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1 Introduction

In 1973, two economists, Myron Scholes and Fis-
cher Black, developed a mathematical model to cor-
rectly price European style options.1 These options
were priced using a simple probabilistic model that
assumed that over a large period of time the asset re-
turns were normally distributed with mean, µ, and
standard deviation (or volatility), σ. The µ is the re-
turn obtained through the risk free rate, normally as-
sumed to be the U.S. Treasury rate. And, once the
σ is known one should be able to calculate the ex-
pected return of the asset. Then assuming that there
are no opportunities to earn a riskless profit over the
risk-free rate one could come up with the “fair” price
for the option. Thus, one of the key assumptions of
the Black-Scholes model is the constant volatility for
options with different strike prices.2

However, in the post-1987 crash world, the con-
stant volatility assumption for the options prices ap-
peared to have been violated. The options prices for
options with strike rates not equal to the present ex-
pected value of the underlying asset appeared to be
much greater than the theoretically obtained options
prices through the Black-Scholes model. One rea-
soning was that the investors now knew that the stock
returns, which were assumed to be normally dis-

1Options are derivatives that give the buyer the option or the
right to either buy or sell the underlying asset at a predetermined
price either before or at the option’s expiration date. European
style options are options that can only be exercised upon the
option’s expiration date and not before.

2Strike price is the predetermined exercise price for the un-
derlying asset in the option.

tributed were not actually normally distributed and
instead had fat tails. Another explanation is that
after the 1987 crash, investors became permanently
wary of the stock market and the options underwrit-
ers charged a risk premium in addition to the “fair
price.” Regardless of why the Black-Scholes model
failed, what we do know for certain is that a better
model would be needed to explain the prices. While
I hold no such lofty targets in this paper so as to come
up with a whole new model to price the options, what
I do attempt to do is explain empirically the factors
that have affected the S&P 500 index European-style
out-of-the-money put options prices, i.e. we will be
attempting to explain the out-of-the-money put op-
tion prices with respect to the at-the-money put op-
tions 34

2 Data

The primary source of data for this report is ivolatil-
ity.com, a third-party market data vendor for Chicago
Board Options Exchange. The panel data con-
sists of monthly Black-Scholes implied volatilities
for 25%, 20%, 15%, 10%, 5%, and 0% out-of-the-
money S&P 500 put options from January 1990 to
July 2013 with a time period of 3 months, i.e. options

3Put options refer to options which only allow the holder to
sell the underlying asset.

4At-the-money refers to options that have the same strike
price as the present value of the underlying asset, and out-of-
the-money put options refer to options with strike price less than
the present value of the underlying asset.
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expiring in 3 months. 5 The 0% out-of-the-money, or
otherwise known as at-the-money, options’ implied
volatilities were used as a substitute for “actual” or
realised volatility. The reasoning for using the at-
the-money volatility as the “actual” volatility is the
assumption that since at-the-money options are the
least risky options, the risk premium for such options
will not be as big and the implied volatility will act
as a fair approximation for the realised volatility. As
such, in our analysis, we will not be including the at-
the-money datapoints, and the out-of-the-money op-
tion prices will be represented as a fraction of the cor-
responding out-of-the-money put option price. Sim-
ilarly, the at-the-money strike prices also represent
the value of the underlying asset, S&P 500 index.

OP (S) = N(−a2)K exp(−r(3))−N(−a1)S, (1)

whereOP is the put options price, S the present price
of the underlying asset, K the strike price, r the risk-
free rate, σ the implied volatility, and

a1 =
1√
3σ

(
log(S/K) + 3(r + σ2/2)

)
(2a)

a2 =
1√
3σ

(
log(S/K) + 3(r − σ2/2)

)
. (2b)

The put option prices for our regression them-
selves were calculated using equation (1), the Black-
Scholes equation for put options with a time period
of 3 months, in Mathematica. The dataset also in-
cludes 3-month London Interbank Offer Rate (LI-
BOR) to represent the risk-free interest rate.

3 Methodology and Results

We appear to have one outlier for the option price
in the 95% out-of-the-money (OTM) put option
(priceoveratm) at t=146 or February, 2002 in figure

5Black-Scholes Implied volatility refers to the “volatil-
ity” obtained by solving for volatility in the Black-
Scholes model using the actual options price. Sim-
ilarly, 25%, 20%, 15%, 10%, 5%, and 0% out-of-the-
money put option refers to options with strike prices of
75%, 80%, 85%, 90%, 95%, and 100% of the present value of
the underlying asset.

1. However, since it is just a single outlier it is not of
much concern.

Now, when regressing the priceoveratm data we
either have the option to choose a fixed effect model
or a random effect model. First let us choose the
fixed effect model with and without an autoregres-
sive term. The results are shown in figure 2. In fixed
effect we assume that the time-invariant characteris-
tics are unique to the strike price. The only variable
in both the regressions that appears to be statistically
significant at the 1% significance level is the at-the-
money volatility. In addition to that the AR(1) term
coefficient is not statistically significant and both the
AIC and the BIC values are lower for the simple lin-
ear regression (please see Appendix A).

However, there is no reason for us to believe
that our model presents time-invariant characteris-
tics unique to the strike prices and that the variation
across the strike prices is not random. However, the
random effect regression also produces the same co-
efficients and the standard error as shown in 3.

Figure 3: A table with the coefficients assumed to have a ran-
dom effect.

Normally, the Hausman test with the null hypoth-
esis that the model used should be the random ef-
fects model would tell us which model should be pre-
ferred. However, since both the standard errors and
coefficients for the two regressions are the same the
p-value for the Hausman test will be 1.0 indicating
that the random effects model should be used. Thus,
we move ahead with the random effects model.
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Figure 1: A timeplot of options price as a fraction of at-the-money option price for different strike prices as a % of the underlying
asset’s price.

