Consider the panel-data regression model $y_{ii} = \beta_{1i} + \beta_2 x_{2ii} + \beta_3 x_{3ii} + e_{ii}$. Suppose that we consider the individual-specific intercept coefficient to reflect random variation across individuals around a fixed mean: $\beta_{1i} = \overline{\beta}_1 + u_i$, $E(u_i) = 0$, $cov(u_i, u_j) = 0$, $i \neq j$, $var(u_i) = \sigma_u^2$.

- 1. Show that this "random-effects" model can be written as $y_{it} = \overline{\beta}_1 + \beta_2 x_{2it} + \beta_3 x_{3it} + \nu_{it}$, where $\nu_{it} = u_i + e_{it}$.
- 2. Assuming that $E(e_{it}) = 0$, $var(e_{it}) = \sigma_e^2$, and $cov(e_{it}, u_i) = 0$, find
 - (a) $E(v_{it})$,
 - (b) $var(v_{it})$,
 - (c) $cov(v_{it}, v_{is}), s \neq t$,
 - (d) $\operatorname{cov}(v_{it}, v_{is}), i \neq j, s \neq t$.
- 3. Explain intuitively how we could attempt to estimate σ_e^2 and σ_u^2 using OLS residuals \hat{v}_{it} . Given the properties of v_{ij} , would you expect these estimates to be consistent? (Hint: They will be consistent if the OLS coefficient estimators are consistent.)
- 4. If we had estimates of σ_e^2 and σ_u^2 , explain in principle how we could use GLS to get asymptotically efficient estimators of the coefficients.