In Daily Problem \#8, we considered the following linear wage regression:

```
. reg wage educ
```

| Source \| | SS | df | MS | Number of obs = | 1000 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | F( 1, 998) = | 211.66 |
| Model \| | 28794.2878 | 1 | 28794.2878 | Prob > F | 0.0000 |
| Residual | 135771.14 | 998 | 136.043226 | R-squared | 0.1750 |
|  |  |  |  | Adj R-squared = | 0.1741 |
| Total \| | 164565.428 | 999 | 164.730158 | Root MSE = | 11.664 |


| wage | Coef. | Std. Err. | t | P> $\mid$ t $\mid$ | [95\% Conf. Interval] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| educ | 1.980288 | . 1361174 | 14.55 | 0.000 | 1.713178 | 2.247397 |
| _cons | -6.710328 | 1.914156 | -3.51 | 0.000 | -10.46656 | -2.954096 |

The estimated covariance matrix of the regression coefficients, saved by Stata as $\mathrm{e}(\mathrm{V})$ and shown by the Stata command matrix list $e(\mathrm{~V})$, is

```
        educ _cons
educ . }0185279
_cons -. 25566703 3.6639926
```

1. Verify that the standard errors of the two coefficients as reported in the regression table are the square roots of the diagonal elements of the estimated covariance matrix of the coefficients.
2. According to HGL's equation (2.22), the covariance between the intercept and the slope coefficients is negative if $\bar{x}>0$. Explain the intuition of this: if we underestimate the slope, why would we tend to overestimate the intercept (and vice versa) and why does this depend on the mean of $x$ being positive?
3. Follow the logic of HGL's section 3.6 to examine the one-tailed alternative hypothesis that the predicted wage of a college graduate $($ educ $=16)$ from this population is greater than 20 . Note that you will need to know the estimated variances of both the constant term and the slope coefficient, plus the estimated covariance between them in order to do this test.
