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A. Topics and Tools 

The neoclassical growth theory that we studied in Coursebook Chapters 3 and 4 
largely evolved in the 1950s. There was considerable filling-in of details in the 1960s, 
but by the 1970s growth theory had largely become moribund. A tremendous revital-
ization has occurred since the 1980s, spurred by several shortcomings of the previous 
theories.  
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First, because growth rates are taken to be exogenous in the Solow and Ramsey 
models, these theories are unable to explain why growth rates (and, in particular, the 
rate of technological progress) might change from one time period to another. This 
became an important research topic in the 1980s when emerging data began to con-
vince macroeconomists that productivity growth in the United States and other ad-
vanced countries had declined significantly beginning about 1974. 

A second failing of neoclassical growth theory is that it cannot explain the large 
and lasting differentials in per-capita income that we observe across countries and 
regions. Solow’s growth model implies more rapid convergence of incomes than 
seems actually to have occurred, particularly between developed and developing 
countries. International differences in technological capability can help explain this 
gap, but beg for an economic explanation that cannot be provided by models in 
which technology is exogenous. 

Another feature of neoclassical growth models that some economists and poli-
cymakers find troublesome is that they provide no mechanism by which the saving 
and investment rate (or government policies directed at influencing it) can affect the 
steady-state growth rate. While this conclusion of neoclassical models is not obviously 
counterfactual, many find it counterintuitive and have explored models in which sav-
ing plays a more central role. 

The pioneer of “endogenous growth theory” is Paul Romer, a former colleague 

but not a relative of our textbook author.
1
 His 1986 paper in the Journal of Political 

Economy is a seminal work in the modern revitalization of growth theory. The princi-
pal engine behind endogenous growth is the elimination of the assumption of de-

creasing returns to “capital.”
2
 In order to justify this radical departure from a long-

established assumption of microeconomic theory, Romer and his followers have 
broadened the definition of capital to include human capital and/or knowledge capi-

                                                     
1
In the early 1990s, there were three famous young Romers teaching macroeconomics at the 

University of California at Berkeley. Paul, who focuses on growth theory and is now at the 
Stanford Business School, David (our author), who is a prominent neo-Keynesian, and Da-
vid’s wife Christina, who is a macroeconomic historian and was chair of the Council of Eco-
nomic Advisors in early years of the Obama Administration. 
2
This is a good time to clarify two closely related concepts: “diminishing marginal returns” 

and “decreasing returns to scale.” The former is usually applied to changes in only a single 
factor of production holding all other factors constant. Thus, diminishing returns to capital 
means that when more capital is added to production with all other factors held constant, the 
ensuing increase in output becomes smaller as more and more capital is added. Returns to 
scale usually apply to the effect on output of simultaneous changes in many or all factors of 
production. “Constant returns to scale” by itself means that increases of an equal percentage 
in all factors leads to an increase of the same percentage in output. In this chapter, we will 
extend the idea of returns to scale to situations where a subset of factors changes. 
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tal. As we shall see, once this broader view of capital is adopted it is no longer obvi-
ous that there are decreasing returns. This leads to radical changes in the conclusions 
that we derive from models that are otherwise similar to those of Solow and Ramsey. 

There are two basic models developed in these chapters: the R&D model of 
Chapter 3 and the human-capital model of Chapter 4. We will give attention to both.  

The mathematical tools used here are largely familiar ones. To keep the analysis 
simple, Romer mostly reverts to the simple Solow assumptions about saving (and 
other static resource allocation decisions). The original literature on these models 
bases decisions on utility and profit maximization, which is more satisfactory, but 
the dynamic properties of the model are similar with constant growth rates, so Chap-
ters 3 and 4 will teach you the essential features of the model without all the compli-

cated mathematics that we saw in Romer’s Chapter 2.
3
  

As in previous chapters, we will be searching for steady-state balanced growth 
paths. To find these, we will usually look for situations in which the growth rates of 
the key state variables are constant. In most of the models of these chapters, there 
will be two state variables, either physical capital and knowledge capital or physical 
capital and human capital. We will use a two-dimensional phase plane that looks on 
the surface like the one in the Ramsey model, but is fundamentally different because 
in these models both variables are state variables that cannot jump, whereas in the 
Ramsey model c was a control variable that could jump vertically to adjust to chang-
es in economic conditions. 

B. The Microeconomics of Innovation and Human 
Capital Investment 

Romer’s Chapters 3 and 4 examine the macroeconomic implications of investment 
in research and development (innovation) and human capital. However, some of the 
most important theoretical issues in modeling these concepts are microeconomic in 
nature. The seminal papers in the modern growth literature vary a lot in how careful-
ly they model these microeconomic issues, but Romer’s simplified presentation of 
the models largely ignores the microeconomics. In this section, we briefly consider 
some of the basic microeconomic issues involved. (Romer discusses some of these 
topics in Section 3.4.) 

                                                     
3
 Barro and Sala-i-Martin (2004) is a more advanced textbook that looks at more sophisticated 

versions of these models. Acemoglu (2009) is a more recent, and more mathematical, treat-
ment. For those interested in learning about them, Econ 454 develops the more complete 
models. 
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The models of Chapter 3 attempt to make endogenous the “production” of tech-
nology. In the R&D model, an R&D sector produces additions to society’s stock of 
technical knowledge. In Chapter 4, individuals add to their human capital by spend-
ing time in education rather than producing output. 

A key microeconomic issue that underlies this analysis is the question of what 
incentive people have to make investments in knowledge or in human capital. Unless 
people get utility directly from the process of research or education (which cannot be 
ruled out—consider the case of the “professional student”), they will only undertake 
these investments if they are able to profit from them sufficiently to justify the oppor-
tunity cost. The opportunity cost of investing in research or education may include 
both forgone consumption and the lost alternative opportunity of investing in (and 
earning a return on) physical capital. Thus, if rational agents invest in research or 
education, then the earnings from these activities must have an expected present value 
at least as high as the current consumption that must be forgone and as high as the 
expected present value of the returns to physical capital investment.  

Returns to research and development 
As Romer discusses on page 117, pure knowledge is nonrival, meaning that the 

use of knowledge by one person does not reduce the ability of others to use it. Most 
“private” goods in the economy are, by contrast, rival. To clarify the distinction, 

think about chocolate-chip cookies.
4
 Everyone can use the same (non-rival) recipe for 

chocolate-chip cookies but everyone cannot use the same (rival) chocolate chips.  
As you learned in Econ 201, a competitive market economy (in the absence of 

externalities) can lead to the production of the efficient amount of traditional, rival 
goods. The market price provides producers and consumers with a scarcity signal 
that can lead to efficient resource allocation by equating the marginal social cost of 
the good with its marginal social benefit. On the production side, producers equate 
price to the marginal production cost. Consumers consume at the level where the 
marginal benefit of an additional unit of the good equals the market price.  