We can also test to see whether a simple OLS re-
gression can be used instead of a random effects re-
gression using a Breusch-pagan Lagrange Multiplier
test. The null hypothesis is that the variance across
the different out-of-the-money strikes is zero, i.e. a
simple OLS regression would be sufficient or that
there are no panel effects, and quickly find that p
value is almost 0 allowing us to reject the null hy-
pothesis and choosing the random effects model as
shown in fig. 4.

Also, in the fixed effects model we find evidence
of groupwise heteroskedasticity when using a mod-
ified Wald test as shown in figure 5. Thus, our re-
gressions also suffer from heteroskedasticity and ran-
dom effects model with robust errors is preferrable
to the fixed effects model. This proves to be a little
problematic because in our model a fixed effect re-
gression would make more sense. We would expect
there to be some sort of time invariant characteristics
specific to the strike prices which allows the options

Figure 4: Results from the Breusch and Pagan Lagrange Mul-
tiplier test for random effects.

prices to differ so significantly even when everything
else is the same. We, thus, move ahead with finding
alternative regression models.

But before we do, we also perform a serial correla-
tion test for the presence of autocorrelation in panel
data. We utilise a Wooldridge test for autocorrela-
tion, as shown in fig. 6. As expected, we are unable
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Figure 2: A table with and without an autoregressive term with the coefficients assumed to have a fixed effect.

Figure 5: Results from the modified Wald test with the null
hypothesis of groupwise homoskedasticity.

to reject the null hypothesis that there is no first oder
autocorrelation and thus we find no significant evi-
dence of serial correlation.

With evidence for heteroskedasticity and no evi-
dence for first-order autocorrelation, we utilise and
compare both a feasible generalised least squares
(GLS) model and a panel-corrected standard error
(PCSE) model. The PCSE model is an alternative
to the feasible GLS model. We, thus, run both the re-
gressions assuming that the errors are heteroskedas-
tic in nature. The results are shown in fig. 7. We see
that when using the feasible GLS model both the at-
the-money strike price and the constant term in addi-
tion to the at-the-money implied volatility are statis-
tically significant at the 1% level, whereas we find no

Figure 6: Results from the Wooldridge test for serial correla-
tion. The null hypothesis is that there is no first-order correla-
tion. As expected we are unable to reject the null hypothesis in
this case.

such statisticaly significance for the two coefficients
in the PCSE model.

Beck and Katz (1995) shows how PCSE models
are more preferable to feasible GLS models. Beck
and Katz (1995) show through a monte carlo simu-
lation that the feasible GLS models often underes-
timate the standard errors in the regression. If that
is the case then the newly found statistically signif-
icant variables’ may have underestimated standard
errors. So in order to have a conservative estimate
we instead rely on the results of the PCSE model for
our analysis and thus we are once again left with just
one statistically significant variable. The PCSE also
takes into account the heteroskedasticty across pan-
els and possible cross-sectional correlation.

The coefficient of 1.162 to the atmivol indicates
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Figure 7: Results from the feasible GLS and the PCSE models.
The first column represent the feasible GLS coefficients while
the second column represent PCSE coefficients.

that a tenth of a rise in the volatility of the at-the-
money put options leads to a rise of 0.1162 in the
price of the out-of-the-money put options with re-
spect to the price of the at-the-money put option. In
addition to that, the above tests revealed that in our
dataset there was no reason to believe that there were
time invariant characteristics unique to the strike
rates. This would indicate that we are missing the
factors that would provide the different strike rates
with their unique characteristics, and our choice of
variables is in no way exhaustive.

4 Conclusion

Thus, we began our empirical study of the out-
of-the-money put options prices for S&P500 index
with three dependent variables: at-the-money im-
plied volatility, at-the-money strike price and LIBOR
values. The put options prices were obtained by sub-
stituting the implied volatilities in the Black-Scholes
equations, and at-the-money implied volatility was
used as a substitute for the “actual” volatility.

We began by testing whether a fixed effect panel
regression or a random effect panel regression should
be used and quickly learn that even though a fixed
effect regression makes more sense, but since both

the regresions produce extremely similar coefficients
and standard errors the Hausman test would reveal
that the random effects model is preferrable over the
fixed effects model. Similarly, the Breusch-Pagan
Lagrange Multiplier test also revealed that the ran-
dom effects modelwould be preferrable over a simple
OLS model. We also found no significant evidence
of serial correlation, while there was esignificant ev-
idence of groupwise heteroskedasticity.

However, in order to account for cross-panel het-
eroskedasticty, we move towards a feasible Gener-
alised Least Squares model and a Panel-Corrected
Standard Error. The GLS model revealed two new
statistically significant coefficient while the PCSE
model did not, mostly due to smaller standard errors.
However, the GLS models often underestimate the
standard errors. Thus, the PCSE model was chosen
for our analysis. We found that the only coefficient
that was statistically significant was the coefficient
for at-the-money implied volatility, which was found
to be 1.162. Thus, our model indicates that a 0.1 rise
in at-the-money implied volatility gives a rise 0.1162
in the out-of-the-money option price to at-the-money
option price. However, the explanatory power of our
model is extremely low, 0.08. Thus, our models are
far from complete and none of the variables included
in our dataset could account for the unique charac-
teristics of different strike rates.

A AIC and BIC values for panel
data fixed effect regression with
and without an AR(1) term.

As can be seen from figures 9 and 8, both the AIC
and the BIC values are lower when there is no lag.
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Figure 8: AIC and BIC values for the panel regression with no lagged variables.
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Figure 9: AIC and BIC values for the panel regression for an AR(1) model.
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