Economics 312 Daily Problem \#11

The matrix algebra investment we made in the simple regression model pays dividends with multiple regression. If we define

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{1,2} & x_{1,3} & \cdots & x_{1, K} \\
1 & x_{2,2} & x_{2,3} & \cdots & x_{2, K} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{N, 2} & x_{N, 3} & \cdots & x_{N, K}
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{K}
\end{array}\right], \quad \mathbf{e}=\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right]
$$

then we can write the N equations $y_{i}=\beta_{1}+\beta_{2} x_{i, 2}+\beta_{3} x_{i, 3}+\ldots+\beta_{K} x_{i, K}+e_{i}$ as $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{e}$. With \mathbf{y} and \mathbf{X} defined as above, show the properties of $\mathbf{X}^{\prime} \mathbf{X}$ and $\mathbf{X}^{\prime} \mathbf{y}$: what are their dimensions and what is a typical element. Do these matrices live up to their name as "cross-product matrices" or "moment matrices"?