Nonrival goods such as knowledge can be reused by the same person or shared 
with additional people at zero marginal social cost. With marginal cost equal to zero, 
efficiency requires that people should consume knowledge at the level where its mar-
ginal social benefit is also zero. But, as with rival goods, utility-maximizing or profit-
maximizing users of knowledge will “purchase” it up to the point its marginal benefit 
equals the price that is charged. They will choose the optimal level of use (where 
marginal benefit is zero) only if the price of knowledge is zero. Thus efficiency re-
quires that knowledge, once it has been created, must be distributed freely at a zero 
price.  

                                                     
4
 Some of us will use any excuse to justify thinking about chocolate-chip cookies. 
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However, if the market price of knowledge is zero, then the market provides no 
financial reward for anyone who incurs the research-and-development costs that are 
necessary to create it. To provide such incentives, most countries have patent and 
copyright laws that grant exclusive (monopoly) intellectual-property rights to indi-
viduals who create knowledge. With a patent or copyright, the creator is able to 
charge a positive royalty for the license to use knowledge or to earn monopoly profits 
by using a newly discovered product or process exclusively and prohibiting its use by 
others. However, the argument of the preceding paragraph shows that charging a 
positive price for the use of a nonrival good such as knowledge leads to inefficiency, 
as does the existence of patent-protected monopolies. If individuals must pay to use 
knowledge, but the social cost of using it is zero, then they will choose to use 
knowledge at a lower-than-optimal level. Thus, when intellectual-property laws work 
as intended, they help resolve one problem by encouraging investment in knowledge, 
but at the same time they create another by discouraging its use. This argument is 
familiar to anyone who has followed the sometimes intense debates about illegal 
copying of software, works of entertainment such as CDs and DVDs, or about the 
pricing of pharmaceuticals. 

In the chemicals industry, where the precise chemical formula for a molecule can 
be protected, patents usually provide excellent protection. However, in many other 
industries intellectual-property laws are less effective. For example, suppose that a 
company discovers that a particular tool works better if it is curved than if it is 
straight. It can attempt to profit from its discovery by patenting the curved tool. 
However, there are many ways to curve a tool and it is probably impossible to gain 
patent rights on all possible curves that might be beneficially used. Once the 
knowledge that curved tools are better becomes public (as it does when a patent is-
sues), everyone may be able to “invent around the patent”—adopt some variant of 
the improved technology without paying a royalty to the inventor. For such nonex-
cludable kinds of knowledge, inventors often resort to secrecy in hopes that it will be 
costly and time-consuming for competitors to discover or “reverse engineer” the 
knowledge. When knowledge is both nonrival and nonexcludable, it qualifies as a 
pure public good, with all the familiar resource-allocation problems that public goods 
entail. Governments often subsidize research and development for branches of 
knowledge where nonexcludability makes patent protection ineffective and where 
wide diffusion of the resulting knowledge seems especially important. 

The issue of the efficient allocation of resources to research and development is a 
central focus of Reed’s Economics 354: The Economics of Science and Technology. 
If you are interested in pursuing additional readings in this area, visit the instructor’s 
Web page for a link to a recent reading list. 
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Human capital vs. knowledge capital 
 By human capital we mean acquired characteristics that make workers more 
productive. Although it encompasses such characteristics as health, strength, and 
stamina, the most commonly analyzed sources of human capital are the education, 
training, and experience that a worker embodies. Since education and training in-
volve the transmission of knowledge, it might seem like human capital is the same as 
the knowledge capital we study in the R&D model. 
 However, there is a crucial difference. Knowledge capital is potentially a public 
good whereas human capital is not. An easy way of distinguishing between them is 
to think about the two major roles that most professors play. You see professors most 
often in the classroom, where they are imparting existing knowledge to students. 
This increases the students’ human capital, but does not create new knowledge for 
society. When they are not in the classroom, your professors are likely to be engaged 
in research. If successful, this research leads to new knowledge capital that everyone 
can potentially share on a nonrival basis. Thus, simply put, society’s knowledge capi-
tal is everything that is known by someone in the society; your human capital in-
cludes your personal familiarity with and ability to use part of that knowledge. Your 
human capital is personal to you—the fact that you have obtained knowledge may 
make you more productive but it does not usually raise anyone else’s productivity. 
Thus human capital does not have the public-good characteristics of knowledge capi-
tal.  

Returns to education 
 Although human capital is not a public good in the same way as knowledge capi-
tal, education raises interesting economic issues of its own. Some aspects of educa-
tion have elements of nonrivalry. The syllabus for a course or a recorded lecture can 
be shared widely at minimal cost. However, most other aspects of education are ri-
val. Classroom seats and instructor time are limited and putting one student into a 
seat denies that seat to someone else. Moreover, most kinds of education are easily 
excludable. Those who do not pay for a seat in the class can be denied access. Thus, 

it does not appear that education is truly a public good.
5
 

One can imagine an uncomplicated world in which markets could allocate edu-
cation efficiently. If the benefits of a person’s education and training (including on-
the-job training) are perfectly reflected in his or her enhanced productivity, then 
someone who has acquired more human capital should receive commensurately 
higher wages. In this case, the individual can make an optimal personal decision 

                                                     
5
Some economists argue that everyone gains from having a more educated society, so that 

additional education for one individual benefits others as well as herself. In this case, there is 
a positive externality and the market system of incentives will lead to underinvestment in ed-
ucation. 
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about whether the returns (higher productivity and wages) to further human-capital 
acquisition justify the cost. There is no market failure here and education/human 
capital is similar to other kinds of investment/capital. 

However, there are several problems that may upset efficient resource allocation 
in education markets. One is the problem of borrowing to finance education invest-
ment. Investments in capital—whether physical, human, or “knowledge capital” ac-
quired through research and development—require a substantial initial expenditure, 
followed by a lengthy period over which the investment earns a return. The person 
desiring to make the investment often does not have sufficient liquid funds at the 
time the investment is to be made, so a “capital market” in which one can borrow for 
such expenditures is a useful social institution. However, capital markets can only 
function if lenders can be reasonable sure that they will be repaid.  

A borrower who purchases a physical capital good such as a building or a ma-
chine (or a house or car) must normally pledge the capital good as collateral on the 
loan. If the borrower fails to repay the loan as required, the lender can seize the capi-
tal good and resell it to recover at least part of his or her money. However, a borrow-
er’s education cannot be seized and, in societies that outlaw slavery, borrowers 

themselves cannot be seized by the lender either.
6
 This limits the recourse of lenders 

in cases of default, which makes it hard for the private market to provide access to 
loans for human-capital investment.  

