Economics 312

One of the earliest (and dearest to my heart) hedonic studies was a 1927 examination by Frederick Waugh of the price of bunches of asparagus at a Boston wholesale market, as a function of characteristics of the bunches, each of which weighed approximately 18 ounces. Note that because the weight of the bunches was fixed, more stalks corresponds to smaller individual spears, not to more of this peerless vegetable. The variables in his data set are:

200				
variable name	storage type	display format	value label	variable label
green	int	\%8.0g		Amount of green on stalks in hundredths of inches
nostalks	byte	\%8.0g		Number of stalks in bunch
disperse	byte	\%8.0g		Interquartile dispersion in diameter
price	int	\%8.0g		Price of bunch in cents

The "interquartile dispersion in diameter" is the difference in cross-sectional diameter between the stalks at the 75% and 25% percentiles. A higher value indicates a less homogeneous set of stalks in terms of diameter.

Summary statistics are:

Variable	Obs	Mean	Std. Dev.	Min	Max
green	200	588.75	156.331	300	950
nostalks	200	19.555	7.792986	9	48
disperse	200	14.875	9.137112	0	60
price	200	90.095	29.47439	32	183

Re-estimating his regression (he didn't have access to a computer and he appears to have made calculation errors):

```
. reg price green nostalks disperse
\begin{tabular}{|c|c|c|c|c|c|}
\hline Source & SS & df & MS & Number of obs & 200 \\
\hline & & & & F( 3, 196) & 173.81 \\
\hline Model & 125648.449 & 3 & 41882.8164 & Prob > F & 0.0000 \\
\hline Residual & 47230.7457 & 196 & 240.973193 & R-squared & 0.7268 \\
\hline & & & & Adj R-squared & 0.7226 \\
\hline Total & 172879.195 & 199 & 868.739673 & Root MSE & 15.523 \\
\hline price & Coef. & Std. & Er & [95\% Conf. & erval] \\
\hline
\end{tabular}
```

| green | .1375982 | .0070994 | 19.38 | 0.000 | .1235973 | .1515992 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| nostalks | -1.357256 | .1508215 | -9.00 | 0.000 | -1.654698 | -1.059815 |
| disperse | -.3452828 | .1296563 | -2.66 | 0.008 | -.6009834 | -.0895823 |
| cons | 40.76126 | 5.327837 | 7.65 | 0.000 | 30.25402 | 51.26851 |

with estimated coefficient covariance matrix:

	green	nostalks	disperse	_cons
green	.0000504			
nostalks	-.00003467	.02274714		
disperse	.00011905	-.00686567	.01681076	
_cons	-.03076629	-.32227884	-.18589329	28.385842

1. Assess this regression:
a. Are the effects of the variables statistically significant?
b. Interpret each coefficient in terms of "a change of XX in XXXXX leads to a change of YY in price." Are the signs and magnitudes of these effects plausible?
c. Does the intercept term of this regression have any economic interpretation?
d. Is the overall fit reasonably good?
2. Test the following null hypotheses at the 5% significance level against the appropriate onesided or two-sided alternative:
a. An additional inch of green raises price by 13 cents or less.
b. A bunch with 5 fewer stalks costs exactly 7 cents more.
