" of $P(x)$? What are the roots of $P(x)$?
2. Now consider the first-order polynomial $\alpha(L)=1-0.25 L$ in the lag operator L. What is the root of $\alpha(L)$?
3. In the more general first-order lag polynomial $\alpha(L)=1-\alpha L$, what is the root?
4. For each of the following second-order autoregressive processes, express the process in the form $\alpha(L) y_{t}=\varepsilon_{t}$ and find the roots of the lag polynomial $\alpha(L)$. Assuming that ε_{t} is white noise, tell whether the process is stationary (all roots are >1 in absolute value), difference stationary (one or more roots with absolute value of 1 , others >1 in absolute value), or completely nonstationary (one or more roots with absolute value <1).
a. $y_{t}=0.75 y_{t-1}-0.125 y_{t-2}+\varepsilon_{t}$
b. $y_{t}=1.25 y_{t-1}-0.25 y_{t-2}+\varepsilon_{t}$
c. $y_{t}=2 y_{t-1}-y_{t-2}+\varepsilon_{t}$