Government-subsidized student loans attempt to remedy this market failure by 
providing government guarantees in place of collateral. Many Reed students can 
confirm that this allows a thriving market in student loans, but it does not assure al-
locative efficiency. Government guarantees generally make student loans less risky to 
lenders than the intrinsic economic riskiness of the returns to education. Thus, inter-
est rates will usually be subsidized below the level that would be appropriate to the 
investment’s risk and this will encourage overuse of student loans. Furthermore, 
while the government guarantees allow the market to function, the government is 
often no more effective at collecting money from defaulters than a private lender. 
This diverts the cost of human-capital investment from the investor/student onto the 
general taxpayer. 

A second difficulty arises when human capital is acquired through on-the-job 
learning. In most jobs, the worker learns a great deal about how the job is done dur-
ing the initial months of employment. During that period, productivity increases rap-
idly as the worker gets better at what he or she does. A “perfect” market might cap-
ture this learning by starting the individual at an extremely low wage (or the new 
worker might even pay the firm for the privilege of learning the job), then increasing 
the wage as productivity rises. This scheme implicitly or explicitly makes the worker 

                                                     
6
 Notwithstanding the fellow who was “re-possessed” after failing to pay his exorcist’s bill. 
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pay for the investment in human capital. To the extent that workers value the human 
capital they acquire, they may be willing to incur this cost, although if the initial 
wage is low enough it might force them into a borrowing situation that raises the 
same problem of collateral described above. 

However, much of the knowledge acquired on the job may be “firm-specific” 
human capital, such as knowledge of the internal rules and operations of a particular 
organization, and be largely useless if a worker moves to another firm. In a world in 
which layoffs and job changes are common, workers will be reluctant to bear the cost 
of any training that is useful only when he or she works for one particular employer. 
The firm will also hesitate to invest in a particular worker when the worker might 
depart, though there is less risk of the worker quitting at the end of the training peri-
od if most of the training is firm-specific. These difficulties in appropriating the re-
turns to human-capital investment can lead to underinvestment in training. 

A third problem that complicates the efficient allocation of resources to human 
capital is that the link between education and productivity is not well understood. It 
is uncontroversial that more highly educated workers are more productive; what is at 
issue is which way the causality runs: whether people who are innately more produc-
tive tend to invest in more education or whether it is the education itself that makes 
them productive. In our growth models, we assume that education makes individuals 
more productive. However, some economists argue that education acts mostly as a 
screening or ranking device. According to this “signaling” theory, firms hire college 
graduates at high wages not because they have learned anything that makes them 
more productive, but because the fact that they finished college signals that they are 
individuals of high ability and potentially high productivity.  

If one takes this signaling argument to its extreme, then one may claim that edu-
cation has little effect on productivity; it just acts like an elaborate placement test for 
employers. For example, a century ago a relatively small share of people finished 
high school and very few finished four years of college. According to the signaling 
model, being a high-school graduate at that time signaled that you were a high-
quality worker and being a college graduate signaled that you were in an elite catego-
ry of high achievers. Today the majority of people finish high school, so the signaling 
value of a high-school diploma is small. Many individuals finish college, so even a 
college degree is no indicator of exceptional ability. To demonstrate a truly elite sta-
tus one must now attend graduate school and get an advanced degree. According to 
the extreme version of the signaling theory, the people who now get good jobs with a 
graduate degree used to be able to get the same jobs (and do them just as well) with a 
bachelor’s degree. If the additional years of study do not raise productivity, then they 
are a costly waste of resources. 

Although most economists believe that education makes individuals more pro-
ductive, it is difficult to disprove the signaling model because in many cases the two 
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models predict similar outcomes. The human-capital model in Romer’s Chapter 4 

assumes that education is an investment in human capital that enhances workers’ 
productivity. However, to the extent that education is mainly a signaling tool, this 
model may overstate the benefits of education. 

C. Understanding Romer’s Chapter 3 

Introduction 
Chapter 3 examines an important strain of modern research on economic 

growth. This approach models the production of improvements in technology by in-
cluding “knowledge capital” along with physical capital. A two-sector model is used 
because we assume that knowledge production does not follow the same production 
function as goods production; there is an R&D (or knowledge-production) sector 
alongside the usual sector producing physical goods. 

The introduction of a second sector requires the use of some new modeling tech-
niques. For example, aggregate resources must now be divided between the produc-
tion of “goods”—either physical capital or consumption goods—in one sector and 
the production of knowledge in the other. This is the role of the a coefficients in 
Romer’s R&D model. 

The crucial novelty that makes these models strongly different than the ones of 
the earlier chapters is that the introduction of human or knowledge capital may allow 
us to sidestep the usual assumptions of (1) diminishing returns to capital and (2) con-
stant overall returns to scale. It is intuitively clear that adding more physical capital 
to a given amount of labor must eventually lead to a diminishing marginal product of 
capital (Lois doesn’t need seven typewriters), but there is no obvious reason why in-

creases in knowledge would be subject to such diminishing returns.
7
 Moreover, 

knowledge spillovers from one producer to another may allow increasing returns to 
scale for the economy as a whole, even if traditional factors (labor and physical capi-

tal) produce with constant returns to scale for any given state of technology.
8
 

The textbook’s modeling strategy and the research literature 
As Romer notes early in Chapter 3, the model he presents is a simplified version 

of a family of models that evolved in the growth literature in the early 1990s. A look 
at the research papers he cites on page 103 will verify for you that he has made sev-

                                                     
7
 This is explored in the R&D model of sections 3.1–3.3. 

8
 This channel is central to Paul Romer’s model in section 3.5. 



 
 5 – 10

eral simplifying assumptions. What he has done is to describe in detail a simple ver-
sion of this class of models that preserves their essential features. 

For example, Romer’s model uses a Cobb-Douglas production function. This al-
lows us to evaluate marginal products explicitly and solve growth-rate equations that 
would otherwise have only implicit solutions. Similarly, he relies on the assumption 
of a constant saving rate in most of Chapter 3 rather than building utility maximi-
zation into the model, though this is relaxed in the discussion of the (Paul) Romer 
model in section 3.5. The more general models lead to the same qualitative conclu-
sions, so we have gained expositional simplicity without losing the basic logic of the 
model. Students who are interested in the more general approach are strongly en-
couraged to explore the papers cited in Chapter 3 or to take Economics 454: Eco-
nomic Growth, in which these models are examined in more detail. 

The basic setup of the R&D model 
A key difference from the previous growth models that you have encountered is 

that this model has two sectors. In the R&D model, there are two kinds of capital: 
physical capital, which is familiar from earlier models, and “knowledge capital.” 
Since there are two stocks, or state variables, we have two equations of motion and 

must analyze convergence jointly.
9
 Romer builds up to this gradually by first ignoring 

physical capital and looking at the implications of knowledge investment as a single 
state variable (in section 3.2). He then brings physical capital back in to create the 
formal two-state-variable model in section 3.3. 

