You are familiar with the log-wage/education relationship using the cps4_small.dta file from previous problems. Here is the simple regression of log(wage) on education:

. reg lwage educ

Source	ss	df				Number of obs F(1, 998)		1000 216.41
Model Residual	60.015841 276.76489	1 998		015841 731953		Prob > F R-squared Adj R-squared	= =	0.0000 0.1782 0.1774
Total	336.780731	999	.337	117849		Root MSE	=	.52661
lwage	Coef.	Std.	 Err. 	t	P> t	[95% Conf.	In	terval]
educ _cons	.0904082 1.609444	.0061		14.71 18.62	0.000 0.000	.0783484 1.439853	-	1024681 .779036

Adding three regional dummy variables to the regression (the East region is omitted) yields

. reg lwage educ midwest south west

Source	SS	df	MS		Number of obs F(4, 995)	
Model Residual	63.7111173 273.069614		9277793 4441823		Prob > F R-squared Adj R-squared	= 0.0000 = 0.1892
Total	336.780731	999 .33	7117849		Root MSE	= .52387
lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ midwest south west _cons	.0904304 1313871 0523116 .0332736 1.648171	.006124 .0487029 .046397 .0487333 .092581	14.77 -2.70 -1.13 0.68 17.80	0.000 0.007 0.260 0.495 0.000	.0784129 2269593 1433588 0623583 1.466494	.1024479 035815 .0387357 .1289056 1.829847

- 1. Interpret the coefficients of the three dummy variables and their individual t statistics. (What economic hypothesis does each of these t tests test?)
- 2. How could you use Stata to test whether wages are lower in the South than in the West?
- 3. Use the SSE form of the *F* test in HGL's equation (6.4) to test the null hypothesis that region does not matter, *i.e.*, H_0 : $\beta_3 = 0$, $\beta_4 = 0$, and $\beta_5 = 0$ against H_1 : $\beta_3 \neq 0$ or $\beta_4 \neq 0$ or $\beta_5 \neq 0$ in the regression $\ln(wage) = \beta_1 + \beta_2 educ + \beta_3 midwest + \beta_4 south + \beta_5 west + e$.