Economics 312 Daily Problem #17

This daily problem was about half of the in-class midterm exam last year. Consider both a daily problem that we will discuss in class, and also a preview of the kind of question you're likely to see on the in-class exam.

Consider the regressions whose results are presented below. Standard errors are in parentheses below the coefficient estimates. The dependent variable in each regression is the final-exam score in a microeconomics course. The range of scores is 10 to 39, with a mean of 25.9 and a standard deviation of 4.7. (ACT is a test score like the SAT, but with a top score of 36.)

37	O - CC	3.6	C D	(1)	(2)	(2)	(4)
Variable	Coeff	Mean	S.D.	(1)	(2)	(3)	(4)
ACT score	β_1	22.51	3.49	0.357***	0.401***	0.399***	0.385***
				(0.0489)	(0.0528)	(0.0533)	(0.0519)
GPA in prior	β_2	2.59	0.54	2.354***	1.915***	1.906***	2.052***
courses				(0.330)	(0.397)	(0.402)	(0.376)
% of classes	0	81.7	17.0		0.0254**	0.0139	
attended	β_3	01.7			(0.0112)	(0.0141)	
% of homework	0	87.9	19.3			0.0183	0.0243**
submitted	eta_4					(0.0122)	(0.0101)
Constant	β_0			11.76***	9.834***	9.226***	9.785***
				(1.172)	(1.395)	(1.456)	(1.394)
<i>p</i> value for <i>F</i> test of $\beta_3 = \beta_4 = 0$						0.027	
Observations				680	680	674	674
R-squared				0.195	0.201	0.206	0.205

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

- 1. Do students who have done better in prior courses also do better in this one, given their admission-test scores? (You should answer this both with reference to statistical significance and also economic significance.) Explain precisely how you arrived at your conclusions.
- 2. (a) What does the evidence from these regressions say about the importance of class participation through attendance and submission of homework?
- (b) Why are the statistical conclusions for these variables difficult to interpret? What might be causing this difficulty?
- (c) The regressions in columns (3) and (4) have fewer observations. Speculate on why this might be and under what conditions it would affect the regression results in an important way.

- 3. Suppose that Professor Peter Pompous argues that knowing a student's prior college performance makes pre-college admission credentials such as ACT scores irrelevant.
- (a) How would you formulate a test of the Pompous Hypothesis based on column (1)?
- (b) What would you conclude?
- (c) Based on the table, is this result sensitive to the inclusion or exclusion of variables measuring actual class participation?