With two “produced” or “reproducible” factors, individuals can use their labor 
and capital resources either in the sector producing physical goods or in the sector 
producing knowledge. How much of the economy’s resources will be dedicated to 
producing knowledge rather than goods? This is a complicated question for several 
reasons. As discussed in the previous section of this chapter, there are significant 
conceptual differences between these kinds of capital that may have important impli-
cations for the incentives of the private sector to invest in them. Romer avoids this 

                                                     
9
This is somewhat like what we did with c and k in the Ramsey model, but it is a little differ-

ent. In the Ramsey model, c is a “control” variable rather than a state variable because it can 
jump discretely at an instant of time. (If something happens to change their situation, con-
sumers can raise or lower the flow of consumption spending instantly at time t in response.) 
This was crucially important in allowing the model to converge along the saddle path. If c did 
not jump exactly to the value required by the saddle path, the model would have been unsta-
ble. Stock or “state” variables such as capital and knowledge cannot jump in the same way. 
Their value at any instant depends only on past investment; they change smoothly through 
the equations of motion of the model. Although we can imagine discrete jumps in these vari-
ables—perhaps a disaster that destroys capital instantly—this would imply a momentary sus-
pension of the equation of motion that says that depreciation is proportional to the stock. 
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issue for now by assuming that aK and aL, the shares of capital and labor devoted to 
knowledge production, are exogenous. A more satisfactory approach (that is taken in 
most of the research literature) would be to endogenize these values by examining 
the markets for factors of production in detail and modeling the choice of owners of 
factors about the industry to which they sell their resources. 

The knowledge production function 
There are several features of knowledge production that are worth stressing in 

this model. First, knowledge does not depreciate. From Romer’s equation (3.2), it is 
clear that if aK and aL are zero (so that no resources are devoted to knowledge accu-

mulation), the stock stays constant, ( ) 0A t   .=   

The absence of depreciation of knowledge may seem counterintuitive, since old 
knowledge does not seem to be worth very much in today’s world. However, we 
must distinguish between the usefulness of a specific nugget of knowledge and the ex-
istence of the nugget of knowledge itself. The usefulness may decline even if we do 
not have depreciation of the aggregate stock itself. The knowledge of how to produce 
1980-vintage computers is only useless today because it has been superseded by even 
more modern knowledge (most of which builds on the original knowledge). A rea-
sonable way to think about the absence of aggregate depreciation of knowledge in 
equation (3.2) is that technical knowledge does not disappear or wear out with use 
(like physical machines do). An economy that devotes no resources to the production 

of knowledge does not slide backwards; it merely fails to progress.
10

 
A second feature of the knowledge production function is the possibility of in-

creasing or decreasing returns to scale. As Romer notes on page 103, the usual “rep-
lication” argument for aggregate constant returns to scale does not apply to the pro-
duction of knowledge. He presents reasons why returns to scale might be either de-
creasing or increasing. 

Finally, the role of the θ parameter in equation (3.2) is very important. (This θ is 

totally unrelated to the θ in the CRRA utility function that we used in the previous 

chapter.) To see the intuition of the role that θ plays in the analysis, divide both sides 
of (3.2) by A (t) to get 

1( )
[ ( )] [ ( )] ( ) .

( ) K L

A t
B a K t a L t A t

A t
β γ θ−=


 (1) 

                                                     
10

 There have been historical instances of knowledge being lost. Before written archives of 
technological literature existed, knowledge of techniques could die with the individuals who 
knew them. Landes (1983) describes the example of the fabulous Chinese water clock con-
structed by Su Sung in 1094 and lost to posterity because only he knew the technology. 



 
 5 – 12

Equation (1) expresses the knowledge production function in terms of the growth 
rate of technology (in percentage terms). Suppose that the amounts of capital and 
labor allocated to knowledge production are fixed, i.e., aKK(t) and aLL(t) are constant. 
Equation (1) shows that this will lead to a constant rate of growth in the knowledge 

stock if θ = 1, since A(t)0 = 1 and thus A(t) vanishes from the right-hand side. This 

corresponds to the kind of progress assumed in the Solow and Ramsey models: 

growth in A(t) at a constant rate g.
11

 

If θ > 1, then θ − 1 > 0 and an increase in A(t) will cause the growth rate of A(t) 

to increase, given fixed amounts of capital and labor devoted to knowledge produc-

tion. In other words, when θ > 1, the more knowledge we have, the faster the stock 
of knowledge grows for a given amount of resources devoted to knowledge produc-
tion. More knowledge accelerates the growth rate, which of course raises the level of 
knowledge even more rapidly, causing a further increase in the growth rate, and so 
on. Not surprisingly, this condition turns out to be associated with explosively accel-
erating growth in technology, productivity, and output. 

If θ < 1, then θ − 1 < 0 and each increase in A(t) lowers the growth rate of A(t), 
other factor inputs held constant. In this case, technology exhibits a kind of diminish-
ing returns with respect to its own production that is similar to that of capital in the 
Solow model.  

Capital-generated growth in the Solow model was limited by the fact that capital 
faced diminishing returns in reproducing itself. Eventually, the economy settled into 
a steady state in which capital could no longer grow relative to other factors. The 

same thing can happen to technology in the R&D model when θ < 1: Eventually, 
technology-induced growth is limited and, without growth in the non-produced fac-
tor (labor), the economy becomes stationary (zero growth). 

Analysis of the model without capital 
Romer uses phase diagrams to search for a steady state in this model, just as we 

did in the Solow model when we plotted k  as a function of k and looked for the 

point at which the curve intersected the horizontal axis. However, in the Solow anal-
ysis, we were looking for a “stationary value” of k, which was a ratio among varia-
bles in the model (K/AL). The analysis represented in Romer’s Figure 3.1 is similar, 
but here we seek a stationary value for gA, the growth rate of technology, instead of k. 

To find a stationary value of gA in the R&D model, we need to examine Ag , the 

change over time in the growth rate of A(t). That means that we are looking at the 
change in a growth rate, which might be a little confusing at first.  
                                                     
11

 However, note that in a Solow/Ramsey steady state the total quantities of labor and capital 
are increasing, so if the a values are constant aKK(t) and aLL(t) would be increasing over time 

and θ = 1 does not automatically lead to an equilibrium growth path similar to those models. 
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Note that the sign of gA (and not the sign of Ag ) tells us whether A(t) is growing 

or shrinking. If gA is positive, then A is growing; if gA < 0 then it is shrinking. The 

condition that Ag  > 0 means that the growth rate gA (whether positive or negative) is 

getting larger as time passes. Similarly, the statement that Ag < 0 means that the 

growth rate of A(t) is getting smaller as time passes.  

