Economics 312 Daily Problem #15

The HGL data set pizza4.dta is described by the following definition file:

Obs: 40 individuals

pizza	annual pizza expenditure, \$
female	=1 if female
hs	=1 if highest degree received is high school diploma
college	=1 if highest degree received is a college diploma
grad	=1 if highest degree received is a post graduate degree
income	annual income in thousands of dollars
age	age in years

Variable	Obs	Mean	Std. Dev.	Min	Max
pizza	40	191.55	155.8806	0	590
female	40	.525	.5057363	0	1
hs	40	.375	.4902903	0	1
college	40	.375	.4902903	0	1
grad	40	.075	.2667468	0	1
income	40	55.8025	51.16614	7.8	288.6
age	40	33.475	10.25317	18	55

The variable fem_inc is the product female × income:

gen fem_inc=female*income

Consider the following regression:

. reg pizza female income age fem_inc

Source	ss	df	MS		Number of obs F(4, 35)	
Model Residual	697127.141 250524.759		281.785 57.85025		Prob > F R-squared	= 0.0000 = 0.7356
Total	947651.9	39 242	298.7667		Adj R-squared Root MSE	= 0.7054 = 84.604
pizza	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female income age fem_inc _cons	-128.7496 2.636669 -8.272247 -1.095241 420.4974	42.28031 .5123064 1.49879 .581824 54.26929	-3.05 5.15 -5.52 -1.88 7.75	0.004 0.000 0.000 0.068 0.000	-214.5832 1.596632 -11.31495 -2.276407 310.3249	-42.91606 3.676706 -5.229542 .0859241 530.6699

The estimated covariance matrix of the coefficients from this regression is:

	female	income	age	fem_inc	_cons
female	1787.6244				
income	13.491083	.26245784			
age	.74684932	2299959	2.2463713		
fem_inc	-19.009203	24173923	.02763713	.33851911	
cons	-1168.352	-7.060772	-63.55174	12.785672	2945.1553

- 1. How much of a \$1000 increase in income do we estimate that a male spends on pizza?
- 2. How much of a \$1000 increase in income do we estimate that a female spends on pizza?
- 3. Is the difference between these values statistically significant?
- 4. What is our estimate of the difference between pizza expenditures between a male and female of the same age each with \$20,000 of income? Is this difference statistically significant?