Economics 312

The regressions below estimate the bivariate relationship between hourly wages (in dollars) and years of education, using a sub-sample of 1000 observations from the Current Population Survey (date of survey unknown). The education variable is in years, created by transforming the CPS education attainment variable by the following formula:

```
00 .Less than 1st grade
03 .1st,2nd,3rd,or 4th grade
03 .5th or 6th grade
08 .7th and 8th grade
09 .9th grade
10 .10th grade
11 .11th grade
12 .12th grade no diploma
12 .High school graduate - high school diploma or equivalent
13 .Some college but no degree
14 .Associate degree in college - occupation/vocation program
14 .Associate degree in college - academic program
16 .Bachelor's degree (for example: BA,AB,BS)
18 .Master's degree (for example:MA,MS,MENG,MED,MSW, MBA)
21 .Professional school degree (for example: MD,DDS,DVM,LLB,JD)
21 .Doctorate degree (for example: PHD,EDD)
```

The sample statistics for the two variables, and for the \log of the wage, are below:

Variable \|	Obs	Mean	Std. Dev.	Min	Max
wage \|	1000	20.61566	12.83472	1.97	76.39
lnwage	1000	2.856988	-5806185	.6780335	4.335852
educ	1000	13.799	2.711079	0	21

The following Stata regression table is the outcome of regressing wage on years of education. Below it is a scatter-plot of the residuals against the regressor (education).
. reg wage educ

Source \|	SS	df MS				Number of obs $=1000$	
						F(1, 998)	$=211.66$
Model	28794.2878	1	287	. 2878		Prob > F	$=0.0000$
Residual	135771.14	998	136	43226		R-squared	0.1750
						Adj R-squared	$=0.1741$
Total \|	164565.428	999	164	30158		Root MSE	$=11.664$
wage \|	Coef.	Std.	Err.	t	$\mathrm{P}>\mid \mathrm{t}$ \|	[95\% Conf.	Interval]
educ \|	1.980288	. 1361	174	14.55	0.000	1.713178	2.247397
_cons \|	-6.710328	1.914	156	-3.51	0.000	-10.46656	-2.954096

1. What is the estimated effect of having 4 years of college (vs. having only a high-school education) on wage? What is the standard error of the 4 -year effect. What is a 95% confidence interval for the effect? (Remember that the coefficient in the table measures the effect of one year of education; you want the effect of four. You'll need to express the 4-year effect as a function of the one-year effect, and find the properties of its distribution.)
2. Suppose that if a prospective student invested the cost of a college education in another asset, the interest she would earn over her life would be equivalent to having a $\$ 6$ higher wage.
Test the null hypothesis that a four-year college education is worth exactly what it costs: that it raises the wage by $\$ 6$.
3. How good is the fit of this regression? What is the standard deviation of the residual and in what units is it measured? Does this seem large or small?
4. Does the variance of the error term seem to be constant across observations; in particular, does it seem to vary with years of education? What does this mean?