The intermediate case of Ag  = 0 is the case where the growth rate of A(t) is con-

stant. This situation could be a steady-state, constant-growth equilibrium. Thus, our 

search for a steady state involves finding conditions under which Ag  = 0, then as-

sessing whether the economy would converge to such a state. 

In order to find the steady state in which Ag  = 0, Romer first derives an expres-

sion for gA, which is just our equation (1) with β set to 0 to reflect the no-capital as-

sumption (Romer’s equation (3.7)). To get an expression for Ag , he takes the growth 

rate of (3.7) with respect to time to get (3.8). Since getting (3.8) from (3.7) is not ob-
vious upon inspection, let’s examine the intervening steps. 

Looking closely at (3.7), BaL
γ is constant over time, so it will not play an im-

portant role in the time derivative. L(t) and A(t) both vary with respect to time, and 
their powers are multiplied by each other in (3.7), so we will need to use the product 
rule and the chain rule to differentiate with respect to time. Applying these rules di-
rectly to (3.7) yields 

1 1 2

1 1

( ) ( ) ( ) ( ) ( 1) ( ) ( ) ( )

( ) ( )
( ) ( ) ( 1) ( ) ( )

( ) ( )

( ) ( )
( ) ( 1) ( ) ,

( ) ( )

A L

L L

A A

g t Ba L t A t L t L t A t A t

L t A t
Ba L t A t Ba L t A t

L t A t

L t A t
g t g t

L t A t

γ γ− θ− γ θ−

γ γ θ− γ γ θ−

 = γ + θ − 

   = γ + θ −   

= γ + θ −






 

which simplifies to 

[ ]( ) ( 1) ( ) ( ).A A Ag t n g t g t= γ + θ −  (2) 

 Equation (2) can be rewritten as Romer’s equation (3.8): 

2( ) ( ) ( 1)[ ( )] ,A A Ag t ng t g t= γ + θ −  

which shows that ( )A tg  is a quadratic function of gA(t). That means that we get a 

parabola if we graph ( )A tg  as a function of gA(t). We can use basic algebra to exam-

ine the characteristics of this parabola. Because there is no constant term in this 
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quadratic function, ( )A tg  = 0 when gA(t) = 0 and it the parabola must pass through 

the origin. The slope of the function is its derivative with respect to gA(t), 

( )
2( 1) ( ).

( )
A

A
A

dg t
n g t

dg t
= γ + θ −


 (3) 

At the origin, gA(t) = 0, so the slope expression of equation (3) is γn > 0 and the func-

tion is sloping upward at the origin. 

The sign of the coefficient on the squared term, which is θ − 1 in (2), determines 

the convexity or concavity of the parabola. If θ − 1 > 0 then the slope of the function 
is increasing from left to right and the parabola opens upward. Since it starts at the 
origin with a positive slope, this means that it heads upward at an increasing rate as 

shown in Romer’s Figure 3.4. If θ − 1 < 0, then the slope is decreasing and the pa-
rabola opens downward, reaching a maximum in the positive quadrant and intersect-
ing the horizontal axis as shown in Romer’s Figure 3.1. In the borderline case where 

θ − 1 = 0, the function is a positively sloped straight line coming out of the origin. 
(The straight line is a special case of the parabola in which the coefficient on the 
squared term is zero.) 

Clearly, the decisive condition determining the shape of the parabola (and there-

fore the dynamic behavior of gA(t)) is whether θ is greater than, less than, or equal to 

one. This provides mathematical support for our discussion in the previous section, 

where the magnitude of θ was asserted to be very important. 

When θ < 1, growth in technology is not “self-sustaining” due to diminishing re-
turns to knowledge. Past discoveries make future discoveries more costly in terms of 
resources. Positive technological progress can only be sustained in this case if growth 
in the labor force allows more and more labor resources to be devoted to research as 

time passes. Note that if n ≤ 0, then the slope of the ( )A tg  function is zero or nega-

tive at the origin. With n ≤ 0 and θ < 1, the ( )A tg  function immediately turns 

downward into the negative quadrant. In this case, the economy has steadily decel-
erating technical progress approaching a steady state in which gA(t) = 0. Thus, we 

conclude that in the case where θ < 1, only steady growth in the labor force will al-
low positive technological progress in a steady state. 

If θ > 1, the rate of technological progress may grow explosively. Each discovery 
opens up multiplying new opportunities so that future discoveries become less costly 
to find. Progress feeds on itself so strongly that growth in technology can accelerate 

endlessly even with constant resources devoted to R&D. If n ≥ 0, there is no point to 

the right of the origin at which the curve intersects the horizontal axis, so there is no 
nonzero steady-state rate of technical progress.  
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It was noted in the previous section that if θ = 1, then the growth rate of technol-
ogy is neither enhanced nor retarded by the pre-existing level of technology. If the 

labor force does not grow (n = 0) and θ = 1, then technological progress will occur at 

a constant rate. Both terms on the right of equation (3) are zero, so ( )A tg  = 0 and 

gA(t) remains at BaL
γLγ, the level dictated by Romer’s equation (3.7). (Note that L is 

not a function of time since it is constant when n = 0.) In this case, the line coincides 
with the horizontal axis, meaning that any level of technology growth seems to be a 
potential steady state—whatever the growth rate of A, it will remain constant. The 
technology production function tells us that the growth rate that the economy starts 

and remains at is BaL
γLγ.  

There are several key characteristics of the model with θ = 1 that make it interest-
ing to growth economists. First, this is a case where increasing the allocation of re-
sources to research (aL) leads to a higher steady-state growth rate. That is the sense in 
which models of this kind are called “endogenous” growth models. An economy that 
makes an economic choice to devote more of its resources to accumulating 
knowledge capital (perhaps through a policy of subsidizing R&D) will have a per-
manently higher growth rate. By contrast, the Solow model predicts that economies 
that devote more resources to capital accumulation (saving) will have a higher level 
of income, but not a permanently higher growth rate. Thus, changes in the rate of 
capital investment have “growth effects” in endogenous-growth models but just “lev-
el effects” in convergent models such as Solow’s. 

