Economics 312 Daily Problem \#25

The lag operator L is a time-series operator that takes a time-series variable and moves it back one period: $L\left(x_{t}\right) \equiv x_{t-1}$. When working with a polynomial expression involving different lags of the same variable, it is common to write the expression as a polynomial in the lag operator "times" the variable. For example, we could write $x_{t}-0.5 x_{t-1}+0.1 x_{t-2}$ as $\left(1-0.5 L+0.1 L^{2}\right) x_{t}$.

The problems below are designed to help accustom you to working with the lag operator.

1. Write the following expressions in terms of the lags of x :
a. $(1-\alpha L) x_{t}$
b. $\left(1-\alpha L^{2}\right) x_{t}$
c. $(1-\alpha L)^{2} x_{t}$
d. $(1-L) x_{t}$
2. Show that if $y_{t}-\alpha y_{t-1}=(1-\alpha L) y_{t}=x_{t}$, then $y_{t}=(1-\alpha L)^{-1} x_{t}=x_{t}+\alpha x_{t-1}+\alpha^{2} x_{t-2}+\ldots=\sum_{s=0}^{\infty} \alpha^{s} x_{t-s}$.

For what values of the parameter α does the effect of x_{t-s} on y_{t} dissipate as s gets large?
3. As a special case of this, show that if $y_{t}-y_{t-1}=(1-L) y_{t}=x_{t}$, then $y_{t}=\sum_{s=0}^{\infty} x_{t-s}$. What happens to the effect of x_{t-s} on y_{t} as s gets large in this case?