Second, if we change our assumption about growth in the labor force to allow 
n > 0, then increased labor input over time will result in everlasting acceleration of 

technological progress in the θ = 1 case. A growing population means (for given aL) 

more scientists, which means more discoveries and faster technological advance. 
Since knowledge is assumed to be nonrival, each discovery is costlessly shared by all, 
so it is the total amount of knowledge created that drives growth, not knowledge-

creation per capita.
12

 
Finally, as Romer notes on page 109, the crucial parameter in determining the 

dynamics of the system is the magnitude of returns to scale to produced factors. By this 
we mean “Does a doubling of only the produced factors lead to a doubling (or more 
or less than a doubling) of production?” The Solow model had constant returns to 
scale to all factors (labor and capital), but diminishing returns to the single produced 
factor (capital). Diminishing returns to produced factors assure that the sf (k) curve in 
the Solow model is convex, making convergence to a steady state inevitable and rul-
ing out self-sustaining “endogenous” growth. 
                                                     
12

 Some growth models have made the alternative assumption: that knowledge is strictly pri-
vate. In these cases, it is knowledge production per capita that matter for growth. In Chapter 
6 we consider a paper by Peter Klenow (1998) that tests this assumption empirically. 
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Since knowledge is the only produced factor in the R&D model of section 3.2, 

the relevant condition for returns to scale in produced factors is whether θ is greater 
than, less than, or equal to one. This is exactly the condition that we showed above 
to have a decisive effect on the dynamic properties of the model. We shall find that 
this is a quite general proposition in this class of models: growth is self-limiting, self-
sustaining, or explosive depending on whether returns to scale to produced factors 
are decreasing, constant, or increasing. 

The R&D model with capital 
As noted above, the biggest methodological difference between the full R&D 

model and previous models is the presence of a second state variable K along with A. 
We now explore the full, two-state-variable version of the R&D model that Romer 
presents in section 3.3.  

To search for a steady state, we now seek a point at which the growth rates of 
both state variables are constant over time. In other words, in addition to seeking 

conditions under which ( )A tg  = 0, we must also find conditions that lead to ( )K tg  

= 0.  

Since ( )A tg  and ( )K tg  will, in general, both depend on the current values of 

both gA(t) and gK(t), we will have to use a two-dimensional phase diagram. Romer's 
Figures 3.5 through 3.8 build such diagrams for two cases of the model. As we did 
for the Ramsey model, we divide the space of possible values for gA and gK into re-

gions according to whether Ag  and Kg  are respectively positive or negative. To do 

this, we plot the curves corresponding to the conditions Ag  = 0 and Kg  = 0. We 

then use arrows to indicate the directions of horizontal and vertical changes in gA and 
gK from any point. 

For the general R&D model, it turns out that both of the relevant curves are up-

ward-sloping lines. The line corresponding to Kg  = 0 has a positive vertical intercept 

and a slope of one; the line for Ag  = 0 has a negative vertical intercept and a slope of 

(1 − θ)/β.  The behavior of the system depends on the relative slopes of the two lines: 

whether (1 − θ)/β is greater than, less than, or equal to one.  

The Ag  = 0 line starts below the Kg  = 0 line, since the former has a negative in-

tercept and the latter a positive one. If (1 − θ)/β > 1, then the Ag  = 0 line has a 

steeper slope and will eventually intersect the Kg  = 0 line. Thus, if (1 − θ)/β > 1, the 

model has a unique steady state with the growth rates of capital and technology set-

tling down to constant values. Alternatively, if (1 − θ)/β = 1, the lines are parallel 

and if (1 − θ)/β > 1, the lines not only never intersect in the positive quadrant but are 
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getting farther apart as the economy moves away from the origin. In these cases, 
there is no unique steady state. 

The dynamic character of the model thus depends on the magnitude of (1 − θ)/β 

relative to one. Note that (1 − θ)/β = 1 if and only if 1 − θ = β, or β + θ = 1. For a 
given level of labor input (the non-produced factor), Romer’s equation (3.2) shows 
that returns to scale in the production of new knowledge using the two produced fac-

tors K and A are measured by β + θ. Thus, our conclusion in the general R&D model 

is parallel to our discussion above when there was no capital: with a steadily increas-
ing labor force, the model can converge to a steady state with constant growth only if 
there are diminishing returns to the produced factors. With constant or increasing 
returns to the produced factors, the growth rate accelerates indefinitely. 

Returns to scale and endogenous growth 
We have stressed several times in this chapter the importance of returns to scale 

in determining the properties of the model. Specifically, we have said that the long-
run properties of growth models are determined by whether there are decreasing, 
constant, or increasing returns to scale in the produced inputs.  

Because this issue has had a profound impact on modern growth theory, it is 
worth digressing to consider it in more detail. First of all, we need to be clear about 
what we mean by a “produced input” or “produced factor.” A better term might be 
“endogenous input” because we consider an input to be produced if it is created en-
dogenously within the model through the use of other factors of production. Since 
pure labor is exogenous in all of the growth models we have studied, it is not consid-
ered a produced factor.  

In the simple Solow model of Romer’s Chapter 1, advances in technology come 
from outside—there is no way to reallocate resources to get faster technological 
change—so the A term is not a produced input. However, in the R&D model of this 
chapter, A is produced directly by labor and capital (and A itself). Adding more re-
sources to the R&D production function leads to more rapid accumulation of 
knowledge capital A. Thus, the evolution of A is endogenous and it is a produced 
input in this model. 

Returns to scale in the produced inputs are determined by what happens to out-

put if we multiply only the produced inputs by a positive constant λ. If output goes up 

by less than a factor of λ, then we have decreasing returns in produced inputs. We 

have constant returns to produced inputs is output goes up exactly by a factor of λ, 
and increasing returns if it increases by more than that. 

“Neoclassical” growth models such as the Solow and Ramsey models have de-
creasing returns to produced inputs, although their production functions usually have 
constant returns to all inputs. Modern growth models have emphasized the case of 
constant returns to produced inputs (implying increasing returns to scale in all inputs), 
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which leads to so-called endogenous growth. We saw in the R&D model that changes 
in the economy’s choice parameters, such as the saving rate and the shares of inputs 
devoted to R&D, lead to permanent changes in the steady-state growth rates in con-
stant-returns models. These parameters have “growth effects” on output in endoge-
nous growth models (i.e., they change the steady-state growth rate), but only “level 
effects” in neoclassical models (where they affect the level, but not the slope, of the 
steady-state growth path). 

As noted in the introduction to this chapter, economists have found endogenous 
growth models appealing for several reasons. First, they often lack the strong—and 
arguably counterfactual—convergence implications of neoclassical models. Second, 
many economists believe that such fundamental economic parameters as the saving 
rate actually have growth effects rather than just level effects on real output. 

The debate over neoclassical vs. endogenous growth models has spawned a vo-
luminous empirical literature. We shall examine a sample of this literature in Chap-
ter 6. 

Scale effects in the R&D model 
 One characteristic of the R&D model that may seem unrealistic at first glance is 
the presence of scale effects. Notice in Romer’s equation (3.21) that the growth rate of 
knowledge depends positively on the level of the population. That means that econ-
omies with large populations should grow faster than smaller ones. This result may 
seem surprising, but it is a direct result of the nonrival nature of knowledge in the 
model. 
 Intuitively, the more people there are in the economy, the more people can work 
on R&D. That will lead to the creation of more knowledge. Because knowledge is 
nonrival, everyone can use this knowledge to increase productivity—as discussed 
above, it is total knowledge that matters, not per-capita knowledge. The larger is the 
population, the more scientists are producing knowledge (for everyone to use) and 
the faster is economic growth. 
 International diffusion of knowledge is an important issue related to the possibil-
ity of scale effects. The relevant boundaries for the “economy” under consideration 
in the R&D model are the boundaries at which new knowledge stops being used. If 
all knowledge generated anywhere in the world is immediately used in production 
everywhere, then these scale effects occur on a global scale: growth in knowledge 
depends on the world’s population. If some parts of the world economy operate in 
(knowledge) isolation, then knowledge in these enclaves would grow at a slower rate 
that is proportional to their own populations. 
 Based on this argument, it seems to be in the interest of every country to be inte-
grated into a world knowledge network where knowledge moves freely. However, 
there are many reasons why knowledge might not transfer effectively on a worldwide 
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scale. In practice, the use of knowledge requires substantial human capital in the us-
ing country to understand and implement the advances that have occurred. Some 

countries may lack the local population of engineers to apply new knowledge.
13

 It is 
also likely that particular pieces of knowledge are more useful in some economies 
than in others. For example, new hybrids of crops designed for temperate regions 
may not help agricultural productivity in tropical areas. Advances in robotics may be 
irrelevant to a labor-intensive economy where robots are not used because labor is 
cheap relative to capital. 
 An interesting paper by Michael Kremer examined the plausibility of scale ef-
fects, as discussed by Romer in Section 3.7. Looking at an outrageously long time 
span (and correspondingly imprecise data), Kremer (1993) does indeed find that 
growth has been larger during periods and in places where population has been larg-
er. Historically isolated enclaves such as Australia and Tasmania grew more slowly 
than large contiguous landmasses with large populations. Moreover, the overall 
growth rate of the economy (proxied by growth in population) seems to have accel-
erated over the epochs of human history as the level of population has gotten larger. 

The (Paul) Romer model 
 Section 3.5 discusses in more detail the model developed by Paul Romer in one 
of his early articles on economic growth. We do not have time to study this model in 
detail in this class. Students who are interested in the details of this model may want 
to take Economics 454 when it is next offered. 

                                                     
13

 This is related to the concept of “social capability” discussed by Moses Abramovitz (1986)  
in a paper that we shall read in the next part of the course. 
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D. Understanding Romer’s Chapter 4 

The specification of the human-capital model 
 The analysis of the human-capital model differs somewhat from that of the R&D 
model. Because the dynamics are complex, Romer focuses on the steady state, look-
ing at an equilibrium in which the amount of education per person is exogenous and 
constant. This simplifies the analysis because we can focus only on one of the two 
state variables: physical capital. Because K is the only state variable, the analysis 
turns out to be a direct extension of the Solow model. 
 However, this treatment ignores some important questions that are treated more 
carefully in the research literature. In particular, treating the level of education as an 
exogenous variable makes exogenous one of the central decisions of the model. 
Romer’s simplification is analogous to the Solow model’s assumption of a constant 
saving rate, which makes the accumulation of physical capital exogenous rather than 
responsive to economic incentives. A more complete specification of the model 
would allow individuals to decide how much human capital to accumulate based on 
the rate of return to education, just as agents in the Ramsey model decide on their 
saving (accumulation of physical capital) based on the return to capital and their de-
sire for smooth consumption and for consumption now rather than later. 

Romer begins the exposition with the production function described by equation 
(4.1). Note that labor input seems to be missing from the production function here. 
This apparent anomaly is resolved by equation (4.4), which expresses the amount of 
human capital H(t) as the product of the number of workers L(t) and a productivity 
factor G(E) that is related to the amount of education the representative worker has 
received. Romer then makes the simplifying assumption that each additional year of 
education adds the same proportional amount to a worker’s productivity, making 
productivity an exponential function of education as shown by equation (4.6). 

Analysis with the human-capital model 
To begin the analysis, we must derive the intensive form of the production func-

tion (4.1). Since H(t) has taken the place of L(t) in the production function, it makes 
sense to redefine y and k as 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

Y t Y t
y t

A t H t A t G E L t
≡ =  (4) 

and 
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( ) ( )
( ) .

( ) ( ) ( ) ( ) ( )

K t K t
k t

A t H t A t G E L t
≡ =  (5) 

With these definitions, we can write the intensive form of the Cobb-Douglas produc-
tion function as 

( ) ( ) .y t k t α=  (6) 

 If the level of education E is constant, as Romer assumes and as it would be in a 
steady state; A and L are assumed to grow at constant rates as given by his equations 
(3.47) and (3.49); thus the denominator of (4) and (5) grows at the constant rate 
n + g, just as in the Solow model. It follows that the analysis of the intensive-form 
model is identical to that of the Solow model from Chapter 1. We can move imme-
diately to write the unique, steady-state level of k as 

1
1

* ,
s

k
n g

−α 
=  + + δ 

 (7) 

as shown by Romer on page 153. From (6), the corresponding steady-state level of y 
is just 

1

* .
s

y
n g

α
−α 

=  + + δ 
 (8) 

 In the steady state, y is constant at the level shown in equation (8), so its numera-
tor and denominator must be growing at the same rate. With G(E) constant, Y must 
be growing at rate n + g corresponding to growth in A and L, and Y/L must grow at 
rate g in the steady state. Unsurprisingly, the steady-state properties of the model are 
entirely Solovian. The presence of G(E) simply scales the level of output per worker 
(for given y*) by a constant amount that depends on the equilibrium amount of edu-
cation per worker. 

Output per person vs. output per worker 
 In our analysis of the human-capital model so far, we have treated education as 
though it were free. People receive an amount E without paying for it by forgoing 
consumption of goods, labor effort, or investment in physical capital. Not surprising-
ly, our results suggest that more education is always better—why should we stop in-
creasing a variable that gives us higher income and costs us nothing? But of course 
education is not really free. It consumes resources (mainly teacher and student time) 
that could otherwise be used to produce consumable output. 
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 One way of incorporating these costs of human capital would be to think of some 
of our real output as being used up in education rather than being available for con-
sumption and physical-capital investment. We can think of this approach as empha-
sizing the tradeoff between the use of labor and capital resources in human-capital 
accumulation (teachers and schools) vs. use in general production. 
 While this approach improves on the zero-cost assumption, it is somewhat unre-
alistic because the greatest cost of education is the enormous number of student hours 
that are diverted from production into human-capital accumulation. Even at Reed, 
which is justifiably proud of its low student/faculty ratio, there are more than ten 
times as many potential workers in the student body as on the faculty. Adjusting for 
non-teaching staff only reduces this ratio to about three. 
 Romer incorporates the cost of education in his model by recognizing that time 
spent as a student is time that you are consuming but not producing. Therefore, we 
must distinguish carefully between output per worker (which is the Y/L value we 
discussed above), and output per (adult) person, which he denotes by Y/N. The adult 
population N is larger than the labor force L by the number of students.  
 We can tell an intuitive story about why the effect of an increase in education on 
Y/N is going to be more complicated than the effect on Y/L. We assume that more 
education makes workers more productive, so increased education must lead to 
higher output per worker in the steady state. However, more education also means 
that a smaller share of the population is working at any given time. Since students do 
not produce anything, this means that the higher output of each worker is, at least 
partially, offset by the smaller number of workers. Romer analyzes this tradeoff be-
ginning on page 154. 
 We are interested in looking at the behavior of Y/N and we know something 
about the behavior of Y/L = y, so it makes sense to start by noting that 

.
Y L Y L

y
N N L N

= ⋅ =  

Thus, we need an expression for L/N, the share of the population that is working. 
This can be a little tricky if people live infinitely long, as in the Ramsey model, so 
Romer adopts a somewhat more realistic assumption: that everyone lives T years 

with the first E years devoted to education and the last T − E years to working. 

 It might seem like we could then simply write down the ratio of working to total 

population as (T − E)/T, since that is the share of each person’s life that he or she 

works. However, we can only do this if the population is not growing (n = 0). In a 
growing population, the young cohorts that are in education will be larger than the 
corresponding cohorts that are working, so the share of the population working will 
be somewhat smaller. 
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 In order to calculate L/N for a growing population, we need to look explicitly at 
cohort size. Romer denotes the flow of people born at time t by B(t). If the population 
is to grow at rate n with a fixed life span, then the flow of births must grow at rate n 
as well. Using our standard formula for continuous-time growth,  

( ) (0) .ntB t B e=  (9) 

 We can calculate the population at time t by adding up the sizes of all cohorts 

born between t − T and t. We are working in continuous time, so this is an integral 

rather than a traditional summation. Using integration to add up the flow of births 

from t back to t − T gives 

0
( ) ( ) .

T
N t B t d

τ=
= − τ τ  (10) 

This is the first part of Romer’s equation (4.8). The B(t − τ) inside the integral is the 

flow of births that happened τ periods before time t. The population at time t includes 

those born between zero and T years before t, so integrating from τ = 0 to τ = T adds 

up the cohorts that are still alive at t.  

 Applying equation (9) to period t − τ gives B(t − τ) = B(0)en(t − τ) = B(t)e−nτ. Romer 

makes this substitution to get the second line of his equation (4.8). To get the final 
line, he uses the rules of integrals to evaluate the integral expression. Because we 
have not stressed the rules of integration, a more detailed explanation is appropriate 
here. 
 Recall that integration involves “anti-differentiation,” finding the function whose 

derivative equals the integrand. In this case, the integrand is B(t)e−nτ and we are inte-

grating with respect to τ.  We can simplify the integral by noticing that B(t) does not 

depend at all on τ, so it can be treated as a constant and brought outside the integral 
sign: 

( ) ( ) .n nB t e d B t e d− τ − ττ = τ   (11) 

Notice that I have temporarily suppressed the limits of integration in equation (11) 
and treated it as an “indefinite integral.” We shall consider the limits of integration 
in a moment. 
 Remember that the derivative of the exponential function was especially simple: 

( )
.

ax
axd e

ae
dx

=  

The anti-derivative is likewise simple, 
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1
,ax axe dx e

a
=  

or, in this case, 

1
.n ne d e

n
− τ − ττ = −  (12) 

 Equation (12) gives us the indefinite integral of the function. To calculate the def-

inite integral over the range τ = 0 to τ = T we subtract the value of the right-hand 

side of (12) at τ = 0 from the value at τ = T. Thus, 

( )0 0

0

1 1 1 1
.

nT
T n nT n nT e

e d e e e e
n n n n

−
− τ − − ⋅ −

τ=

−   τ = − − − = − =   
     (13) 

Multiplying (13) by the B(t) term that we took outside the integral in equation (11) 
yields the final expression that Romer arrives at in his equation (4.8). 
 The analysis of equation (4.9) to get the size of the labor force L(t) is exactly 
analogous. The people in the labor force at time t are the members of the population 
more than E years old, since people spend their first E years in education. Therefore, 

people born between t − E and t are in school and people born between t − T and 

t − E are working. Equation (4.9) differs from equation (4.8) only in the lower limit of 

integration: τ ranges from E to T rather than from 0 to T. 

 Having derived the ratio of L to N in equation (4.10), Romer then proceeds to 
show in a straightforward way how output per person behaves. The principal conclu-
sion was noted above. Increases in education have ambiguous effects on output per 
person. They increase output per worker but decrease ratio of workers to persons. 

E. Suggestions for Further Reading 

General texts on modern growth theory 
Barro, Robert J., and Xavier Sala-i-Martin, Economic Growth, 2nd ed., Cambridge, 

Mass.: MIT Press, 2004, Chapters 4 through 7. 
Aghion, Philippe, and Peter Howitt, Endogenous Growth Theory Cambridge, Mass.: 

MIT Press, 1998. 
Acemoglu, Daron, Introduction to Modern Economic Growth, Princeton, N.J.: Princeton 

University Press, 2009. (An encyclopedic and highly mathematical new textbook 
on growth theory.) 
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Jones, Charles I., Introduction to Economic Growth (New York: W.W. Norton, 1998), 
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Economy 94(5), October 1986, 1002−1037. (The paper that is generally regarded 
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Lucas, Robert E., Jr., “On the Mechanics of Development Planning,” Journal of 

Monetary Economics 22(1), July 1988, 3–42. (Lucas’s Nobel address focused on a 
two-sector model with human capital.) 

Romer, Paul M., “Endogenous Technical Change,” Journal of Political Economy 98(5), 
October 1990, Part II, S71–S102. (The Paul Romer model closest to the model in 
David Romer’s section 3.5.) 

Aghion, Philippe, and Peter Howitt, “A Model of Growth Through Creative De-
struction,” Econometrica 60(2), March 1992, 323–351. (A seminal paper in the 
neo-Schumpeterian strain of endogenous growth models.) 

Grossman, Gene M., and Elhanan Helpman, Innovation and Growth in the Global 
Economy (Cambridge, Mass.: MIT Press, 1991). (A book elaborating on a variety 
of endogenous growth models in an international context.) 

Rebelo, Sergio, “Long-Run Policy Analysis and Long-Run Growth,” Journal of Politi-
cal Economy 99(3), June 1991, 500–521. (One of the most often cited AK models.) 
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